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Preface

This volume contains the Proceedings of 22nd Concurrency, Specification and
Programming (CS&P) Workshop held on September 25-27, 2013 in Warsaw.

There were 48 submissions. Each submission was reviewed by two program
committee members. The committee decided to accept 40 papers.

The Workshop was initiated in the mid 1970s by computer scientists and
mathematicians from Warsaw and Humboldt Universities, as Polish-German an-
nual meetings. They were suspended for some years in the 1980s and reactivated
in 1992. Thereafter, the Workshop, organized alternatingly by the Institutes of
Informatics and Mathematics of the University of Warsaw and the Institute of
Informatics of Humboldt University in Berlin on the basis of an exchange pro-
gram, has been given the name CS&P.

It should be mentioned that the CS&P meetings, initially purely bilateral,
since 1992 have developed into events attended by participants from a number of
different countries beside Poland and Germany. The present CS&P’2013 meeting
attracted contributors from: Canada, Egypt, France, Germany, Italy, Nepal, The
Netherlands, Poland, Russia, Serbia, Slovakia, Sweden, Turkey, United Kingdom,
United States, and Vietnam.

The organisation of this year’s CS&P would not be possible without the re-
sources and financing provided by several institutions. We would like to thank
the Faculty of Mathematics, Informatics and Mechanics of the University of War-
saw and the Institute of Informatics of the Humboldt University of Berlin for
the continuing financial and organisational support provided to CS&P over last
twenty-two years. The essential financial backing received from the Warsaw Cen-
ter of Mathematics and Computer Science made the organisation of CS&P 2013
possible. Our thanks go to the Biatystok University of Technology for providing
the means for publishing this proceedings volume. Last, but not the least, we are
grateful for the significant financial support provided by the Vistula University
in Warsaw.

September 2013 Marcin Szczuka
Warsaw, Poland Ludwik Czaja
Magdalena Kacprzak

iii



Program Committee

Hans-Dieter Burkhard
Ludwik Czaja

Anna Gomoliniska
Monika Heiner
Magdalena Kacprzak
Anh Linh Nguyen
Hung Son Nguyen
Wojciech Penczek

Lech Polkowski
Louchka Popova-Zeugmann
Holger Schlingloff

Serhat Seker
Andrzej Skowron
Zbigniew Suraj
Marcin Szczuka
Matthias Werner
Karsten Wolf

Humboldt Universitat zu Berlin

The University of Warsaw and Vistula University
University of Bialystok

Brandenburg University at Cottbus

Biatystok University of Technology

The University of Warsaw

The University of Warsaw

Institute of Computer Science, Polish Academy of
Sciences

Polish-Japanese Institute of Information Technology
Humboldt Universitat zu Berlin

Fraunhofer FIRST and Humboldt Universitat zu
Berlin

Istanbul Technical University and Vistula University
The University of Warsaw

University of Rzeszow

The University of Warsaw

TU Chemnitz

University of Rostock

Additional Reviewers

The members of the Program Committee want to thank the following persons
for contributing to the review process of CS&P 2013.

Marek Bednarczyk

Anna Sawicka

Piotr Chrzastowski-Wachtel Martin Schwarick

Mario Haustein
Andrzej Jankowski
Michal Knapik
Irina Lomazova
Artur Meski
Christian Rohr
Andrzej Salwicki
Matteo Sammartino

Jarostaw Skaruz

Maciej Szreter

Dominik él@zak

Wojciech Swieboda

Jézef Winkowski

Bozena Wozna-Szczesniak
Olena Yaskorska

iv



Table of Contents

DNA Tiles, Wang Tiles and Combinators ................. ... . ...... 1
Marco Bellia and Maria Eugenia Occhiuto

Engineering MAS — A Device Integration Framework for Smart Home
Environments ... ... 15
Jack Betts and Berndt Miiller

Experiments with Simulated Humanoid Robots ....................... 27
Hans-Dieter Burkhard and Monika Domanska

Searching for Concepts in Natural Language Part of Fire Service Reports 39
Kamil Bgk, Adam Krasuski and Marcin Szczuka

A Rule Format for Rooted Branching Bisimulation .................... 49
Valentina Castiglioni, Ruggero Lanotte and Simone Tini

A Rewriting Based Monitoring Algorithm for TPTL................... 61
Ming Chai and Holger Schlingloff

Sound Recoveries of Structural Workflows with Synchronization......... 73
Piotr Chrzgstowski- Wachtel, Pawet Gotgb and Bartosz Lewinski

Floating Channels Between Communicating Nets ..................... 88
Ludwik Czaja

The Mathematical Model for Interference Simulation and Optimization
in 802.11n Networks . . ... ... 99
Twona Doliriska, Antoni Masiukiewicz and Grzegorz Rzgdkowski

A Domain View of Timed Behaviors............ .. ... ... ... ... ..... 111
Roman Dubtsov, Elena Oshevskaya and Irina Virbitskaite

A Multi-agent Approach to Unstructured Data Analysis Based on
Domain-specific Onthology . ............. i 122
Natalia Garanina, Elena Sidorova and Evgeny Bodin

An Explicit Formula for Sorting and its Application to Sorting in Lattices 133
Jens Gerlach

Rough Inclusion Functions and Similarity Indices ..................... 145
Anna Gomoliriska and Marcin Wolski

Efficient Rough Set Theory Merging ........... ... .. .. . .. 157
Adam Grabowski

Opacity Testing . ... ...t e 169
Damas Gruska



Structural and Dynamic Restrictions of Elementary Object Systems . . . .. 181
Frank Heitmann and Michael Kéhler-Bufimeier

Causal Structures for General Concurrent Behaviours. ................. 193
Ryszard Janicki, Jetty Kleijn, Maciej Koutny and Lukasz Mikulski

Interactive Complex Granules .......... .. .. .. . .. . ... 206
Andrzej Jankowski, Andrzej Skowron and Roman Swiniarski

Identification of Formal Fallacies in a Natural Dialogue ................ 219
Magdalena Kacprzak and Anna Sawicka

Discovery of Cancellation Regions within Process Mining Techniques .... 232
Anna Kalenkova and Irina A. Lomazova

Genetic Algorithm with Path Relinking for the Orienteering Problem
with Time WIndows . . . ... i 245
Joanna Karbowska-Chilinska and Pawel Zabielski

Parameter Synthesis for Timed Kripke Structures ..................... 259
Michat Knapik and Wojciech Penczek

Voronoi Based Strategic Positioning for Robot Soccer.................. 271
Heinrich Mellmann, Steffen Kaden, Marcus Scheunemann and Hans-
Dieter Burkhard

Adaptive Grasping for a Small Humanoid Robot Utilizing Force- and
Electric Current SEnSOrS ... ... vv vttt 283
Heinrich Mellmann, Marcus Scheunemann and Oliver Stadie

Towards a Jason Infrastructure for Soccer Playing Agents .............. 294
Dejan Mitrovié, Mirjana Ivanovié and Hans-Dieter Burkhard

An ExpTime Tableau Method for Dealing with Nominals and
Quantified Number Restrictions in Deciding the Description Logic SHOQ 296
Linh Anh Nguyen and Joanna Goliriska-Pilarek

SMT vs Genetic Algorithms: Concrete Planning in PlanICS Framework .. 309
Artur Niewiadomski, Wojciech Penczek and Jarostaw Skaruz

Granular Mereotopology:A First Sketch............ ... ... ... ... ..... 322
Lech Polkowski and Maria Semeniuk-Polkowska

SMT-Based Reachability Checking for Bounded Time Petri Nets........ 332
Agata Pétrola, Piotr Cybula and Artur Meski

A Bi-objective Optimization Framework for Heterogeneous CPU/GPU
Query Plans. .. ... 342
Piotr Przymus, Krzysztof Stencel and Krzysztof Kaczmarski

vi



Analysis of Multilayer Neural Networks with Direct and Cross-Forward
Connection . . ... ..ot 355
Stanistaw Placzek and Bijaya Adhikari

Fractional Genetic Programming for a More Gradual Evolution . ........ 371
Artur Rataj

From EBNF to PEG . ... . 383
Roman Redziejowski

Towards an Object-Oriented Programming Language for Physarum
Polycephalum Computing .. ..... ...t 389
Andrew Schumann and Krzysztof Pancerz

About New Version of RSDS System ........... ... ... .o ..., 398
Zbigniew Suraj and Piotr Grochowalski

Generation of Labelled Transition Systems for Alvis Models using
Haskell Model Representation .......... .. .. .. . ... 409
Marcin Szpyrka, Piotr Matyasik and Michat Wypych

Bisimulation-Based Concept Learning in Description Logics ............ 421
Thanh-Luong Tran, Quang-Thuy Ha, Thi-Lan-Giao Hoang, Linh Anh
Nguyen and Hung Son Nguyen

Preprocessing for Network Reconstruction: Feasibility Test and
Handling Infeasibility ... ..... .. .. 434
Annegret K. Wagler and Jan-Thierry Wegener

A Holistic State Equation for Timed Petri Nets ... .................... 448
Matthias Werner, Louchka Popova-Zeugmann, Mario Haustein and
Elisabeth Pelz

Query Rewriting Based on Meta-Granular Aggregation ................ 457
Piotr Wisniewski and Krzysztof Stencel

Checking MTL Properties of Discrete Timed Automata via Bounded
Model Checking .. ... ... 469
Bozena Wozna-Szczesniak and Andrzej Zbrzezny

On Boolean Encodings of Transition Relation for Parallel Compositions
of Transition Systems. ... ... ... .. i 478
Andrzej Zbrzezny

vii



DNA Tiles, Wang Tiles and
Combinators

Marco Bellia and M. Eugenia Occhiuto

Dipartimento di Informatica, Universita di Pisa, Italy
{bellia,occhiuto}@di.unipi.it

Abstract. In this paper we explore the relation between Wang Tiles and
Schonfinkel Combinators in order to investigate Functional Combinators
as an programming language for Self-assembly and DNA computing.
We show: How any combinatorial program can be expressed in terms of
Wang Tiles, and again, how any computation of the program fits into a
grid of tiles of a suitable finite, tile set, and finally, how a program for
Self-assembly DNA computing can be obtained. The result is a general
methodology that, given any computable function, allows to define a
Self-assembly program that can be used to construct the computations
of the function

1 Introduction

In the last decade, one of the emerging approaches [1] to DNA Computing, is
Self-Assembly [2]. It describes a computation in terms of a process in which
small components, autonomously and automatically, assemble into larger, more
complex, structures [3-5]. The assembly is based on the Watson-Crick comple-
mentary law and is effectively governed by various bio-chemical techniques [6].
However, in terms of computable functions, in the Self-Assembly computation
process, it is possible to recognize:

(a) The computed application. The computed application is expressed by the
small components to be assembled. In particular, these components include
a representation for the function arguments, if any, i.e. the inputs of the
application, and a representation for the function to be applied.

(b) The computation. The larger and more complex structures, that result at
the end of the SelfAssembly process, form the effective computations. Each
of such structures can be read as the complete trace of a computation, from
its start to its end.

Various kinds of DNA Tiles has been introduced, in the years, in the various
proposals, to be used as the small components of point (a) [7,8]. In [9] the
relation between DNA Tiles (TX, triple crossover, molecules) and Wang Tiles
has been used to show how to simulate finite state automata with output, i.e. a
transducers, in Wang Tiles. Moreover, by using compositions of transducers and
the relation with Wang Tiles, [9] shows how the computation of general recursive
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functions can be expressed using self-assembly. This allow to use the formalism
of general recursive functions as a programming language for DNA computing.
With the same aims, [10] introduced DSL as language for programming with the
DNA Tiles of the aTAM model [11].

In this paper we explore the relation between Wang Tiles [12] and SKI combi-
nators [13, 14] in order to investigate Functional Combinators [15, 16] as an High-
/Intermediate level, programming language for Self- Assembly computations. The
result is the definition of a language for Self-Assembly, SKI-Tiles, and of a general
methodology that, given any computable function, allows to define a program, in
SKI-Tiles, that compute each application of the function, by using Self-Assembly
computations.

2 Wang Tiles

Wang Tiles [12] were introduced in 1961. It is a formal system based on the notion
of tile. A tile may be graphically represented by a unit square with colored sides
from a (possibly, denumerable) set T of distinct colors. Figure 1.a shows the
form of a tile such that: West side has color Ti, north has color Ts, south has
color T3 and east has color Ty. Tiles must be arranged side by side on the plane
(computation grid) in a way that adjacent tiles must have the adjacent side of
the same color, see Figure 5: We will name this operation Wang-arrangement.
The interest is on the set F of all the finite sets of distinct tiles: What tile sets of
JF, can cover the infinite plane by using Wang-arrangement on copies of the tiles
of the set, obtained by translation (no rotation, no reflection). In 1963, Wang
showed that to each Turing Machine M corresponds a finite set T € F such
that the computation of M on a tape D can be emulated by a covering, with the
(copies of) tiles of Ty, of a plane containing an initial row of tiles that describes
D. Finally, Wang proved that the halting problem of Turing Machines can be
reduced to the undecidability, for finite tile sets, of covering the infinite plane.

