
Integrating dialog modelling and application development

Hallvard Trætteberg
Norwegian University of Science and Technology

7491 Trondheim, Norway
+47 7359 3443
hal@idi.ntnu.no

ABSTRACT
Based on a set of characteristics for diffusion of
technology, we question the current state and direction of
MBUID. We have suggest a set of requirements based on
this set of characteristics and present how our own work
relate to this.

Keywords
Technology diffusion, model-based methods, industrial
practice.

INTRODUCTION
Model-based (MB) user interface design (UID) has been a
promissing approach for over a decade. In fact, MBUID
has been promissing for so long, while not being adopted
by the mainstream application developer, that we perhaps
should question the approach. Not because we believe
models are of no use, but because we have observed that
the envisioned and suggested role of models and modelling
do not fit current industrial development practice. And to
be honest, it doesn’t fit my own practice either.
A recent ACM article on adoption of the iMode wireless
technology [1], presents a set of innovation characteristics,
developed by Rogers [2] to explain adoption of new
technology. The characteristics are explained as follows
(quoting from the ACM article, not the Rogers’ work):
• Relative advantage: the degree to which the

innovation is perceived as being better than the
practice it supersedes.

• Compatibility: the extent to which adopting the
innovation is compatible with what people do

• Complexity: the degree to which an innovation is
perceived as relatively difficult to understand and use

• Trialability: the degree to which an innovation may be
experimented with on a limited basis before making
an adoption (or rejecting) decision

• Observability: the degree to which the results of an
innovation are visible to others

The characteristics are compatible with the simple
observation that change (in people) happens gradually and
only when the evidence is clear. In this paper we discuss
these characteristics in the context of methods and tools for
MBUID.

INNOVATION CHARACTERISTICS FOR MODEL-BASED
TOOLS AND METHOD FOR USER INTERFACE DESIGN
For the sake of this discussion, we will assume that
developers currently use UML tools for supporting design
and implementation, use GUI-builders to a limited extent,
utilise standard and third party component
libraries/frameworks and do a lot of hand-coding for
meeting “special” requirements. Prototyping is used for
discussing design alternatives, and often parts of the
prototype evolve into shipping code, usually due to lack of
time for recoding. All this is based on our personal (and
limited) contact with industry.
Relative advantage: The advantage of the model-based
approach may be related to characteristics of the resulting
user interfaces or the development process (or both), e.g.
increased usability or decreased development time or
resource consumption. State-of-the art MBUID tools
should in many cases result in less development time, if we
disregard the time required to learn the methods and tools.
However, most tools have limited coverage of interaction
styles and platform technology, and going outside the
supported set is usually difficult and time-consuming, if not
impossible. Another possible advantage of MB tools is that
existing design models are easier to utilise, so MBUID
needs to do less. However, our experience is that the
software design models are not user-centered and as the
starting point for UID should be used with care. In
addition, few UI models are based on UML, which is the
only candidate for de-facto software modelling standard.
Compatibility: The idea of using models is catching on
within systems engineering, as the penetration of UML
shows. Note however, that software modelling concepts are
more similar to programming concepts, than UI models are
to UI program code. Hence, it is difficult to argue that UI
modelling is compatible with current modelling practice.
The model-based approach is usually taught as a top-down
process of model refinement and transformation. This is
contrary to a user-centered prototype-based approach,
where design is bottom-up. We admit that few follow the
guidelines of UCD, but have little reason to argue against
it.
Complexity: Our experience in teaching MBUID to
students and industry indicates that it is indeed perceived as
difficult to understand and use.

Trialability: First, it is difficult to use the MB approach for
limited parts of an application, since most MB approaches
require changing most of the development process. Second,
even if limited parts are handled well with a model-based
approach, it is difficult to argue for the robustness and
scalability of the approach.
Observability: I have never seen an application with a
“developed using models” or “models execute here” sticker
or ad (like “Intel inside” on PC hardware). Seriously,
models have no visible positive effects on usability, e.g.
increased flexiblity, tailorability or adaptability, which are
areas where models are expected to give a
positive effect. I have seen applications that give
me reasons to believe models have been used for
a positive effect (typically for supporting
advanced customisation), but it has never been a
selling point.
I may sound very negative, but I think that even
such a simplified analysis may provide some
lessons. Based on each characteristic it should
be possible to generate requirements for the next
generation of MBUID tools and methods.

