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Abstract

In this paper we describe a semi-automatic ap-
proach to generating event extraction patterns
for free texts. The algorithm is composed of
four steps: we automatically extract possible
events from a corpus of free documents, cluster
them using dependency-based parse tree paths,
validate random samples from each cluster and
generate linear patterns using positive event
clusters. We compare our algorithm with the
system that uses manually created patterns.

1 Introduction
The event extraction (EE) task is formulated as “to au-
tomatically identify the events in free texts and derive
detailed information about them, ideally identifying who
did what to whom, when, with what methods, where and
why”. Events involve entities and relations between them
and imply a change of state. For instance, the sentence
“Palm was acquired by Hewlett-Packard for $1.2 billion
two days ago” mentions an event of the type Mergers
& Acquisitions (M&A) with four arguments - acquirer
(Hewlett-Packard), acquiree (Palm), monetary expres-
sion ($1.2 billion) and temporal expression (two days
ago). There is also an event indicator (was acquired).
An event indicator is a word or a sequence of words that
clearly signal about the possible presence of an event.

EE has been the subject of active research for more
than twenty years since the series of MUC conferences
started in 1987. Initially, EE task was limited to sev-
eral domains and had small-sized corpora at its disposal.
Nowadays, with the rapid evolution of socially-oriented
Internet, it is becoming a crucial task for businesses to
analyze millions of documents with multilingual content
each day with minimal latency in order to get insight and
provide critical decisions in time. We believe that mod-
ern and effective solutions to EE task would allow busi-
nesses to dramatically minimize the time required to start
making use of new sources of information and reduce the
operating costs of such systems.

One of the popular approaches to information extrac-
tion (IE), and EE as a sub-problem of IE in particular,
is in the use of domain specific extraction patterns such
as linear extraction patterns for annotation graphs and
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patterns for dependency-based parse tree (DPT) struc-
tures. In this paper we present our approach to semi-
automatic generation of linear extraction patterns for an-
notation graphs while using DPT patterns in the process
of constructing the first ones.

The paper is structured as follows. In the next section
we briefly outline related work, in particular, we give an
overview of the papers that propose algorithms minimiz-
ing human efforts required to build extraction patterns.
In section 3 we describe in details four steps of the al-
gorithm. Section 4 presents the results of experiments.
We conclude in section 5 by summarizing the results and
outlining current and future work.

2 Related Work
One of the most known algorithms that learn multi-slot
extraction patterns for free texts is Whisk [10]. It re-
quires an annotated corpus of documents and syntactic
parse data provided with it.

The problem of learning conventional character-based
regular expressions from annotated corpora is described
in [8]. The authors demonstrate the applicability of their
method in extracting such structured entities as software
names, URLs, phone and course numbers. It is still an
open question if their approach can be effectively applied
for extracting higher level structures such as relations or
events.

Snowball [1, 3, 9] and ExDisco [3, 11] are the ex-
amples of algorithms for learning information extraction
patterns from unannotated corpora. Snowball is a logi-
cal successor of DIRPE [4, 1, 3, 9] which was intended
for extracting binary relations from semi-structured web
data. Snowball also extracts binary relations but it is in-
tended for free texts. The main idea is that there is a
small seed of known relations and these relations are to
be found in the text. After that the algorithm generalizes
sentence context (creates a pattern). The next step is to
find new relations within this context.

ExDisco uses a different approach to deal with the
problem of absence of annotated corpora. It divides a
corpus into two parts (relevant and irrelevant documents)
and uses the following assumption: relevant documents
contain relevant events and relevant events are present in
relevant documents. ExDisco uses a small seed of 2 or 3
known patterns to first divide documents, then it does the
syntactic analysis of every sentence and uses its results
for pattern generation.



As opposed to conventional IE from relatively small
annotated corpora, Open Information Extraction (OIE)
deals with large Web-sized unannotated sets of docu-
ments. The two most known information extraction sys-
tems that do OIE are KnowItAll [6, 5, 3] and TextRunner
[12, 5, 3]. They rely upon syntactic information rather
than annotated or any lexical data.

3 Generating Linear Patterns
The motivation behind this research is to minimize hu-
man efforts in constructing event extraction patterns for
new types of events. There are three assumptions under-
lying our algorithm. The first one is the way how we de-
fine the verity of events. We define an event to be a true
(positive) event if its indicator and arguments linguisti-
cally represent a valid event mention no matter what po-
larity, modality etc. the event mention has. For instance,
in the sentence “Reuters announces that HP will not ac-
quire Palm” the pair {Reuters, announces} represents a
valid event mention of the type Company Announcement,
while {HP, announces} pair does not. On the other hand,
the triple {HP, Palm, will not acquire} represents a valid
event mention of the type M&A, while {Palm, Reuters,
will not acquire} triple does not.