T

T2
T1 XTs
Ts Ty

a. Wang Tile: A unit square with the Ts

sides colored by T1, T2, T3, T4
b. DNA Tile: 4 strands of DNA, T1, T2, T3, T4, are

kept together by a suitable DNA structure, Z.

Fig. 1. Wang Tiles and DNA Tiles
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3 SKI Combinators

3.1 The monoid SKI

SKI Combinators [14] is a formal system that expresses all the computable func-
tions! without requiring any (bound) variable and by using only one operation:
the monadic, functional application. Hence, it is the monoid? X, below:

Y =S|\K|I|IX| XX
where the application is represented by juxtaposition of a (left) term, repre-
senting a monadic function, to a the (right) term, representing the argument.
Currying, higher order functions, and left associativity of application are pro-
vided for non-monadic functions. The symbols S, K, I are combinators (but other
ones could be added in [15]), X is a set of (free) variable symbols, IT is a set of
constant symbols. The terms of X' are also called combinatorial terms, and the
terms built by using the application operator, namely those in XX, are called
(combinatorial) application term. Combinators obey to the following application
laws, for a,b,c € X

ITa==a

Kab==a

Sabc==ac(bc)

3.2 Bracket Abstraction and Bound Variables

The combinators S, K, I express the bracket abstraction in the following way
(other characterizations are in [15]). Let a € X' be any term, possibly containing
a (free) variable x € X. Then, we define the bracket abstraction of a € X with
x, written [z]a, be the term b € X such that: b x = a. Such a term? always exists
in X and can be obtained by using the following rules:

[z]le =1

[z]Ju = Ku, for uw € {S,K, T} UITUX and u # x

[2](a b) = S([)a)([]b)
Hence, all the closed terms of the calculus are all the terms of X that do not
contain variables.

3.3 Program, Computation, Recursion

Noting that in the application X'}, there is no distinction between the terms that
are functions (driving the computation to be done) and those that are arguments
(forming the values). Any term becomes the function to be applied, when it is

!in its original formulation, in 1924, by Moses I. Schonfinkel, [13], the combinator

?1” which could be expressed through SKK, was replaced by the combinator ”U”,
in order to express first order predicates without the use of bound variables.

Also Wang Tiles is a monoid, on Tiles as terms, with Wang-arrangement as the only
operation

moreover, for all terms ¢ € X, we have b ¢ = a[z «— ¢], i.e. b behaves like one A-
abstraction and when applied to ¢ reduces according to Church’s S-axiom [17]
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in the left side, whilst it behaves as a value when it is in the right side of the
application. A (combinatorial) program is any term of X. A program computes
according according to the application laws of the SKI calculus. In order to
obtain a notion of computation, we can encapsulate the application laws into
the reduction system obtained by the binary relation on combinatorial terms,
—, defined in the following way. Relation — is called combinatorial reduction.

Definition 1 (—*). Relation —* is the reflexive and transitive closure of —*.

la==a Kab==a Sabc==ac(bc)
la—a Kab—a Sabc—ac(bc)
a—a’ b=V’
ab—ab ab—ab’

Given a program a, a computation of a is any sequence, for n > 0*:
a— a3 — ... —ay

Whenever a,, is such that for no b € X', a,, — b, then we say that: Program a has
one terminating computation; a — a1 — ... — a, is a terminating computation
of a; Program a computes a,, or equally, a, is the "value” computed by a.
Relation — has Church-Rosser confluence property, since if a — a3 — ... — a,
is a terminating computation of a then a, = b,, for any other terminating
computation a — by — ... — by, [18]. However, X contains nonterminating
programs. As a matter of the fact consider the term ¥ of Definition2.

Definition 2 (The Kleene fixed-point combinatorial program calcula-
tor, ¥). Let R = S(S(KS)(S(KK)I))(K(SII)). Then, ¥ = SRR is a combi-
natorial program. Moreover, W is such that, for all pairs of terms G,a € X, the
following holds:

(*) YGa=G WGE)a

The proof of (*) is a trivial exercise. ¥ points out the elegance with which Schon-
finkel monoid expresses the computable functions. In particular, ¥ introduces
recursively defined terms on one hand, and computes the least fixed point of
them, on the other hand. However, in Section 6, we use term equations for deal-
ing with recursive definitions, because Self-assembly computation has a notion
of term replacement that already support recursive definitions.

4 The Approach

We start introducing the structures and the properties that the Wang tiles must
have in order to be used for expressing the combinatorial terms and their com-
putation. Then, we show how to use such structures in order to get the definition
and the computation of any combinatorial program.

4 Obviously, n = 0 means that forno b€ X, a — b
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4.1 SKI-Tiles: A formalism of Wang Tiles for combinatorial
programs

The colors that may occur in the tiles, are the combinatorial terms (of X):
Different terms are different colors. In addition, a special color # is used for
combining the terms within a tile and for arranging the tiles in the computation
grids. The sides of a tile may be colored with an input (i.e. the right part of an
application term) or with a function (i.e. the left part of an application term)
or with an output (the result of an application) or finally, with a connection
term (which allows to arrange together distinct tiles and distinct parts of the
computation grid). When more different colors occur in a tile, their arrangement
in the tile sides obeys properties based on the combinatorial reduction. According
to how colors are used in the tile sides, the tiles fall in one of the following five
classes, shown in Figure 2.

— Introduction Tiles are the tiles that introduce the components, namely
function and arguments, see Figure 2, of the computation to be made. These
tiles may occur in the top line of a computation grid. No, specific, property
is required to the color used in the tile.

— Terminal Tiles are the tiles that collect the result of a computation, see
Figure 2. These tiles may occur in the bottom line of a computation grid.
No, specific, property is required to the color used in the tile.

— Application Fold-tiles deal with the reduction of applicative terms that
do not require any reduction on their subterms. Color 73 is used for the
function, color 75 for the argument, whilst colors T3 or T, for the reduced
term: It obeys the properties that are indicated at the bottom of the tile in
Figure 2.

— Application Unfold-tiles deal with the reduction of applicative terms that
require some subterm reduction. Color T} is used for the function and color
T, if any, for the argument, exactly as in the fold-tile s, but the reduced term
is an application T3 Ty. This tile structure allows to use two distinct tiles,
one for reducing the color T35 and one for reducing the color T}, separately.
Constraints on the colors are indicated at the bottom of the tile in Figure 2.

— Connection Tiles they furnish tiles that are suitable to connect different
parts of the computation grids and in some cases they may involve simple
term reductions. Constraints on the colors are indicated at the bottom of
the tile in Figure 2.

4.2 Soundness of SKI-Tiles

Apart from the introduction and the terminal tiles, all other tiles of SKI-Tiles,
are combinatorial term reductions of —*. The Wang-arrangement operation cor-
responds to the (reflection and) transitivity of —*. Hence, computation grids
contain only sound reductions on the combinatorial terms that are involved in
the tiles, and in particular from the terms of the introduction tiles up to the
term of the terminal tile of the grid.



6 M. Bellia, M. E. Occhiuto

Introduction Tiles Terminal Tiles
A T2
A L) A A
T, A
Application Fold Tiles Application Unfold Tiles
T2 T2 T2 Q
T, X a T, XT, T, T, T, XT,

TT,—=*T, TT,—=*T, TT,=>*TT, T, =*TT,

Connections Tiles

T, A A L
A T4 Tl A T] T4 A A
A T3 A TA
T, =*T, T, —=*T, T, —=*T, T, =*T,

Legenda. T, T,, Ts, T, are colors for combinatorial terms; —* is the reflexive, transitive closure of
the combinatorial reduction.; The colors must obey the property, if any, that is put below the tile.

Fig. 2. The classes of tiles of SKI-Tiles for the Combinatorial Terms

4.3 The Computation Grids of S, K and I in SKI-Tiles

The combinators are completely defined in the Wang Tile formalism by the
computation grids in Figure 3, for I and K, and in Figure 4, for S. The grid for
I consists of only one fold-tile that switches the input on the output. The grid
for K consists of 4 tiles: The tile on the left top corner is a fold-tile that collects
the first argument and has ”a” as output. The tiles on the right top and the left
bottom corners are connection tiles. They are used for connecting the fold-tile
on the bottom right corner of the grid. The latter tile contains, as output, the
output of the grid. Actually, for S we give two grids of 9 tiles: Both are correct.
The two grids differ for the tile on the right bottom corner. Both contains the
same fold-tile on left top corner, and the same 7 connection tiles. The other tile
is a fold-tile in the left grid, whilst it is an unfold-tile in the right one. The choice
of the right grid may depend on the input terms, if a and b do not require any
reduction then the left grid may be the best grid to be used. The grids in Figure
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a b

a KX® [ & Xa
| L) Ka b

a

Ka b

& XKa|Kax s
[a=a 2 a
Kab=a

Fig. 3. The computations of K and I in the SKI-Tiles formalism

3, and in Figure 4 are defined for being used as grid components, hence do not
contain any introduction or terminal tile.

Theorem 1. The SKI calculus can be expressed in Wang Tiles

Proof. The proof is easily obtained by induction on the pure combinatorial terms
(i.e. ¥—(IT+X)) and by using suitable grid compositions. The extension to the
entire Y comes immediately since each symbol in IT+X is an uninterpreted
symbol.

The Theorem above is not surprising since Wang’s result [12], but the theo-
rem furnishes a constructive proof and a concrete way to do it. The next section
shows how the approach effectively applies in a computation.

5 Applications and Examples

The section shows how the approach effectively applies in a computation. Con-
sider the function Projj that selects the second argument, from a sequence of
four arguments. We write a program that, given four arbitrary terms, ¢y, cs, c3, ¢4,
as inputs, computes co as output. In combinatorial programming, the program
can be obtained two different ways, according to a use of combinatory program-
ming as an intermediate level or as a higher level programming language. We
consider both view and for each of them we show the corresponding computation
grid in the tile formalism of the previous section.

5.1 Combinatorial programming at an Intermediate Level

This way of programming is widely influenced by the use of combinators in the
implementation of functional languages [19]. In order to obtain a combinatorial
term for Projs, we start giving a formulation of Projj in a functional language.
In this case, we can express it by the lambda term:
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a b C a b c
S 2l aXa| aXo S a1 aXa| aXa
Sa b c Sa b c
Sa b c Sa b C
& >Ga [SaxCa |a Xa & >Ga [Sax(a o Xa
Py ab c o ab c
P Sab C Y Sab C
o & | o XSab|Sabx & Y & | & XSab [Sab>Xbc
£Y L c(bc) 3 L3 ac

Sabc=ac(bc)

Fig. 4. Two different computations of S in the SKI-Tiles formalism

A 1‘1.)\ .132.)\ $3.)\ Tyg. L.
Then, by using the technique for removing bound variables from lambda terms®
we obtain the combinatorial term:

K(S(KK)(S(KK)I)).
Eventually, we have the combinatorial term 7' and its computation grid, in
Figureb.

3

5.2 Combinatorial programming at an High Level

This way of programming uses the possibility of introducing new combinators
and super combinators [16] in order to obtain a more expressive and neat solu-
tion to a possibly, more general problem than the given one. In this case, the
problem may be solved by using a family, Proj = {f,: D™ — D}, of curried
functions, each function being indexed by the arity. We can express each func-
tion of Proj by the following combinatorial term: T, = K~ (WIK"~%), where
n is the arity of f,, 0 < ¢ < n is the position of the argument to be selected, I
is the corresponding combinator of SKI calculus. Finally, K™g = K(K™ 1g) is
a variant of combinator K (for m > 1), whilst W is an additional combinator
that obeys the following application law: Wabc = b(ac). Then, the combinatorial
program is now expressed by T = (((K(WIK?)c;)ca)es)ea, and its computation
grid can be obtained by using the same methodology of Section 5.1.

% it roughly corresponds [15,19] to the computation of [z1]([x2]([x3]([z4]x2)))
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6 Self-assembly Computations with SKI-Tiles

This section discusses the formalism of SKI-Tiles in the context of the Self-
Assembly programming and extends the formalism with the notions of program
and of computation of the Self-Assembly programming paradigm.