INNOVATION CHARACTERISTICS AND
REQUIREMENTS FOR TOOLS AND
METHODS
Based on each characteristic, I will briefly
suggest how it should affect the MB approach to
UID.
Compatibility: Make models work better with
prototyping techniques. Support processes
where models are derived/built bottom-up from
concrete designs, not just top-down. Models
must complement concrete representations and
their relation must be clear. Augment GUI-
builders with MB functionality. Integrate
concepts from UML into UI models, where
possible, e.g. by adding UML stereotypes or
extending the UML meta-model. Make it easier
to integrate MB runtime systems into
applications based on standard toolkits.
Complexity: Simplify modelling languages and notations.
Trialability: Design methods that may be used for limited
parts of a design/project. Build open-source tools that make
methods easier to try and that may be integrated into
existing ones.
Relative advantage: Focus on the areas where most is
gained, e.g. flexibility/tailorability. Make models
complement existing models and design representations,
and provide means for moving between them. Make
models useful for smaller parts of a project.

OUR OWN APPROACH
We have by no means followed all the suggestions outlined
above, but most of our work on dialog modelling take the
above reasonning into account.

Dialog modelling language: Our visual dialog modelling
language, DiaMODL [3], is based on UML statecharts and
a simplified variant of the interactor user interface
component abstraction. Standard UML class and
collaboration diagrams are used for domain modelling. We
have modelled most (if not all) standard widgets, so the
relation between AIOs and CIOs is well understood.
Modelling tool: We are working on a hybrid GUI-builder
and modelling tool, based on the mock-up design shown
above. The basic idea is to start with a GUI-builder and add
value with DiaMODL constructs, so more of the

underlying logic of the GUI may be expressed using the
tool instead of by coding. The user should be free to view
the design as GUI only, model only or a hybrid view as
shown above. Executing should be directly supported,
whatever view is used.
Using DiaMODL in applications: To make DiaMODL
easier to use as part of a larger application, we have
implemented the main modelling concepts in Java, and
integrated it with the Swing toolkit. The model object
structure is completely complementary to Swing’s
component structure. The former is driven by and drives
the latter, does not replace or hide

it, as illustrated above. The machinery is designed so that
smaller or bigger parts of the user interface may be driven
by the model objects, without affecting the other parts.
Hence, it is possible to gradually introduce model objects
into an existing application, and try out the MB approach
for only smaller parts of a new design.
XML as external format: We have designed XML
languages for both Swing component structures and
DiaMODL objects, to make both easier to work with. The
Swing XML elements and attributes translate directly to
Java objects and properties, so the Java programmer gets
what she expects. E.g. the first fragment below instantiates
an instance of javax.swing.JSlider and sets six of its
properties.
<slider id="result-component"

value="11" minimum="0" maximum="20"
major-tick-spacing="2" paint-ticks="yes"
paint-labels="yes"/>

<component-interactor

idref:component="result-component"
output-receive="Integer"
input-send="Integer"/>

DiaMODL objects are built using separate XML fragments,
that refer to the Swing components using XPath and
identifiers. The second fragment above augments the slider
with a description of its logic function, and makes it
possible to present data and get input by means of the slider
without “knowing” the details of how the slider is
configured to handle Integer input and output.
The Java application may operate on the Swing part
directly, and it is possible to use the Swing XML language
for parts of the GUI that are not affected by the dialog
model, as an easier and more flexible way (it may be
changed without recompiling the application) for

instantiating it. Alternatively, the application may operate
on the more abstract model objects, e.g. provide
information and react to abstract events, and hence be more
robust to changes in the concrete (surface) design.
Open-source implementation: Everything we do is based
on freely available open-source libraries, e.g. SAX, XOM
and Jaxen for XML handling and JGraph for diagram
editing, and our own code is open-source (currently
residing in our department’s open-source portal similar to
SourceForge). This means people are free to try it out,
integrate it into their own applications and modify it as
needed.
Industry-friendly method: Our industrial experience shows
that developers and designers are vary of being too formal.
We have arranged several design workshops where we try
to show how models may complement low and high
fidelity prototypes. Based on this experience, we are
working on integrating DiaMODL in a semi-formal
approach, and have chosen Constantine’s abstract
prototypes [4] as a starting point. The advantage of his
method, is its step by step introduction of detail and
formality. Gradually adding modelling constructs when the
precision provided by models is needed, seems like a
natural extension of his abstract prototypes.

CONCLUSION
Based on a set of characteristics for diffusion of
technology, we have questioned the current state and
direction of MBUID. We have suggested a set of
requirements based on this set of characteristics and
presented how our own work relates to this.

REFERENCES
1. Barnes, S. J., Huff, S. L. Rising Sun: iMode and the

Wireless Internet. Communications of the ACM, 46, 79-
84, 2003.

2. Rogers, E. Diffusion of Innovation. Free Press, New
York, 1995.

3. Trætteberg, H. Dialog modelling with interactors and
UML Statecharts - a hybrid approach. Presented at
DSVIS-2003 in Funchal, Madeira.

4. Constantine, L., Windl, H., Noble, J., Lockwood, L.
From Abstraction to Realization in User Interface
Designs: Abstract Prototypes Based on Canonical
Abstract Components. Paper found at www.foruse.com.

Swing GUI

Application logic

DiaMODL DiaMODL