The algorithm requires the documents to be anno-
tated with named entities that might be the arguments
of events. They include not only such named entities as
persons, companies, positions and event indicators, but
also temporal and monetary expressions. A complete set
of required named entities depends on the types of events
to be extracted. We use available NERs (in particular, we
use OpenNLP library) which we trust. It means that we
consider texts annotated by appropriate NERs as the gold
standard and we do not consider confidence of extracted
entities (if NERs provide such information) during the
process of evaluating the extraction patterns.

We also assume that if two events are extracted by
the same DPT pattern, they both are either true or false.
More generally, a group of N events all extracted by
the same DPT pattern contains only either true or false
events. A verity of the group is determined by the ver-
ity of a random sample drawn from it. This is the main
assumption that allows us to minimize human efforts
required to produce extraction rules by validating only
such a small random sample but not the whole entire
group that might contain tens of thousands of events.

As we have mentioned, the algorithm is composed of
four steps. At the first step we extract possible events
from an unannotated corpus of documents.

3.1 Extracting Possible Events

Any event type is described by an indicator (a word that
most clearly signals about the event presence, usually, a
verb) and arguments together with their semantic types.
For instance, an event of the type M&A is described by an
event indicator of the type AcquisitionIndicator and two
arguments: acquirer of the type Company and acquiree
of the type Company as well. Another example is an
event of the type PersonAnnouncement that is described
by an indicator of the type AnnouncementIndicator and
one argument announcer of the type Person. Formally,

an event is defined as the following triple:

E
[
T, I, {AN

i , AT
i }mi=1

]
(1)

where T is the event type, I is the type of event indica-
tor,the event has m arguments and the i-th argument has
a name AN

i and type AT
i .

The core idea at the first step is to generate all possi-
ble events for every sentence in the corpus. To do it, we
have built the processing pipeline presented at fig. 1. The
primary task of this pipeline is to recognize instances of
event indicators and named entities that might be argu-
ments of events.

Figure 1: Pipeline that extracts possible events.

The pipeline has a typical architecture intended for
extracting named entities. Initially, it splits text into sen-
tences and tokens. After that, it uses Named Entity and
Event Indicator Recognizers to extract named entities
and event indicators. We use OpenNLP library to ex-
tract named entities and a dictionary-based recognizer to
extract event indicators.

The last component of the pipeline (Possible Event
Extractor) uses previously extracted information together
with the description of events in order to extract possible
events. First, this component determines if a sentence
may contain at least one event of any type. To do it,
it iterates over the description of event types. For each
event type, it determines if a sentence contains (1) an in-
dicator of the appropriate type, and if so (2) a minimal
number of the appropriate named entities. For instance,
for the event of the type PersonAnnouncement a sentence
must contain at least one indicator of the type Announce-
mentIndicator and at least one named entity of the type
Person. For the event of the type M&A, a sentence must
contain at least one indicator of the type AcquisitionIndi-
cator and at least two named entities of the type Com-
pany. If a sentence cannot contain a mention of at least
one event, it is not processed further.

If there can be at least one event mention in the
sentence, we apply the Stanford parser to obtain DBT.
For every type of the event T, for which there can be at
least one event mention, we generate all possible events.
At the first step, we construct a list of all appropriate
event indicators {I}ni=1 found in the sentence. Then
we construct a set of named entities that will be a part
of possible events. We compute the shortest paths
in DPT from indicators to every named entity in this
set. We then generate all possible events around each
event indicator. For every possible event, we construct
its pattern id - a non unique string that is composed
of the event type information and DPT paths. Two



events of the same type having the same paths from
indicators to arguments will have the same pattern
id. The format of the pattern id is the following:
Indicator Attribute1Type (CoveredText1):Path1,
Attribute2Type (CoveredText2):Path2, ... For
instance, the event mentioned in the sentence “Google
acquires Neotonic Software” has the pattern id Ac-
quisitionIndicator Company(Google):nsubj, Com-
pany(Neotonic Software):dobj.

It is possible to count the number N of the events that
are generated around each indicator. Let us denote the
number of distinct types of arguments as m/, and for
each j-th distinct type let Sj be the number of arguments
in the event definition of this type, and let Nj be the num-
ber of named entities of this type in a sentence. Then
there can be Pj(Nj , Sj) = Nj !/(Nj − Sj)! variants to
fill Sj arguments with Nj named entities. To compute
the number of possible events, we need to multiply all
these values N =

∏m/

j=1 Pj(Nj , Sj).
Due to limitations of the Stanford parser, only those

sentences that have less than 80 tokens are processed.