6.1 Wang Tiles vs. Self-Assembly

Wang Tiles and Self-Assembly share the same fundamental operation for con-
necting the tiles: Wang-arrangement. Nevertheless, there is a subtle but relevant

a A A A a a
A L) L L) L) A L) L) L) L) L) A
T, C c, C3 Cy 'y
T, c C C3 Cy A
A T, | T, A A 7' A A A Cy | C4 7'
A Ts C, C3 A Cs
T=Tc,
T, =Ty, A Ts ) G A Cq
T, = Txc, AXA|[aXa|[aXa]|aXs ] Xa|6Xa
T; =Ty, L Ts ¢ A € Ca
T,=KT; a Ts C » I cy
Ts=ST,T, a Ts | T T..| T a a
c
T6 = KK A A 5 5 7C2 | 15€5 L) A 'y
T, =ST(l A A Toc Kc, © G
Subterms - - Tecs Ke, cs c
a Al a Al A KK Al A Al A a
A A L T C Cs
a a a Ty s cy
T43C] €2, C3,C4, L) A A A A A A TS Tg A A [y
Ts,Tec,, o5, A A A a Kc, Cy
Kc,, Te=K(Kc,)
Specific Colors A A A A Ke, G
aXalaXa|laXalasoXa]| aXKefke X &
a A A A a ¢
A A A A A G
L) L) L) L) L) L) L) L) L) L) L) L)
A A A A A L)

Fig. 5. The computation grid of T = (((K(S(KK)(S(KK)I))ci)cz)cs)ces
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difference. The Wang formalism neither has a notion of program nor of com-
putation: The aim is the construction of some computation grid that must be
assembled with the tiles of a given tile set. Differently, Self-assembly is a pro-
gramming paradigm with a notion of program, semantics and computation, that
consider all the grids that can be assembled by applying Wang-arrangement to
the tiles of the program.

6.2 The SKI-Tiles language for Self-Assembly programming

The section formalizes the notions of program and of computation in order to
make SKI-Tiles a language for Self-Assembly programming. Then, it introduces
a (combinatorial) formulation of conditional, booleans and numbers for the use
of programs, for arithmetic programming, in SKI-Tiles.

Chemical Context Let H = {T, g, 7} be triple defining the physics of molec-
ular self-assembly [5] of the programs. We assume that for all programs, the set
of color T, the binding strength function g and the temperature parameter 7 are
chosen in a way that Wang-arrangement can apply always and only when the
tiles abut on sides that are colored by a same color.

Programs. A program is a finite sequence of quadruples of the form (T, Ts, T3, Ty).
The use of quadruples introduces a convenient, linear notation for tiles [4], in
particular the quadruple (T, T, T5,Ty) corresponds to the tiles in Figure 1 pro-
vided that T7,T5, T3, T are colors of the SKI-Tiles formalism.

Semantics. Let P be a program. The semantics of P is the set of all sound
computation grids that can be obtained from P by 7-stable derivation.

Seed and 7-stable Derivation. Let P be a program. Let s be the seed tile of
Ay, i.e. the only tile of the grid Ag. Then, Ay —p ... —p A, is a computation.
Moreover, — p is the 7-stable Derivation (of P in H) and is such that A —p B
if and only if B is obtained from A by Wang-arrangement, with a (copy of a)
tile of P, which satisfies the chemical context H.

Sound Computation Grid. Unfortunately, the Wang-arrangement does not
always produce meaningful computation grids when unfold tiles are admitted.
Hence, a computation grid is said sound if and only if the property hold:

— The topmost row contains only introduction tiles and only one of them, the
seed, has color T5 # #, and

— The bottom row, if any, contains only terminal tiles and only one of them
has color T, # #, and

— The leftmost column, if any, contains only tiles with a # as east side, and

— The rightmost column, if any, contains only tiles with a & as west side, and

— No unfold-tile occurs in the grid, or

— The unfold-tiles satisfy the sub-grid property.
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Definition 3 (Quasi-grids.). A quasi-grid is anxm grid of tiles withn, m > 1
and such that: The tiles of the first column, exception for the top tile, have a #
as west side; The tiles of the first raw, exception for the leftmost one, have a #
as north side; The tiles of the last column, exception for the bottom tile, have
a & as east side; Finally, the tiles of last raw, exception for the rightmost one,
have a & as south side.

Definition 4 (Sub-grid Property.). Let G be a computation grid and A be
an unfold-tile of G. Then A satisfies the sub-grid property if A is the left top
corner of a quasi-grid of G.

It is worth noting, that the unfold-tiles involve the reduction of combinatorial
terms of the form a b with the aim of reducing, firstly, a to some a’ and b to some
b, separately, and then, of reducing a’ b’. Hence, this leads to a sub-computation
that behaves like a quasi-grid. As an example, the tile A = (T5, c2, Tsc2, T7c2)
(4th tile from the top, of the 3rd column, from the left) of computation grid in
Figure 5, is an unfold-tile which satisfies the sub-grid property: In particular,
the tile is the left top corner of a quasi-grid of 4 tiles. Moreover, even if the tile
B = (Tr¢a, c3, c2, #) was in the program, the sub-grid property would forbid to
put it on the east side of A, i.e. the replacing of (T7ca, #, Kco, #) with B.

Booleans, Conditional, Numbers in Functional Programming. We list
some usefull functional structures for arithmetic calculus, including Barendregt
numbers [17] and use them in writing arithmetic programs in functional pro-
gramming®:

— True = Az \y. x

— False = Az \y. y

— Conditional is implicitly expressed by True and False

— Pair =Mz \yAz. zx y

— The number 0 is [0] = Pair True (Pred [0]) 7

— The successor of n is [n + 1] = Pair False [n], for n > 0

— Program for Test on 0: Zero = Ax. © True

— Program for Predecessor: Pred = \x. x False

— Program for Addition: Add = Az.\y. (Zero x) y (Pair False (Add (Pred z) y))
— Program for Product: Prod = \x.\y. (Zero x) x (Add (Prod (Pred x) y) y)
— Program for Factorial: Fact = \x. (Zero x) [1] (Prod x (Fact (Pred x)))

Additional Combinators for SKI-Tiles This section extends the set of com-
binators, to include some combinators, C', B, P, that are of general use in com-
binatorial programming [15], and some other that are convenient in expressing,
in SKI-Tiles, the programs listed above.

5 We use A-notation to express the terms: In particular application is term juxta-
position, is left associative, and has precedence on abstraction. Finally, recursive
definitions use equations of the form x = E, where E is an abstraction and z is a
functional variable that cannot occur bound in F

" In the original formulation [17], [0] is Pair True False. Here, we extend the domain
of the numbers with the undefined value, Pred[0].
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— Left application combinator is B: Babc==acb

— Right application combinator is C: C a bc==a (b ¢)
— Combinator for Pairis: Pabc==cab

— Combinator for True is: T, a b == a

— Combinator for False is: F, a b==1>

— Combinator for Pred is: P, a == a F}

— Combinator for test on 0 is: Z a == a T

— Combinatorial term for 0 is: [0] = P Ty (P.[0])

— Combinatorial term for n + 1 (with n > 0) is: [n + 1] = P F}, [n]

— Combinatorial Program for Addition:
+=S(CS(B(CC(CZN)N)(C(C(PF,))(B(CC(C + (CPI))I))

— Combinatorial Program for Product:
*=S(BC(S(CZI)I))(B(CS(C(CH+)(CC(C*(CP-I)N)I)

— Combinatorial Program for Factorial: F; = S(B(CZI)[1])(S(CxI)(CF;(CP.I)))

Let A be the the minimal set such that N' = {[0], PF,[n] | [n] € N'}. Then, N
is the set of (the combinatorial terms for) numbers, whilst B = {1}, F},} is the
set of terms for booleans.

Self-Assembly Programs in SKI-Tiles Programs in SKI-Tile, for the prede-
cessor, the addition, and the factorial, have the listing in Figure 6: The listing
contains only the application tiles. Each program must be completed adding (as
by default) the suitable, connection tiles, introduction tiles, and terminal tiles.
About the connection tiles, each program includes connection tiles of whatever
kind but that involve only one of the program colors (the program colors are
all the colors, but #, that occur in the program). For instance, the connection
tile (+(Pr [2])m, &, +(Pr [2])m, #) is included, but (+(Pr [2])m, &, +[1]m, &)
is not, in the program for +. About the terminal tiles, these programs compute
numbers, hence numbers are the only colors that can be contained in a terminal
tile to be included in the programs. Finally, the introduction tiles must contain
only colors for numbers and for the name of the program.

In SKI-Tiles, the colors are the combinatorial terms that occur in the program
tiles. But the terms occurring in the tiles of the programs in Figure6are not
always combinatorial terms because of the the symbols n, m,b. Symbols n ad m
are variables ranging on a finite subset of A/, whilst b is ranging over N, and the
tiles of the programs are in fact, tile schemata.

Finally, note that the program P, has no computation grid for computing P.[0].

7 Conclusions

We have investigated three computation formalisms, Wang Tiles, Schonfinkel
Combinators and Self-Assembly Programming, in order to define a high level
programming language for Self-assembly and DNA computing. We have defined
the formalism SKI-Tiles: It states the structures and the properties that the
Wang tiles must have in order to express combinatorial terms and the computa-
tion of combinatorial programs in the Wang Tiles formalism. We have discussed
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the soundness of SKI-Tiles. We have used the formalism SKI-Tiles as the ker-
nel of a language for Self-Assembly programming. In order to do it we have
revised the notion of computation and introduced the sound computation grid.
We called this language the SKI-Tiles language. We have shown programs for
Self-Assembly programming that are written in the SKI-Tiles language. These
programs compute a partial function for predecessor on naturals, and functions
for addition and factorial.

(Py, [0], P, [0]) (+.n, T, &)
(Ps, PFon, 1, &) (T, m,Znm,Ty)
P:: A Program for Predecessor (Znm, A, Zn, m)
(Fo 0, (Zn)[1](-n(Fe(Prn))), &) || (Z1, A, Z )
(Fe 1, (Z n)[1], n(F¢(Prn))) (Z,n,b, &)
(Zn[1], s, Zn,[1]) (b, m,bm, &)
(Zn, &,Z,n) (Tom, T, &)
(Z,n,b, &) (Fp m, T1, PFy, +(Pr n)m)
(b, [1], b [1], &) (+(Prn)m, A, +(Pr 1), m)
(To [1], n(Fe(Prn)), [1], &) (+(Prn), &, +,Pr )
(Fb [1], m, m, &) (Prn, A, P, n)
(n(FPrm)), &, Fi(Pen)) eSO W(CPRICC P )
(Prn, A, Py, 1) T1= PFy(+(Prn)m)

F;: A Program for factorial +: A Program for addition
Legenda: The Tiles are schemata where n, m are ranging on a finite subset of N and b is ranging on B.
Programs specify only the application tiles (The other tiles may be added, by default).

Fig. 6. Self-Assembly Programs for Predecessor, Addition and Factorial in SKI-Tile
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Abstract. We introduce a layered approach to multi-agent programming and
motivate this with a perspective to smart home environments. Apart from the
core layer, layer components can be updated at runtime to reflect, e.g., attributes
like credibility and the addition of proprietary functionality. The Layered Agent
Framework (LAF) is defined by interfaces and organised into layers. This ap-
proach minimises system fragmentation while allowing developers to create and
maintain meaningful and effective agents. A Petri net model is provided to vi-
sualise and execute prototypes of the agents. Although fully functional, the Petri
nets will later be translated into dedicated programs with a smaller footprint and
more efficient execution.

1 Introduction

The paper discusses a flexible, dynamic, and software-developer friendly framework
for the development of multi-agent systems with the application domain of home au-
tomation and assistance in mind. The resulting framework will be easily adaptable for
other domains, since the smart home encompasses a multitude of technologies and has
many requirements - such as real-time interaction - also found in other areas.

The remainder of this section will give an introduction to the application domain and
the problems we are addressing with our approach. Section 3 presents our approach to
a layered agent-based framework for the integration of devices in the home-automation
domain. Some notes on the implementation can be found in Section 3.3. We close with
an outlook on the next steps and possible further developments in Section 4.

1.1 What is a Smart Home?

When reading about smart devices or smart solutions, usually very little is revealed
about the actual methodology used to make them ‘smart’. In some cases this may be
due to the fact that the developer wants to conceal the fact that they are using agent
technology, in other cases the marketing of a ‘smart’ service may distract from reality
and from the fact that the smartness of the service is just an added timer or a simple
remote control on a mobile phone. When we think of a smart home, we use the term
‘smart’ to denote the use of intelligent solutions that would help organise our everyday
life in and around the home. So, what would be involved? Rather than a timer giving the
illusion of an intelligent system agent technology should be utilised to enable the ‘smart
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home’ to learn from the user and adapt to better help the user. This learning should be
unobtrusive from the perspective of the user. User interaction will be encouraged but
not enforced in order for the system to learn quicker.' The following is a (probably not
exhaustive) list of areas affected by smart-home technology:

— energy systems and power consumption

— entertainment systems (audio, video, and text)
— health support systems

— household appliances

— shopping and banking transactions

— education and reference sourcing

— news provision

From this list it becomes clear that a wide range of areas have to be covered and
many different requirements have to be addressed. Our aim is to provide an infras-
tructure to enable reasoning and communication amongst all entities involved in these
areas. This includes stationary and mobile entities situated within the home and mo-
bile entities that may enter and leave the home environment. A change of environments
may require different representation of data or data dependencies [1] and this has to be
supported by the framework.

1.2 The role of AI in a Smart Home

Focussing on smart home applications, we are faced with a variety of Al techniques
that can be employed to assist the user in an unobtrusive, reliable, and helpful way. Our
main focus is on agent orientation and the use of multiple (mobile) agents. To achieve
the level of integration required to address all (or at least most) of the challenges, we
have to allow for different types of communication and different types of actions. Com-
munication and stored data have to be encrypted where necessary and to an appropriate
standard. Access to parts of the system has to be authenticated and regimented.

1.3 Core Areas

The core areas supported by our system architecture are

cooperation by communication
fault tolerance

user experience

intelligent unobtrusiveness.

Communication is a foundation for all of these core areas. Unobtrusive assistance
can only be achieved if the information to be provided is available everywhere at any
time?, so that the optimal (or near optimal) moment and place can be chosen to convey
this information to the user (or agent). Fault tolerance also requires communication in
order to re-schedule tasks while a device is unavailable. Methods to support the core
functionality are part of a core layer in our design.

'In this paper we are not concerned with the actual learning or the provision of the intelli-
gence, but rather with an architecture to support the development of such systems.

2This is an idealised vision. In practice it will be sufficient to have the possibility of the
information being made available at many locations in the home most of the time.
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1.4 What is new in our approach?

The methodology introduced in this paper is designed to help the software developer
by supplying familiar concepts from the world of object orientation to that of agent ori-
entation without making everything behave like an agent. We introduce several layers
with notions of inheritance and overriding as known from established object oriented
frameworks. Components and patterns are encouraged for the supply of common agent
functionality. For example, agent or task generation can be accomplished by instantia-
tion from a blueprint, much alike the creation of an object from a class.

The way the architecture is designed has dynamic systems and an excellent user
experience in mind. Adding or changing functionality as necessary within the running
system is provided on layers on top of the agent core. These layers can be modified
dynamically without the need of restarting the system, hence integrating seamlessly
in the user’s workflow. The architecture can support agents can keep previous copies
of protocols, roles, and layer-specific functionality in case an update fails. Hereby, an
immediate rollback to a previous version of a layer is possible and a report the update
as failed can be communicated without making the system inoperative. For the smart
home environment, this means unobtrusive updates and structural changes are possible
without noticeable interruptions of the overall system’s functionality.

2 Summarising the status quo

We briefly summarise some existing work on smart home automation. This is not meant
to be a full account of the literature, but serves as an indication of different approaches.
Section 2.1 discusses Al techniques used in various flavours of home automation. Sec-
tion 2.2 gives an overview of agent-based approaches. In both sections, we point out
which aspects have influenced the design decisions for the model presented in Sec-
tion 3.

2.1 General Approaches

In the past decade, home automation has been discussed at various levels. Some ap-
proaches involve Al techniques [2, 3], others are looking at home integration from
a predominantly (electrical-)engineering perspective (e.g. [4]) or from a sociological
viewpoint (e.g. [5]).

Many approaches tackle only one aspect of home automation, e.g. the heating sys-
tem or power consumption.

2.2 Agent-based Approaches

A multitude of papers discuss energy management or other specific home automation
systems. One of these, [6], makes the point that the home automation market is frag-
mented. Different technologies compete, are incompatible and co-exist, rather than co-
operate. It is argued that interoperation can be achieved by means of an abstraction layer
that would allow access to different home automation devices in a uniform and generic
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way, independent of the underlying technology. [7] is concerned with resource allo-
cation and optimisation using an abstract negotiation protocol. Agents negotiate near
optimal settings for minimising power consumption to reduce the greenhouse effect by
integrating appliances and heating systems. The paper remains at an academic level in
that no solutions are offered for an implementation in a real-world situation.

Other approaches are more general and in line with the present endeavour, but
remain unspecific. [8] describes a home automation system called HORUS, which is
based on an agent architecture including managers, IO handles, video-camera handlers,
and alarm communicators. The IP-communication-based system remains rather vague
about the format of rules and their interpretation in a setting with existing appliances.

3 Our Approach

The centrepiece of our approach is a component-based and software-developer friendly
system architecture that will allow legacy systems to be integrated into a multi-agent-
based framework built around the requirements of smart home automation. As such it
will allow the developer to dynamiacally incorporate many aspects including learning
of behavioural patterns, handling of sensitive data, unobtrusive conveyance of informa-
tion and general assistance, and monitoring of various sensors.

The software development approach is based on object orientated design, but does
not simply replace objects with agents as some approaches in the past have®. Instead,
we use agents alongside traditional objects to reflect different capabilities of the various
system components. In doing so, we avoid having to discard legacy components and
re-design them for an all-agents system. Also, we avoid unnecessary communications
complexity that an all agents approach would incur.

The main reason for focusing our approach on the smart home environment is that
future real-world use of agent technology will only be of benefit when technologies
and requirements meet and a (more or less) seamless interaction is guaranteed. This is
of foremost importance and means that isolated studies are generally not scalable. By
providing the interfaces for the use of modern agent-based interaction we open up possi-
bilities without restricting the use of more traditional software and hardware paradigms.
For the home environment, this means that new devices and appliances might be con-
structed to include some additional inexpensive hardware/software components to allow
integration with others, while legacy components may be integrated by simple plug-ons
(software and hardware), such as a communications-enabled wall-plug adapter that has
some basic control over an appliance (e.g., switching it on or off or monitoring power
draw and detecting usage patterns of the socket and making this information accessible
this information to the agent network.).

The components introduced in this paper will be part of a home system design con-
sisting of stationary and mobile devices and learning control systems based on software
agents. The stationary devices are in the main part traditional household appliances
whose controls become part of a dynamically learning distributed control system in-
cluding some stationary devices (perceptors, like motion and temperature sensors; con-
trol hubs, acting somewhat like servers on which computationally expensive tasks of

3“Agents can be seen as the successors of objects and classes ...”, http://aose.org
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Layered Agent
Framework Agent Role Layer (s)

() A This layer defines what the Agents’ role is
- - T within the multi-agent system. This
‘ . includes any functions required for the role

~——— Agent+ Layer

This layer enhances the agent core abilities
. with specialised functions without giving
\/ the agent aRole

A Agent Core Layer

N This is a generic agent base which can be
given roles and abilities with the addition

of specialised layers

\\\ / Device Hardware

Fig. 1. Layered Agent Framework

learning and processing of data is done) and mobile devices migrating between en-
vironments and allowing the overall system to learn behavioural patterns as well as
hosting agents themselves to carry out independent tasks.

3.1 Theoretical Model

When creating multi-agent systems a common platform on which the agents are built is
necessary. This may be a common communication protocol to enable all the agents to
talk to each other. This can be a common runtime like a Java Virtual Machine (JVM),
or an operating system (Linux) providing a common platform for all agents. Previous
research has brought about a common intermediate layer (MCAPL) that executes agents
programmed in a variety of agent programming languages after translation [9, 10].

Common communication elements and interfaces are required to enable agents to
work together, however different multi-agent systems developed by different develop-
ment teams generally cannot communicate effectively with each other without specific
adapters. A simple solution would be to use a common open communication protocol
and declare this a standard for all agent communications*. This is a solution only if all
agents on all systems followed this standard, and that the protocol offered everything
that all MAS developers need.

This leads to the question: How is it possible to allow agent developers as much
freedom as possible without imposing too many restrictions on their code? Our ap-
proach is the design of a Layered Agent Framework (LAF, see Figure 1) that provides
developers with a generic agent layer that can be specialised in order to fulfil defined
roles. This specialisation is achieved through the addition of further layers. The system

‘http://www.fipa.org
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is not limited to one role per agent; the Agent Role Layers can be stacked to provide
a multi-role agent system. The ordering of the role layers determines the priorities of
the agent. Any role layers that are packaged with the system are default roles. Default
roles can not be dropped by the system and cannot be superseded in priority by non de-
fault role layers (default role priority set by the developer or the system). This layered
approach loosely couples additional roles to an agent, allowing roles to be changed,
updated or multiplied without requiring the agent to be fully restarted. Not only are
the agent roles loosely coupled but so is the entire agent device. This agent system is
intended to produce a basic prototype agent device which manufacturers can integrate
into an appliance, apply their role layer and then ship it as a single unit. If the manu-
facturer improves a layer, they can issue a new updated layer to devices since the agent
roles are entirely software based. We describe the layers of Figure 1 in some detail in
the following paragraphs.

Device Hardware The Device Hardware is at a basic level the processor, memory,
storage and communications and a Linux operating system to manage it all. Linux
grants the Agent Core Layer access the hardware (Linux handles hardware drivers).
Any specialist hardware API(Application Programming Interface) for example a GPU
or heating element. APIs are defined in either the Agent+ Layer if the special hardware
is attached to the Agent Device Unit or in the Agent Role Layer if the special hardware
is part of the appliance or utility which the agent device is attached to. For example if a
coffee machine has an Agent Device attached to it, the Agent Role Layer would contain
the APIs required for the Agent Core to use the coffee machine functionality. The Agent
Device can be embedded within an appliance or attached to one. The hardware layer
will provide a flag indicating to the agent whether it is embedded or attached.

Agent Core Layer As the name implies this layer is to be considered the core of the
system. This layer will be generic across all implementations to combat system frag-
mentation® and maintain a high level of agent interoperability. This layer is an adaptable
agent, adaptive in that is must work to complete tasks with any roles assigned to it. An
agent engine will form the main part of this layer along with an array of layer APIs
as well as a dynamic action cache used to formulate plans based on role and available
abilities. The Agent Core Layer is not to be designed for dynamic updates to any func-
tionality. Instead any functionality that requires an update is to be overloaded in the
Agent+ layer. If an update within this layer is absolutely necessary (like security) then
the agent device will require a restart unlike updating in any other layer. The Common
Agent Engine provided by the Agent Core Layer creates by default at least one agent
upon system start. This agent is considered the Master Agent of the system and takes
on any default roles assigned to it. Slave Agents can be created to handle any addition

3System fragmentation refers to parts of a (common) system being incompatible with other
parts. E.g., Apple iOS devices have low levels of fragmentation, since an app written for an
iPhone 3 will work on an iPhone 5 and (mostly) vice versa. Compare this with the Android
platform where there are huge differences, such that apps will generally come with extensive lists
of supported devices/configurations. For our framework, this means that agents should be able to
work together regardless of the developer, manufacturer, or purpose.
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roles assigned to the agent system. The Master Agent has full control of the system
hardware and Slave Agents. In doing so the Master Agent will have more responsibili-
ties attributed to it compared to the Slave Agents who will only have to satisfy their role
requirements.

Each agent has access to the Agent+ Layer and assigned roles from the Agent Role
Layer. Slave Agents will have access to the hardware but the Master Agent will have
assigned a ‘Hardware Need Value’ to each agent dependant on their role. This value rep-
resents a proportion of system resource usage and on the system adds up to 1. Consider
a TV with access to a GPU and TV Tuner hardware and two agents currently running
on it. One Slave Agent is tasked with recording a user’s favourite shows and this has a
GPU need of 0.2 and a Tuner need of 0.5. The other agent is the Master Agent for the
TV system and is responsible for displaying content, programming recordings, and re-
sponding to user interaction with a GPU need of 0.8 and a Tuner need of 0.5 (assuming
the user is watching live TV). With the TV off, the Master Agent allocates almost all
GPU and Tuner usage to the Slave Agent based of its needs. This is a simplistic view of
how resources could be managed and is intended to demonstrate one of the extra roles
(resource management) the Master Agent will be assigned and how this may work.

Agent+ Layer This is an enhancement layer to the Agent Core designed to provide
dynamic updates and extend core functionality when required. When an update is ap-
plied to the Agent+ Layer the Agent Device does not need to power down. The updating
layer simply becomes locked while the update occurs and then — once successful — re-
turns to an operational state. For instance, assume an Agent Device has a GPU(Graphics
Processing Unit) and this Agent Device is attached to a fridge. The fridge will not have
any need for a GPU so the Agent Role Layer will contain no API’s for a GPU. There-
fore there must be a way in which Agent Device developers can add any functionality
directly to the Agent Device without having to create pseudo role for it. The Agent+
Layer allows for this kind of extension of core functionality.

Agent Role Layer Role specific functionality and APIs are stored here. The Agent
Role Layer and Agent+ Layer are where agent developers will spend their time as these
layers define what the agent is and how it should behave. If the agent role requires a
certain type of hardware or proprietary algorithm to work as intended this would be
implemented in the Agent Role Layer. An agent can have any number n of roles (n € N
can be 0) provided the hardware can support that number of roles. This can allow for
agent-network-wide load balancing as roles can be duplicated to a numerous compatible
Agent Devices. An Agents’ compatibility for a role is dependent on hardware require-
ments for the role. An agent can accept a role if specialist hardware is not available to
it, in this sense the agent takes on a support role. For example a security system might
be trying to identify who is in the house. The Home PC is not in use and neither is
the coffee machine so the security agent asks them to take on a support role and help
process some of the data. The two devices are both in possession of a CPU capable of
processing the data required by the security agent and therefore are compatible for the
support role. Once the support role is no longer required, agents can make the decision
to drop any extra roles®).