3.2 Grouping Possible Events into Clusters

Once the input corpus has been processed and all pos-
sible events have been identified, at the second step we
group the events according to their pattern id. All events
inside every group have the same pattern id. In other
words, they are all extracted by the same DPT pattern.
We sort the groups by cardinality and generate a random
subset for each group.

3.3 Assessor Validation

At the third step an assessor validates a small random
subset of each cluster using UIMA Cas editor1 inside
Eclipse IDE. This editor (fig. 2) highlights text frag-
ments that mention possible events. For every possible
event, this tool provides detailed information such as its
indicator and arguments that are also highlighted in the
text. The assessor should iterate through every possible
event, decide if a particular event is true or false and in
case it is true, set its verity flag to true.

Figure 2: UIMA CAS Editor perspective (Eclipse IDE).

1http://uima.apache.org/

3.4 Generating Linear Patterns

Finally, the system annotates the groups of events as pos-
itive or negative based on the subsets validated by the
assessor at the previous step. This is done by counting
the number of true and the number of false events in the
subset. If there are more positive events in the subset,
the whole group is annotated as positive, and vice versa.
Positive groups are used further to generate and general-
ize event extraction patterns.

Figure 3: Typesystem of TextMARKER rule engine.

The input data for the pattern generation algorithm
is the sentence annotation graph. The graph contains
such annotations as events, their indicators and argu-
ments (named entities) and sentence context which is
presented as types of tokens in the notation of the
TextMARKER[7] type system (fig. 3). We use the
bottom-up generalization strategy and start with the most
specific version of a pattern. We generalize patterns until
the F1-measure of the new ones increases.

1: procedure GENERALIZERULE(rule)
2: curF1 ← 0
3: newF1 ← TESTRULE(rule)
4: while (newF1 − curF1) > 0 do
5: curF1 ← newF1

6: rules← empty list
7: rules.add(BESTRULE(BOTTOMUPGEN(rule)))
8: rules.add(BESTRULE(QUANTMODIF(rule)))
9: if NEWRULESUNKNOWN(rules) then

10: newRule← BESTRULE(rules)
11: newF1 ← TESTRULE(newRule)
12: rule← newRule
13: end if
14: end while
15: return (rule)
16: end procedure

Figure 4: Pattern generalization algorithm.

There are two operations that we use during pattern
generalizing process (fig. 4):

1. BottomUpGen: bottom-up generalization (see fig.
3). After the type of token is changed, its neighbors
are visited. If there are two tokens with the same
type close to each other, they are generalized to one
token of the same type with an expanded quantifier:
“company” “based” “in” “Tel” “Aviv” → SW SW
SW CW CW→ SW[3] CW[2]→W[5]

(a) generalizing a word to its type: “recently”→
SW; “May”→ CW; “INC”→ CAP



(b) generalizing the type of a word to its immedi-
ate parent type:
SW, CW, CAP→W

(c) generalizing the types of punctuation marks to
their parent type:
COLON, COMMA, SEMICOLON→ PM

(d) generalizing the types to their parent types:
W, PM→ ANY

2. QuantModif : quantifier modification (expan-
sion/restriction of a quantifier)

(a) Expansion: SW[3]→ SW[2,4]

(b) Restriction: CW[2,7]→ CW[2,6]

Using these two operations, we iteratively generalize
the patterns. At every step we select the best pattern and
we stop the generalizing process when the F1-measure
stops improving (newF1). We keep a list of previously
generalized patterns. If the current pattern has already
been processed, it is not generalized further. This corre-
sponds to line 9 of the algorithm (fig. 4).

4 Experiments
Sentences annotated by the assessor with true events are
considered as the gold standard and are used to measure
the performance of event extraction patterns. Once the
generated patterns had been applied over the gold stan-
dard, we compared the gold event annotations with the
event annotations created by the patterns under evalu-
ation. Two event annotations are considered to be the
same if they cover the same event indicators and argu-
ments (named entities).

We ran preliminary experiments on the English part of
Reuters (RCV2)2 dataset [2]. Table 1 presents the details
of the entire dataset that we used (after processing all En-
glish articles on the pipeline that detects possible events).
We ran experiments on extracting three types of events -

Table 1: Dataset description
type of event M&A MPC Res
number of sentences 83 45 80
number of true events 12 16 25

Mergers & Acquisitions (M&A), Management Position
Change (MPC) and Resignation (Res). We compare the
performance of automatically constructed patterns with
the patterns that we built manually based on RSS arti-
cles obtained from such sources as Yahoo and Google
news feeds. In total, we manually created 10 patterns for
M&A, 3 patterns for MPC and 5 patterns for Res events.