6Security agents can force agents to drop certain roles like security roles.
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Types of Agents using the Layered Agent Framework Agents using the Layered
Agent Framework come in three forms:

Standalone device (Agent Device) The agent is not attached to any appliance or util-
ity. This type of agent acts as an agent controller for a specific area of the agent
network, or a worker agent which can be used by other agents on the network for
data processing much like a server.

Attached to an appliance/utility (Attached Agent Device) The agent is attached to
an appliance and is enabled to use the functionality of the appliance. The actual
agent device is a separate unit to the appliance. This setup is designed to allow
current appliances and utilities to be adapted for agent technology by interfacing the
agent unit with the appliance or utility. This also allows the agent unit to be removed
for repairs or to disable the agent capabilities and control over an appliance.

Embedded in the appliance/utility (Embedded Agent Device) These agent devices
will be part of the appliance/utility and cannot be removed. If a hardware fault
occurs the system will default back to a ‘dumb’ unit until repairs are carried out.

3.2 Executable Model

We introduce a Petri net model based on the nets-within-nets paradigm. It builds on the
MULAN multi-agent architecture and is implemented in the RENEW tool. We give a
brief overview of MULAN in Section 3.2 and then introduce our model in Section 3.2.

Multi-Agent Petri Nets We focus on the MULAN architecture shown in Figure 2 as
introduced in [11]. MULAN separates the multi-agent system into four parts or layers.
The layers are: (a) agent network, (b) agent platform, (c) agent, and (d) protocol.

Each layer is represented by its own Petri net(s). Protocols specify the agent pro-
grams. Agents reside on a platform that provides internal and external communication
facilities and is located in an environment within the multi-agent network of the multi-
agent system. The latter determines the communication structure available to agents.

Because it is unrealistic to assume legacy products to (fully) support agent com-
munication, we generalise parts of the MULAN architecture to reflect this scenario.
In particular, the agent platform will become simply a platform and the multi-agent
network will be referred to as network.

Multi-Agent Petri Net Components The Multi-Agent Petri Net Components (MAP-
NCs) run on a MULAN-based architecture. They constitute the building blocks of
agents and protocols, e.g. for agents created at runtime by other agents. MAPNCs are
presently limited in that their ‘template’ or ‘blueprint’ has to be defined prior to run
time and have to have certain properties discussed below.

The possible templates are stored in a place of the agent net similar to the protocols.
Whenever an instance is required, a copy of one of these templates is initialised accord-
ing to its task and the initialised copy is then moved onto the platform from on which it
operates. As a mobile agent, the generated instance (of an agent) can then traverse the
network to reach other platforms and interact with (agent) nets at remote locations.
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Fig.2. MULAN agent architecture [11]

Figure 3 shows the structure of the extended MULAN architecture that includes the
layer structure introduced in Section 3.1.

The extended MULAN provides the multi-layer support for agent communication
by providing the layer functionality in an additional place regulating the communica-
tion by forcing synchronisation according to the layer information and allowing only
communication based on the specifications therein. Communication can be ‘negotiated’
to take place on different levels according to the different layers.

If a method is overridden, this will result in its protocol becoming unavailable for
execution in the Petri net model.”

3.3 Towards an Implementation

This section discusses some issues related to the implementation of our framework.

Brief Roadmap Designing any system requires an awareness of implementation. With
this in mind any design decisions must made with consideration towards aspects like
available system resources and response times. Our aim is to provide an architecture for
flexible agent-based, object-oriented systems (Layered Agent Framework, LAF). The
Agent Core represents the main component that every system using the LAF will be
based on. Elementary communication features and functionality will be implemented on
the first prototype system. At least one Agent+ layer will have to be created for testing
with the Agent Core. This basic system set up will then be used to test the dynamic
update capability of the framework as well as simple extensions to the Agent Core

TThis is easily achieved by removal of a required resource, i.e. an input token to the respective
transition and appropriate transition synchronisation. This is not shown explicitly in the extended
model in Figure3, because it is implemented at a protocol net level and the relevant inscription
detail had to be omitted for brevity and readability.
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Fig. 3. Extended MULAN agent architecture

functionality. Once the Agent+ Layer has been implemented and tested, Agent Role
Layers can be added. An arbitrary number of Agent Role Layers can be developed and
deployed to make full use of the flexible design of the Layered Agent Framework. The
details of what extensions, roles or testing will be done has not yet been determined. The
framework will be supported by a set of development tools that will assist the developer
with the development of bespoke solutions, i.e., Agent+ layers and agent roles. The
tools will include templates and components to assist the construction of agent plans,
for example they will supply action templates and agent creation blueprints.

Manual Override Every system build using LAF must have a manual override in case
of user preference or fault, “open the pod bay doors HAL” 8. This manual override
will place the agent into disabled state in which it has no control over its appliance
or utility. Such agents can still communicate their state on the network and attempt to
assist other agents(assuming no fault). The manual override simply (in software terms)
blocks the agents’ control over its appliance/utility which from then on will need to be
user operated. The agent can be ‘enabled’ by the user flipping a switch or by asking the
agent network to enable the agent again(expressed consent must be given).

The Challenge of Real-Time Responsiveness There are many challenges facing the
final implemented framework and any system based on it. Most importantly, the system
must work in real time. Having a system working in a home environment in which the
user must wait more than a minute for a response is generally unacceptable. A user can
expect delays in response for processing actions such as “What times are the buses to
Cardiff”, “one moment.... 1315 and each hour from then till 2100 this kind of scenario

8Stanley Kubricks’ 2001 A Space Odyssey. HAL is asked to open the pod bay doors, HAL
refuses this request with the response ”I'm sorry Dave, I'm afraid i can’t do that”.
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is acceptable. However if the user asked for the curtain to be drawn and had a 2 minute
wait before the curtain even started to move is very undesirable. This also poses the
question of user feedback when there are unavoidable delays, but this is outside the
scope of this paper, since it would be the programmer’s duty to supply the feedback.’
Aside from real-time responsiveness the system must have a high fault tolerance and
some form of system crash recovery. A computer crashing is one thing but an entire
home of systems crashing could be disastrous and dangerous. Hence, we need systems
with the ability to recover quickly from a major fault or system-wide disruption. Any
solutions must attempt not to affect the user in a noticeable way. The perfect recovery
solution would be the system completely recovering from a system wide fault without
the user knowing there was ever anything wrong.

The Challenge of Agent Security Security is a major concern in the home, especially
considering the amount of personal data that will be stored on the users’ lives. There
are many ways in which data can be protected, ranging from passwords to strong data
encryption. As security measures placed upon data are increased the less dynamic and
freely available that data becomes and a balance needs to be negotiated such that some
data become accessible without compromising the required level of data protection.
One mechanism could be a relational notion of trust that agents can have with other
agents. The idea is that agents who have proven they are not a threat to the system over
time will become trusted by other agents. An untrusted agents’ request may be rejected,
in contrast trusted agents are more likely to have requests completed by other agents.
Certain agents can be pre-set by developers to have a trust limit for example security
systems should only have complete trust in other home security components with a
certified ID. A private trust value held by every agent on every other agent allows new
devices to use the network without compromising on the security of the network. Trust
levels would range from O to 1, representing the range from untrusted to fully trusted.
A new device will usually start on a neutral trust level of 0.5 (unless otherwise pre-set).
Unless the new device was a permanent addition to the smart network (e.g., a cooker)
for which exceptions can be made, if permitted by the security system. Trust values will
be updated dynamically at run time and can be influenced by the security system.

4 Conclusion

We have introduced an agent architecture that supports object-oriented concepts most
software developers are familiar with and that adds component-based agent layers.
These layers provide basic and extended agent reasoning and communications facili-
ties in a maximally flexible way. The architecture is primarily targeted at smart home
automation. For this, it supports dynamic reconfiguration and seamless integration with
non-agent-based systems. This is required because the user experience is of foremost
importance in the smart home application area. Easily configurable components can be
added at runtime to provide additional features and to configure security features as
required by individual sub-systems.

9The tools to be developed for the framework will have templates for a variety of devices and
appliances that can be equipped with basic user feedback functions.
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A Petri net implementation has been presented in this paper. The next steps will be
to implement the framework on inexpensive hardware that can be integrated into new
appliances or added to existing devices, e.g. in the form of a simple wall-plug adapter.

Also following successful testing of the framework, will be the provision of a tool
kit with components and design patterns to ease the construction of agents, layers, and
roles. Ideally, we would like to link the visual creation of the latter (by means of agent-
based object Petri nets) to the development environment, providing an automated trans-
lation of the Petri-net representation into an agent program. The Petri net model could
then be analysed using existing methods and tools, while the properties are preserved
by a verified translation procedure.
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Abstract. Experimenting with real robots is limited by the available
ressources: Complex hardware is costly, and it needs time and experience
for setup and maintenance. Simulated robots can be used as alternative.
Our RoboNewbie project is a basic framework for experimenting with
simulated robots. It serves as an inspiration for beginners, and it provides
room for many challenging experiments. The RoboNewbie agents run in
the simulation environment of SimSpark RCSS, the official RoboCup 3D
simulator, where the simulated robots are models of the humanoid Robot
NAO of the French Company Aldebaran. Different example agents pro-
vide easily understandable interfaces to simulated sensors and effectors
of the robot as well as simple control structures. The framework has been
successfully used at different courses where the participants needed only
few hours to understand the usage of the framework and to develop own
agents for different tasks.

Keywords: Robotics Tutorials, RoboCup, e-Learning

1 Introduction

Understanding grows with active commitment: to ”do” something, to master it,
provides a deeper understanding. Experiencing with own experiments is of course
an important prerequisite for studies in Robotics and Artificial Intelligence as
well. But experimenting with real robots is difficult not only because of expensive
hardware. Maintaining the robots and set ups for experiments are very time
consuming even for experienced people. Experiments at home as needed for e-
learning require a deep technical understanding by the students, i.e. experiences
that they are just going to learn. So it is not surprising that simple hardware is
still broadly used in robot experiments, hardware which is far behind the recent
technical developments, not to talk about e.g. complex humanoid robots. The
collection of papers in [1] can be understood as an illustration of our statements.

Simulated robots in simulated environments can be used as an alternative
for complex hardware. The RoboCup community has more than 15 years of
experiences with real and simulated robots in the field of soccer playing robots
[2]. Soccer playing robots have been established as a challenging test field for
the progress in scientific research and technical developments. Robots have to
be able to control their bodies and their motions according to soccer play, they
must perceive a dynamically changing environment and they have to choose
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successful actions out of many options in real time. They have to cooperate
with team mates and to pay attention to opponents. Several thousand scientists
and students are participating in the annual RoboCup competitions in different
leagues with different types of real and simulated robots. The humanoid robot
Nao of the French Company Aldebaran [5] is used in the Standard Platform
League, while its simulated version is used in the 3D-Simulation League. The
official SimSpark RoboCup 3D Soccer Simulation (SimSpark RCSS) [3] provides
an excellent environment for experiments with simulated complex robots (see
Section 3). It provides a physical simulation using ODE [7] for the body dynamics
of the robot Nao and the soccer environment.

Our RoboNewbie Project is a basic framework based on JAVA for the devel-
opment of simulated humanoid robots. It provides easy understandable interfaces
to simulated sensors and effectors of the robot as well as a simple control struc-
ture. It runs in the environment of the SimSpark RCSS, thus it can but need
not be used for soccer playing robots. Users can develop their own motions, e.g.
for dancing, gymnastics or kicking a ball.

The RoboNewbie Project implements some kind of ”minimalistic approach”
with respect to Robotics. Users are able to start without special knowledge about
robots. They can learn by their own experiences about the basic concepts of per-
ception, motion, control, synchronization, and integration. All related program
code in RoboNewbie is understandable from simple principles without further
knowledge. That concerns the structure of the code as well as the underlying
computational methods. As soon as users learn more about Robotics, they will
be able to extend the programs accordingly, e.g. concerning complex motions or
world modelling.

Following some hints of the reviewers, we would also like to emphasize the
potential of the framework for the research on foundations. e.g., on computa-
tional models as well as on different problems in cognitive science. It can be
useful in verifying models and in gathering large data sets for experiments in
data mining.

The paper is organized as follows: After an overview about the concept
and the downloadable resources of the RoboNewbie project, we give a short
overview about SimSpark RCSS, and we describe the communication between
the RoboNewbie agents and SimSpark RCSS. The main part of the paper in
Section 5 discusses the details of the RoboNewbie framework, and the paper
ends with results of practical evaluations and our conclusions.