In the first experiment, we created 2 train/test splits.
In each split, we constructed rules on the train set and
validated them on the test one. Table 2 provides split
details as well as the number of patterns that have been
constructed automatically in each case. Tables 3-5 give
an overview of the results of experiments. For M&A
event, automatically constructed patterns outperformed

2Initially, we wanted to use RCV1 that is much bigger. However,
due to performance characteristics of the first implementations of the
algorithm in terms of execution time, we decided to user smaller corpus
and experiment on RCV1 after we optimize the algorithm.

Table 2: Splits of the entire dataset (train/test (patterns#))
1st split 2nd split

M&A 61/22 (8) 55/28 (8)
MPC 38/7 (9) 30/15 (8)
Res 54/26 (10) 56/24 (10)

manually created ones in terms of precision, recall and
F1-measure on both the train and test sets in all splits (ta-
ble 3), thought the number of automatically constructed
patterns (8) is smaller than the number of manually cre-
ated ones (10). Note that in the first split on the test data
and in the second split on the train data manually con-
structed patterns did not extract any events, that is why
we do not provide the performance for these cases.

Table 3: M&A patterns performance (train / test)
Manually Automatically

1s
ts

pl
it Precision 0.50 / — 1.00 / 1.00

Recall 0.11 / 0.00 1.00 / 0.33
F1-measure 0.18 / — 1.00 / 0.50

2n
d

sp
lit Precision — / 0.50 1.00 / 1.00

Recall 0.00 / 0.50 1.00 / 0.50
F1-measure — / 0.50 1.00 / 0.66

In case of MPC events, in the first split we got higher
results using automatically constructed patterns (see ta-
ble 4). In the second split, manually and automatically
constructed patterns demonstrated the same results, how-
ever, our algorithm constructed 8 patterns as opposed to
3 patterns constructed by a human.

Table 4: MPC patterns performance (train / test)
Manually Automatically

1s
ts

pl
it Precision 0.78 / 0.50 0.92 / 1.00

Recall 0.58 / 0.33 1.00 / 0.33
F1-measure 0.67 / 0.40 0.96 / 0.50

2n
d

sp
lit Precision 0.67 / 1.00 1.00 / 1.00
Recall 0.60 / 0.40 1.00 / 0.40
F1-measure 0.63 / 0.57 1.00 / 0.57

Automatically constructed patterns for Res events also
outperformed those manually created in terms of F1-
measure in the first and second splits. However, the
precision of manually constructed patterns was higher in
both splits.

In the second experiment, we tried to get more real-
istic comparison results of manually and automatically
constructed patterns. What we did was validation of
manually constructed patterns on the entire dataset (ta-
ble 7) and ran the algorithm through a 5-fold cross val-
idation 5 times (due to the fact that we used a relatively
small dataset). The results are presented in table 6.

Afterwards, we tested manually constructed patterns
on the entire dataset. The results are given in table 7.
As it can be seen, we got quite varying results for dif-
ferent partitions (F1-measure: 0.4523-0.8333 for M&A,
0.5428-0.7023 for MPC and 0.5000- 0.6764 for Res
events). A conclusion that can be made from these results
is that we need a larger and more representative dataset
to construct and evaluate comprehensive event extraction
patterns.



Table 5: Res patterns performance (train / test)
Manually Automatically

1s
ts

pl
it Precision 1.00 / 1.00 0.83 / 0.50

Recall 0.18 / 0.33 0.86 / 0.67
F1-measure 0.30 / 0.50 0.84 / 0.57

2n
d

sp
lit Precision 1.00 / 1.00 0.90 / 0.33

Recall 0.19 / 0.25 0.90 / 0.75
F1-measure 0.32 / 0.40 0.90 / 0.46

Table 6: F1-measure of automatically constructed rules
(5-fold cross validation 5 times)

M&A MPC Res
0.4523 0.5428 0.5000
0.4666 0.5714 0.5988
0.4888 0.6750 0.6321
0.5555 0.6904 0.6426
0.8333 0.7023 0.6764

5 Conclusions and Future Work
In this paper we gave an overview of the current progress
in developing the algorithm for semi-automatic genera-
tion of linear event extraction patterns for free texts and
presented our preliminary experimental results. Our next
steps are to enhance the algorithm with additional capa-
bilities, optimize it in terms of execution performance
and validate it on a larger dataset.

Currently, we extract only mandatory events’ argu-
ments. We will add capability to generalize patterns that
will include optional arguments as well (such as tempo-
ral and monetary expressions). We plan to explore the
possibility to improve and optimize the algorithm. We
will work on enhancing the generalization algorithm by
providing additional operations as well as an intelligent
selection of operations to apply at each iteration. We will
also explore the possibility to employ negative examples.
We have a dataset of approximately 110 000 news arti-
cles that we will use for validating the algorithm. We will
also use Reuters RCV1 dataset for this purpose. We will
study in much more details theoretical properties of the
proposed algorithm.
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