2 The RoboNewbie Project and its Resources

The main goal of the RoboNewbie Project is to provide an uncomplicated start-
ing point to the programming of complex robots with minimal requirements and
pre-knowledge. The users are only supposed to have some programming back-
ground (Java) and some technical/mathematical understanding. More knowledge
about robotics can be provided in parallel to the exercises with RoboNewbie,
e.g. in introductory tutorials (as we already did) or by e-Learning material. At
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its present stage, RoboNewbie is not prepared as a complete course material on
university level like e.g. the course ” Autonomous Multiagent Systems” at the
University of Texas [8]. But it is planned to integrate it in a e-learning course
on Robotics.

The objectives behind RoboNewbie is the realization of the following require-
ments:

— Holistic view on robots: For beginners and especially for pupils in schools, it is
more appealing to see a robot behave like a human than to test and calibrate
the behavior of a sensor. Of course, when dealing with more complex tasks,
users will experience the need to have better knowledge about the usage of
sensors and actuators, and then they may draw their own conclusions.

— Motivating scenario: Application fields from daily life with known properties
and rules are well suited. Robots which imitate human skills are especially
motivating.

— Scalable tasks: Unexperienced users should have no difficulties to perform
first steps with own experiments and later move to more complex tasks with
unlimited challenges.

— Low requirements: The usability would be restricted if peoples need to have
education on Robotics or if they are supposed to have deep knowledge in
hardware and software. To be usable at schools, basic programming skills
and interests in mathematics and natural sciences should be sufficient.

— Low costs: The costs of a learning system include money and efforts for
purchase, set up, and maintenance, respectively. They should be as low as
possible to permit a broad usage.

The users of the RoboNewbie project can find all materials on the web page
of Berlin United — Nao Team Humboldt [6]. Besides links to RoboCup, Nao
(Aldebaran) and the SimSpark-Wiki, it contains resources for download:

— Description of Installation and first steps.

— Sources of the RoboNewbie Agent programmed in JAVA 7 and prepared for
usage under Netbeans.

— Quick start tutorial: Introduction to the features and the usage of the agent.

— Motion Editor for the design of Keyframe Motions (needs JAVA 3D to be
installed).

— SimSpark RoboCup 3D Soccer Simulation (SimSpark RCSS) for Windows
with an introduction to SimSpark RCSS as far as needed for RoboNewbie.

All provided code is open source. Some parts of the RoboNewbie code use code
of the RoboCup team magmaOffenburg [4].

3 SimSpark RoboCup 3D Soccer Simulation

SimSpark RCSS is developed and used by the RoboCup community in the 3D
simulation league. SimSpark is a generic physical multi agent simulator system
for agents in three-dimensional environments. It uses the Open Dynamics Engine
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(ODE [7]) for detecting collisions and for simulating rigid body dynamics. ODE
allows accurate simulation of the physical properties of objects such as velocity,
inertia and friction.

The Simulator SimSpark RCSS consists of two programs (server for simu-
lation and monitor for visualization and interaction) and configuration files. It
models a soccer field with the player bodies (adapted from the robot hardware
of Nao) and the ball. It also controls the rules of the soccer game, i.e. it controls
the game according to the decisions of a referee.

SimSpark RCSS can be used as open source software. This was also an impor-
tant criteria for its usage. It can be downloaded from [3] for different platforms.
A complete preconfigured version for Windows 7 is provided for RoboNewbie
which can be downloaded from the RoboNewbie web page [6]. Nevertheless, the
RoboNewbie agents run with SimSpark RCSS under other platforms, too. By
some small changes in the configuration files, the soccer rules are simplified for
first usages with RoboNewbie.

The SimSpark RCSS project itself is constantly evolving according to the
progress in the RoboCup initiative. The version (compiled in June 2012) on the
RoboNewbie web pages serves for stable usage and avoids potential incompati-
bility problems by new RoboCup versions.

SimSpark RCSS is documented in a Wiki [3] with download links to the
latest versions as used in the competitions. The Wiki documentation is thought
to represent the actual state of the simulator by continuous updates. But since
different developers are volunteering in parallel on different tasks in the project,
the structure of the Wiki is not always optimal, and occasionally some outdated
information is still present. Moreover, the Wiki is directed to experienced users
which makes it sometimes difficult to understand for novices.

To provide an easy access, the down loads of the RoboNewbie project contain
an introduction to SimSpark RCSS which refers to the provided version (as
described above). It gives the user an overview about

— Simulation using SimSpark RCSS: The SoccerServer and the Monitor.
— The Nao-Model used by SimSpark RCSS.

— Communication between Agents and SimSpark RCSS (with explanations of
the message formats as background information).

— Synchronization between SimSpark RCSS and the Agents.
— Monitor and User Interface.

Running a Game.

Actually, our description of SimSpark RCSS provides also some ”background”
information which is not needed for beginners, e.g. details about the message
formats. Since RoboNewbie permits an easy and direct access to the items of
messages like sensor values and motor commands, the syntax of messages must
not be known by users. Nevertheless, we have included the information for deeper
understanding of RoboNewbie in case of interest.
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4 Communication between Agents and SimSpark RCSS

SimSpark RCSS implements the soccer environment including the bodies of the
Nao robots. It models all physical interactions between players, ball and envi-
ronment. The agents implement the control of the players.

The interface between the physical environment and the control of real robots
is constituted by sensors and actuators: Robots perceive the world by sensory
data (e.g. by vision, accelerometer, force sensors etc.), and influence the world
by their actuators (motors, voice etc.).

In simulation, the sensory data are calculated by the simulator according
to the situation in the simulated world (e.g. observable objects) and sent via
message exchange to the agent. Then, like a real robot, the agent can update
its belief about the situation and decide for actions it wants to perform. A real
robot would then activate its actuators (e.g. motors at the joints) to perform the
intended actions. In simulation, the agent communicates with SimSpark RCSS
again by messages which transmit the actuator commands. Both are synchro-
nized by a communication cycle of 20 milliseconds.

In SimSpark RCSS, the message transfer is optimized for minimizing the
server load: All sensory data are packed in one server message to be sent at the
beginning of a communication cycle. Vice versa, the agent can send all action
commands by a single agent message before the end of a cycle. The message
formats follow a special syntactic scheme based on symbolic expressions (S-
expressions). As a consequence of collecting data into one message, the prepara-
tion of the data in an agent needs more efforts than in a real robot. It is a special
feature of the RoboNewbie agent that this preparation is hidden from the user:
The agent provides special getter- and setter-methods which allow the access to
the sensor (perceptor) data and the setting of actuator (effector) commands in
a similar way as in a real robot.

The interaction between the server and the agent works as follows:

1. At the beginning of a cycle at a time t, the server sends individual server
messages with sensations to the agents.

2. During this cycle, the agents can decide for new actions depending on their
beliefs about the situation.

3. Before the end of this cycle, the agents should send their agent messages to
the server for desired actions.

4. The server collects the agents messages and calculates the resulting new sit-
uation (poses and locations of the players, ball movement etc.) according to
the laws of physics and the rules of the game. This is done during the follow-
ing cycle at time t+1. (Note that the server message sent at the beginning
of this cycle regards the situation calculated in the previous cycle at time t).

5. At the beginning of the subsequent cycle, at time t+2, the sensor data in
the server message is based on the effects of the actions at time t+1 which
were chosen by the agent according the information from time t.

A special feature of SimSpark RCSS is the use of so-called perceptors instead
of sensors. The perceptor data can be regarded as already pre-processed sensor
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data. For example, the image data from the camera are not presented by a pixel
matrix. Instead, the vision perceptor sends a collection of observable objects
with egocentric coordinates relatively to the camera of the observing agent. In
a similar way, actions commands of the agent are encoded as so-called effector
values and sent to the server which translates them to motor control commands.
The calculation of perceptor values and the interpretation of effector values are
part of the simulator, too. On the agent side, a server message has to be parsed
for the contained perceptor values, and the action commands have to be collected
to the agent message. Both constitute a significant burden for a beginner while
it provides only few insights to robotics. The RoboNewbie users need not to care
about that, because the RoboNewbie agent does all this work in the background.

Besides some effectors related to initial connection with SimSpark RCSS,
there are Hinge Joint Effectors for each of the 22 hinge joints and a Say Per-
ceptor (as of a loudspeaker with limited capacity). The following perceptors are
available in SimSpark RCSS (for details see the Wiki or our SimSpark descrip-
tion):

— Vision Perceptor (as of a camera in the center of the head).

— Hinge Joint Perceptors at each of the 22 hinge joints.

— Accelerometer in the centre of the torso.

— GyroRate Perceptor in the centre of the torso.

Force Resistance Perceptor at each foot.

— Hear Perceptor (as of a directed microphone with limited capacity).

Game State Perceptor (reporting the actual game state of the soccer match).

5 RoboNewbie Framework

The RoboNewbie framework offers a comfortable interface for agents interacting
with SimSpark RCSS. It includes sample agents which illustrate basic concepts
and methods of Robotics and Artificial Intelligence. Users can start exercises
with these agents and learn how to use RoboNewbie and what the programming
of robots is like. They can make their own experiences with different topics and
algorithm by modifications and extensions.

It was a main goal of the project, to provide easily understandable concepts,
methods and programs. There are no complicated structures, and all code is
documented in detail. As a consequence, some more demanding concepts were
replaced by simplier approaches (e.g. keyframe motions instead of inverse kine-
matics, approximated coordinates of observed objects etc.). Nevertheless, the
clear structure of the project supports extensions for more challenging solutions
if wanted.

5.1 Low Level Interface Functionalities

The framework includes interface functionalities on two levels. The lower one
corresponds to the hardware-near functionalities of robots, while the higher one
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is concerned with more abstract control functionalities. Especially for the lower
level, parts of the code of the team magmaOffenburg [4] was used by us as
documented in our source files.

The hardware-near layer encapsulates the network protocol for interaction
with SimSpark RCSS and it allows access to the simulated hardware entities
corresponding to sensors and motors. The access is implemented by getter func-
tions for perceptor values of different perceptors which can be used similar to
sensor signal queries of real robots. Related setter functions for effector values
can be used for the control of actuators.

Especially the low level interface functionalities for SimSpark RCSS are a
hurdle for beginners and need time consuming work even for experienced users.
They concern tasks like network connection, synchronisation with the server,
parsing of nested server messages, syntactical analysis of S-expressions, synthe-
sis of agent messages with a lot of technical non-robotics details. The users of
RoboNewbie need not to care about all this details, the framework offers er-
gonomic methods for the interaction with the simulated environment in an easy
understandable way similar to the methods used by the operating systems of
real robots. Users can learn to use these methods after a short training time (cf.
the evaluation in Section 6).

The synchronization protocol was already described in Section 4. The user
needs not to care about the communication, except the delays by the protocol
and the duration of the cycles given by 20 msec. It is necessary to fetch a server
message at each cycle and to send the agent message before the end of the
cycle. The related control structures are already implemented in the examples
and explained by the tutorial. Hence, if the calculations during one cycle do not
exceed the cycle time, there will be no problem. The needed time depends of
course on the used computer, the example agents run without problems even on
less powerful machines.

The first example ” Agent_BasicStructure” in the tutorial let the users start
with an agent which already implements all low level communication. The agent
simply rises an arm by setting related effector values. The user can experiment
with other values and other effectors just to understand the basic structures.

5.2 Perception

The available perceptors were already listet in Section 4. All perceptor values
can be queried by related getter methods using the perceptor names instead of
the acronyms of the server messages. This allows a comfortable access to the
perceptor data which corresponds to the access of sensor values by a related
operating system of a real robot.

RoboNewbie has already implemented the necessary conversion from the
nested server messages to the perceptor values. For that, the server message
are parsed for the constituents of a tree like structure (again, thanks to the
code of the team magmaOffenburg [4]). According to the analyzed acronyms in
the expressions of the tree, the corresponding perceptor values are filled in by
RoboNewbie.
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The programs ” Agent_TestPerceptorInput” and ” Agent_TestLocalFieldView”
illustrate the usage of the related getter methods and the perceptor values. The
examples serve also as an illustration to the usage of the logger functions de-
scribed in Subsection 5.5. As an exercise of the tutorial, the user can implement
an agent, which lifts the robots arm, when it senses another robot and moves the
arm down, when it does not sense any robot. Which arm is lifted should depend
on the side where the other robot is seen.

Special efforts are needed for the vision perceptor. It provides coordinates of
all objects in the vision range of the camera. SimSpark RCCS in its common
version does not communicate image data. Instead, the communicated informa-
tion can be understood as the result of basic image interpretation, it contains
coordinates of the goal posts, the lines, the ball, and the body parts of robots.

The vision perceptor provides values by egocentric coordinates relatively to
the camera in the centre of the head. Further calculations are necessary to get
the coordinates of objects relatively to the body of the robot. Accurate calcula-
tions would need the inspection of the cinematic chain. The necessary data are
available by the hinge joint perceptors. More calculations including self localiza-
tion are necessary for the transformation into alocentric coordinates. RoboNew-
bie does not provide related programs following the intended ”minimalistic”
approach, because they would not be understandable by beginners without pre-
knowledge about Robotics. Instead, the implementation of related methods can
serve as exercises during courses in Robotics.

As a simple substitute, we have decided to provide only approximations for
the conversion from camera coordinates to robot coordinates. They are docu-
mented in the sources and easily to understand. Users can make experiments
according to the accuracy and draw own conclusions on cinematic relations.

Visual information is provided by SimSpark RCSS only at each third cycle,
and the robot would have to act blindly in between when there are no vision
data available. Hence, the vision information should be stored for the following
cycles. Moreover, the vision perceptor is limited by the camera view range of 120
degrees horizontally and vertically. The robot has to move its head to observe
more objects in the world. Again it is useful to store objects seen before in
other directions. In general, such updating and memorizing of observations is
maintained as belief of the robot in a so called world model. Updates may regard
corrections according to robot motion, guesses for movements of invisible objects
and integration of information communicated by other robots.

Again, a fully elaborated world model is far behind the scope of beginners.
Hence, RoboNewbie provides a very simple version, where just the observed
objects are stored in a simple form. The coordinates of those objects are ref-
erenced with respect to the robots coordinates. Turnings of the head are al-
ready regarded by RoboNewbie, but only by the approximate calculations as
described above. Other movements of the robot like turning or walking are not
regarded. Time stamps indicate the last time of observing an object. The example
” Agent_TestLocalFieldView” illustrating the perception features of RoboNewbie
is provided for the users.
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5.3 Motions

All intentional motions are performed by controlling the hinge joints by sending
effector values (speed of motors) to SimSpark RCSS. Then the physical simula-
tion engine calculates the effects of the commands regarding physical laws and
updates the simulated world accordingly.

Simple motions like turning the head or rising the arms can be easily pro-
grammed by the users as in the already mentioned examples. The motions can
be controlled using the feedback of hinge joint perceptors. i.e. by sensor-actor
coupling, where the delay of observing an action has to be regarded as described
in Section 4. There is much room for own experiments of users.

More complicated motions like walking need coordinated movements of dif-
ferent joints, users may learn about these problems after some trials. We have
decided to provide keyframe motions in RoboNewbie because they are easily to
understand and to design. The interpolation mechanism for keyframe motions
in RoboNewbie realizes a linear interpolation - users may implement other in-
terpolation methods like splines if they want. Keyframes are stored as text files
which can be edited by any text processing system. Therewith, users could even
design and change motions while using the programs as a blackbox.

RoboNewbie comes with a set of predefined keyframe motions for walk-
ing, turning, stand up and others. Users can change these motions (by chang-
ing the related text files). New motions need an integration into the program
"keyframeMotion”, details are explained in the tutorial and the source code
documentation.

According to simplicity, there are no concepts implemented for interruption
of motions: Each motion is performed completely until its end, and there are no
cyclic motions, e.g. for walking. Instead, continuous walking can be performed
by subsequent calls of a two-step-walk.

The design of keyframe motions is supported by a graphical Motion Editor.
It can be downloaded from the RoboNewbie Web page as well. It shows the
postures of the robot for selected keyframes. Then the keyframes can be edited
in two ways. In the graphical representation the posture can be kneaded into
the desired posture with the mouse. Alternatively, each joint angle can be set
to specified values which are immediately presented by the graphics. Transitions
between keyframes can be defined with specific transition times resulting in a
keyframe sequence as usual.

The program ”agentKeyframeDeveloper” helps in designing keyframes. A
robot performs the motion of the actually edited keyframe file. After each change,
the new motion is performed immediately. If the robot falls down during such a
motion, it stands up by itself. Another helpful program can be used to mirror
keyframes from one side to the other.

The example ”agentSimpleWalkToBall” illustrates the motion concepts. As
an exercise of the tutorial, the users can change that program to implement
obstacle avoidance (walk around the ball without touching it). They can use
motions for walk, stop and turn. Additionally, the agent must be able to recognize
the ball and to decide for the appropriate motion according to the ball position.
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Another exercise is the design of a new motion for kicking the ball. Users can
furthermore do their own experiments e.g. with dancing robots.

In general, keyframe motions are useful for special motions like standing up,
but they are not so well suited e.g. for walking. Walking is still a challenging
problem in Robotics. The users of RoboNewbie will get some understanding
about the task. Moreover, the framework is well suited as a basis for other im-
plementations and for Machine Learning by more educated users. But according
to our ”minimalistic” approach, related implementations are not provided.

5.4 Control Cycle and Decision Making

The basic control cycle follows the classical deliberation approach, often denoted
as the ”sense-think—act—cycle”, or by related similar names. This corresponds
closely to the cycle given by SimSpark RCSS: At first, sensations are provided
to the agent, then the agent decides for appropriate plans and then it sends the
related action commands back to the server.

Critical remarks may come from the community of Embodied Robotics/Al,
e.g. concerning the centralistic and symbolic computations in the classical ap-
proach. To realize concepts of Embodied Robotics/AI one needs to put more
emphasis on local sensor actor coupling, distributed control, embodiment, situ-
atedness, emergent behaviour etc. The real robot Nao as well as its simulated
counterpart with the central control (i.e. our agent) are not primarily designed
for such purposes. It is possible to design sensor actor couplings and other be-
havioural concepts in the RoboNewbie framework, too. One might even split
the agent into different ”parallel” acting parts (implemented e.g. by threads) to
simulate distributed controls, but some synchronization is unavoidable by the
server cycles of SimSpark RCSS.

At the same time, thinking in terms of the ”sense—think—act—cycle” is quite
natural for beginners because it reflects some causal dependencies. It provides
an intuitive and easily maintainable structure in the design of robots. Therefore,
the control cycle in RoboNewbie adopts the related terms for structuring the
run-methods of the agents by cyclic calls of methods sense, think and act. The
think-method is sometimes omitted in case of simpler ("reactive”) agents.

The sense method is reponsible for receiving and processing the perceptor
data by the related RoboNewbie methods. The act methods calls the transfer
of the agent message with the effector commands. What is left is the further
analysis of the perceptor data (e.g. a more elaborated world model) and the
decision for plans and actions to be performed by the robot now and possibly
in the future. By the given structure of RoboNewbie, all this can be included in
the think method. The think method can of course be split into more dedicated
deliberation methods which may be organized hierarchically if needed. Again,
all this is left to exercises during related courses. RoboNewbie provides just a
simple example for illustration, the Agent_SimpleSoccer.

The Agent_SimpleSoccer is able to perform a very simple soccer play: As
long as it is behind the ball and sees the opponent goal, it walks forward while
pushing the ball with its feets. If the condition is not fulfilled, it turns around
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until it sees the ball, walks to the ball, turns around the ball until it sees the
opponents goal, and then it starts walking towards the goal again. The decisions
are made by a simple decision tree whenever the previous motion is completed
(note that motions can not be interrupted as described above).

It is obvious, that the play of Agent_SimpleSoccer can be improved in many
ways. This is just what we want: The users can collect many ideas for improve-
ments. Improvements may concern better usage of perception (e.g. by a ball
model guiding the search), improved motions (like faster walk), new motions
(like kick or dribble), better control (like path planning). It is also possible to
have more players on the soccer field such that players can cooperate (e.g. by
positioning and passing). This gives room for simple contests during a course.

5.5 Logger

Runtime debugging of programs may be difficult because it affects synchroniza-
tion with the server. Even simple debug messages printed on System.out may
need too much time such that the agent cannot respond in time. It is possible
to use the so-called sync mode which lets SimSpark RCSS wait until all agents
have sent their messages (see [3]). Alternatively, all debug messages can be col-
lected by the program ”Logger” of RoboNewbie. After the agent has finished,
the collected messages are printed out. The usage is shown by the programs
” Agent_TestPerceptorInput” and ” Agent_TestLocalFieldView”. Both programs
provide also examples for the usage of the getter methods for perceptors.

6 Evaluations

We have tested the RoboNewbie framework at different places. It was used at
introductory Robotics courses of about 30 hours during 5-8 days at Ohrid, War-
saw, Novi Sad, and Rijeka, respectively. 20 hours were planned for lectures, 10
hours for introduction and first usages of RoboNewbie. Additional 10-20 hours
were used for further experiments by homework.

RoboNewbie served for illustrating experiments and for exercises in connec-
tion with the theoretical instructions. The participants of the courses learned to
use RoboNewbie during short time and they programmed an improved soccer
player at the end. The work with RoboNewbie was helpful to understand the
theory, and the final evaluation of the courses by the participants resulted in
high marks. Especially the competitions with the improved soccer agent at the
end of the courses were motivating.

This was also the case with the participants of a Robotics course at our
university, where the students had more time (two months) for their studies and
exercises. Students used the time to implement more sophisticated methods and
to try out changes of the framework itself (e.g. other interpolation methods for
keyframes). But it also turned out, that efforts for more sophisticated controls
are limited by the available skills, especially for motions.
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7 Conclusion

In contrast to other experiments in Robotics, the RoboNewbie framework can
be used without special hardware. It simply needs a computer for simulation
of the robot soccer scenario, which is more complex than experiments by many
hardware equipments. It is easy to understand and to use after a short introduc-
tion. No special knowledge (except basic programming in Java) is required to
start with own experiments, and while the users acquire more knowledge, they
can work on more challenging tasks.

The ”minimalistic approach” is useful especially for short courses and for
introductions to longer courses. Later on, the disposability of non-minimalistic
more sophisticated methods could be useful for higher level integrative tasks. It
is impossible to let students implement all desirable algorithms in the limited
time of a course. Joint activities of robots, for example, depend heavily on the
available bodily skills and on the capabilities for interaction and coordination.

The practical evaluations have confirmed our expectations on the RoboNew-
bie project. Beginners in Robotics were able to use the framework after short
introductions. They were able to program own methods in parallel to the theo-
retical concepts and methods provided by classes. Participants have attested the
usefulness of own experiences (which again corresponds to our expectations).

Next plans concern the usage of the RoboNewbie framework in Secondary
Schools, and the integration into an e-Learning course on Robotics.

We are thankful to the whole RoboCup community, especially to the develop-
ers of SimSpark RCSS, to the team magmaOffenburg and to our team NaoTeam
Humboldt, and especially to Yuan Xu.
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Abstract. In the article we present the comparison of the information
retrieval approaches focused on a searching of specific concepts in a Nat-
ural Language part of Fire Service reports. The comparison comprise
of searching with use of regular expressions, Latent Semantic Indexing
and pre-defined set of search terms. As a case study we selected three
concepts which may not be explicitly mentioned in reports, have various
meanings (homonymy), or may be replaced by synonyms.
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1 Introduction

The Public Security Services in any country are charged with maintaining public
safety and emergency assistance. In Poland a large part of public security and
safety tasks is the responsibility of the State Fire Service (PSP — from Paristwowa
Straz Pozarna in Polish). As a primary emergency response service the PSP
not only deals with fires, but is also charged with technical rescue (e.g., during
road collisions, building collapses), chemical emergency response (chemical spills,
hazardous material handling), natural disaster response (floods, wildfire, storms
and so on) as well as tasks such as removing beehives or inspecting security
measures in buildings.

Every time a fire fighting team is dispatched a report of activity shall be
created by the commander at the scene. These reports are prepared in a par-
ticular, regulated manner and stored in EWID — a computerized incident data
reporting system (IDRS) built for this purpose. Each of approximately 500 Fire
and Rescue Units (JRG) of the PSP conducts around 3 fire & rescue actions a
day. Since after every action a report is created, the total number of reports in
EWID is currently around six million.

* This work was partially supported by the Polish National Science Centre grants
2011/01/B/ST6/03867 and 2012/05/B/ST6,/03215, and by the Polish National Cen-
tre for Research and Development (NCBiR) - grant O ROB/0010/03/001 under De-
fence and Security Programmes and Projects: “Modern engineering tools for decision
support for commanders of the State Fire Service of Poland during Fire&Rescue op-
erations in buildings”.
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The EWID reporting system is an unparalleled source of information and
knowledge about fire&rescue (F&R) operations. Ability to process and analyze
this data could help in development of new procedures and protocols as well
as aid the optimization of existing ones |1]. The knowledge derived from EWID
may be also very helpful in firefighters’ training process. For example, if we can
retrieve a reference set of descriptions of similar situations from EWID we can
apply techniques based on Conversational Case Based Reasoning (CCBR, see [2])
to decide the course of actions for the new situation. In order to use information
contained in EWID efficiently and effectively we need to be able to search and
summarize reports according to various, possibly changing requirements.

In this paper we focus on one of the particular tasks associated with identi-
fication of EWID records that fulfill certain criteria. This corresponds to iden-
tification (retrieval) of action reports that describe situation involving a pre-
defined elements (concepts) such as “Hymenoptera insects”,“mini-bus” or “car-
bon monoxide”. An important factor in that the concept we look for may not
be explicitly mentioned in the record. As EWID record comprise of numerical
part and Natural Language (NL) description part, we are particularly interested
in finding records related to a preset concept even though they do not have
corresponding numerical indicators set and the description part is not clearly
listing these concepts. We describe a set of techniques that make it possible to
cleanse and filter EWID records, most importantly their description part, in such
a way that the search/identification is efficient. This involves overcoming typical
problems associated with inconsistencies, vagueness and imprecisions that are
commonplace in EWID records. Yet another type of problems that we have to
overcome is associated with the very nature of NL data. Notions (words) we
are looking for may have various meanings (homonymy) or may be replaced by
synonyms.

While it is possible to obtain good results using classical search techniques,
their application to description part of EWID records is not always viable in
practical applications. In a nutshell, they require a person in front of the com-
puter, who is able to resolve inconsistencies (e.g. homonymy), identify meanings
and tune filters. In order to ease some of this manual load and extend search
scope while retaining acceptable quality of retrieved information we propose
to use a combination of language processing and data analysis tools. In our
approach texts from the description parts of EWID records are converted to dif-
ferent representation with use of a method known as Latent Semantic Analysis
(LSA). Then, a clustering technique is used to find groups of semantically similar
concepts. This grouping is then a basis for constructing search and retrieval algo-
rithm. The quality of retrieved result is compared with straightforward manual
filtering by means of standard measures from the field of Information Retrieval
(IR - see [3]) such as recall, precision, and F—measureﬂ

3 http://en.wikipedia.org/wiki/F1_score
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In the paper we first introduce the data we work with (Section , then we
describe the methodology behind our approach (Section . The application of
the proposed method and results obtained this way are presented in the Section
[ We finish with discussion of results and conclusions in Section

2 Description of Data

Our data set consists of 291 683 F&R reports extracted from the EWID system.
They contain information about incidents to which PSP responded in the period
between 1992 and 2011. The data is limited to incidents that happened in the
City of Warsaw and its surroundings. Out of 291,683 cases in this dataset 136,856
reports represent fires, 123,139 local threats, and 31,688 false alarms.

As already mentioned, each report consists of a numerical attribute section
and a natural language description part. The attribute section consists of 506
attributes describing various types of incidents. However, depending on the cat-
egory of incident, the number of attributes that are actually present (have a
non-zero value) varies from 120 to 180 per report. Most of the numerical at-
tributes are boolean (True/False), but there are also some numerical values like
fire area or amount of water used to extinguish the fire.

EWID

ATTRIBUTE SECTION DESCRIPTIVE SECTION

Rescue action description

Number of firefighting jets
After arriving at the fire scene the
undergrowth fire was observed. Two
firefighting jets ware applied and suction
line from the nearby lake was created.
After putting out the fire, appliance crew
came back to fire station

Fire size
Osmall  ® medium O large

For forest fires

O subsurface
undergrowth
Osingle tree
Ostand of trees

Fig. 1. Representation of a report in EWID database.

The natural language description (NL) part is an extension of the attribute
part. It was designed to store information which cannot be represented in the
form of a predefined set of attributes. Unfortunately, there are neither clear reg-
ulations what should be written in the description part nor any strict guidelines
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regarding the format of this part. Therefore, in this part a full spectrum of infor-
mation can be found. Some descriptions contain detailed information including
the precise timeline of events while others are very brief and general. On average,
the NL part contains approximately three sentences that describe the situation
at the fire ground, actions taken, and weather conditions. Figure [I] depicts the
idea of a report representation in EWID database.

In terms of factual aspects the data stored in the EWID contains information
about persons, objects involved in the incident, and methods used to eliminate
threats that have arisen.

For the purpose of this study we decided to concentrate on three types of
incidents that are of some importance to overall management of Fire Service.
These are:

1. Incidents where carbon monoxide was present. This mostly concerns fires
in residential buildings as carbon monoxide poisoning is one of the major
threats in such incidents and the cause of major part of fatalities.

2. Incidents with insects of the Hymenoptera order such as honeybees, hornets,
bumblebees, wasps. These incidents fall into the local threats category. Even
though they are rarely a major problem, these incidents require relatively
high amount of manpower and involvement of specialized equipment.

3. Road collisions involving mini-buses. This category of road accidents is some-
what special. A mini-bus in the Polish terminology is a vehicle that is reg-
istered to carry between 7 and 12 persons. Such vehicle can be driven by a
person with a regular (non-professional) driving permit. In the recent years
the accidents involving mini-buses became a major issue in Poland. From se-
curity services’ point of view they are important, as they may involve many
more casualties that “regular” road collisions, and hence require much larger
resources to respond to.

In order to perform our experiments we selected from the original data set
a sample of 4135 reports. The records in our subset consist only of NL descrip-
tion part. We extracted this subset using a two-fold procedure. First, using the
attribute part we selected the reports which we suspected to contain the kinds
of incidents that are of interest to us. Then, using a greedy algorithm based on
searching for regular expressions in NL part, we narrowed down the number of
previously selected reports to 2135. In the second step, we selected at random
a sample of 2000 reports, regardless of their kind as a reference sample. Then,
we merged this two subsets into one data set for experiments with 4 135 reports
in it.

We are fully aware that our data subset may not be sufficiently representative
as part of it was not properly, randomly sampled. However, the fully random
sample contains too few interesting reports. Therefore, we opted for a compro-
mise combining the fully random sample with the preselected bunch of reports.

The next phase of data preparation involved inspecting (reading) the selected
reports one by one and labeling them manually. This step is tantamount to in-
jection of the expert knowledge into the system. We assigned the report to a



Searching for Concepts in Natural Language Part of Fire Service Reports 43

category (carbon monoxide, hymenoptera, mini-bus) if it contains the informa-
tion about a corresponding type of incident. Our final, partly labeled data set
contains 82 reports with carbon monoxide intoxication, 167 with road accidents
involving mini-buses, and 1557 incidents with Hymenoptera.

3 Methods

Our methodology involves four approaches. In the first approach we adopt a tra-
ditional search with use of regular expressions. The user inserts a term or terms
which express his information need. He/she defines it using exact or fuzzy search
with wild-cards. For example, while searching for reports which describe inci-
dents with carbon monozxide intozication the query can be defined as: ”*carbon
monoxide®” or ”\s CO \s”, where CO is a chemical symbol for carbon monoxide.

In the second approach the experts define a set of concepts which are re-
lated to the defined problem. We transformed these concepts into set of lexemes,
i.e., search terms. For example, the problem of finding the reports with carbon
monoxide intoxication was defined by the following set of terms: carbon monoz-
ide, CO, oxide, afterdump, choke-dump, asphyziate, intozication.

In the third approach we we transformed the reports to Latent Semantic
Space and performed search using the cosine similarity measure between the
query and each of the reports. The fourth approach was similar to the third, but
the transformation to LSA was extended by clustering. LSA representations of
reports were clustered in order to identify groups of similar incidents.

All the approaches were compared using standard information retrieval mea-
sures (recall, precision, and F-measure). In the following subsections we provide
some details of our approaches, except for the first one, as it is quite common
and simple.

3.1 Search with a set of predefined terms

For all three classes of EWID reports (carbon monoxide, Hymenoptera and mini-
buses) we asked domain experts (firefighters) to define the concepts which are
related to these problems. They have created a list of concepts which, in their
opinion, can express the problem, are associated with it, or occur very often
at the emergency scene while responding the particular type of incident. Then,
we transformed these concepts into a set of terms. Namely, for the problem
of searching carbon monoxide intoxication we defined the following set: carbon
monoxide, co, oxide, afterdump, choke-dump, asphyziate, intoxicate. The infor-
mation need for Hymenoptera-related incidents was defined by the set of terms:
wasp, bee, hornet, bumblebee, insect, cocoon, swarm, ergotizm, gastight cloth-
ing. The terms corresponding to road accidents with mini-buses were: mini-bus,
dostawczy (Polish-specific word), courier.

As Polish is a fusional language we had to deal with problems posed by
inflexion of words. To do that we lemmatized the words in reports from our data
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set, creating the non-inflexed form. The lemmatizations were performed with use
of the Morfologik software [4].

For each of three incident types we ran a query against the data set using all
the terms associated with the given type. The terms were combined in the query
using OR operator. The experimental results with this approach are presented
in Sections [ and [l

3.2 Search using LSA space representation

This approach is based on the transformation of the reports using Latent Se-
mantic Analysis (LSA) [5,/6]. The basic idea of LSA is to create the concepts
for the given text corpus and then assign each single word from a document
(report) to a corresponding concept. The result is that reports can be expressed
in Latent Semantic Space as vectors of corresponding concepts’ weights. The
advantages of LSA representation are that it is considerably more compact than
original one and makes it possible to find indirect similarities between reports
or between reports and queries.

The reports were lemmatized and transformed into LSA space with use of
the R system’s 7] library lsa. As a result of the transformation we obtained
three matrices: report — concept matrix (concept in the sense of LSA), term —
concept matrix and eigenvalues matrix. The number of LSA dimensions was es-
tablished experimentally, based on the values of final measures (precision, recall,
F-measure). We found out that the best number of dimensions in this case is 50.

In this approach the search for relevant reports was performed as follows.
First, the query (e.g. carbon monoxide) was converted to vector (bag-of-words)
form and multiplied by the term-concept matrix in order to obtain its LSA repre-
sentation. Then, using the cosine similarity measure we find in the report-concept
matrix the reports which are similar, as vectors, to the query. The threshold for
similarity (cosine between query and report vectors) was established experimen-
tally at 0.7.

3.3 Search using LSA representation and clustering

We have found the results obtained through the usage of the LSA with default
settings to be unsatisfactory. In order to improve the results we resorted to cluster
analysis. The reports were transformed to LSA representation (report-concept
matrix) and then clustered with using the Partitioning Around Medoids (PAM)
algorithm [8]. In order to obtain the number of cluster in PAM clustering, we
used the silhouette index [9] as a primary measure, complemented with our final
performance measures (recall, precision, F-measure). After several repetitions of
experiments we have established the desired number of clusters to be 10.

In order to assess the performance of the approach was proceeded as follows.
First, we inserted the terms which define our information need, for example
“mini-bus”. Then, we obtained the names of the clusters which contain such a
term. Next, reviewing the reports in these clusters we retained only the clusters



Searching for Concepts in Natural Language Part of Fire Service Reports 45

in which the concept (mini-bus) appear in the desired context. In the mini-
bus example the desired context would be “road accident with mini-bus”. This
allows us to eliminate clusters that contain the concept of mini-bus which is
not taking part in a road accidents. For example, mini-buses that were burned
in parking fire. The similar situation was in the case of carbon monoxide. The
clustering helped us in finding the ”CQO” in the proper context. With carbon
monoxide searched as “CO” the situation is tricky because of homonymy. The
abbreviation ”CO” (uppercaseED in Polish is commonly used denote a concept
of ”central heating” (Centralne Ogrzewanie).

4 Results

In Table [1] we show a summary of results obtained from experiments. For each
of the methods we calculated the values of three measures: recall precision, and
F-measure. The measures were calculated with use of manually labeled reports
as the reference.

Table 1. Comparison of search methods.

Method Measure |Carbon monoxide|Mini-buses|Hymenoptera
recall 0.451 0.898 0.402
Regular expressions | precision 0.069 0.877 0.987
F-measure 0.120 0.888 0.571
recall 0.671 0.892 0.990
Set of terms precision 0.671 0.914 0.981
F-measure 0.671 0.903 0.985
recall 0.021 0.347 0.014
LSA precision 0.011 0.397 0.016
F-measure 0.012 0.371 0.019
recall 0.768 0.928 0.974
LSA with clustering| precision 0.173 0.330 0.557
F-measure 0.282 0.487 0.709

According to Table [I] the best results were achieved by the approach which
used predefined search terms. For each of the classes it obtained the best value
of F-measure. Reasonably good results were obtained using the representation
of reports in LSA space coupled with clustering.

4 The situation is even more complicated with a lowercase word “co”. It is a common
stop word in Polish roughly equivalent — depending of context — to English “what”
or “which/that”.
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5 Discussion and Conclusions

Even though the traditional, term-based search in EWID records returns rea-
sonable results, it is not prefect. In order to get the desired outcome the user of
the system must possess some (expert) knowledge of topics from F&R and asso-
ciated domains. For example, obtaining satisfactory result of search for incidents
that involved Hymenoptera requires setting of several filter conditions. Estab-
lishing such filtering conditions may be complicated and inconvenient. Similar
complications were also symptomatic for other types of searches.

The problems posed by existence of synonyms, homonyms and various ele-
ments of specialized jargon had to be overcame. The first attempt was based
on analysis of hidden semantic groups derived with use of LSA. T'wo separate
experiments were made. These experiments differ by the operations that were
used to transform the (matrix) LSA representation. First of these attempts was
made using the cosine measure. It measures the angle between the vectors in
LSA representation. In this particular case we were interested in measuring the
angle between vectors that represent the query and the documents (EWID de-
scriptions). During the experimental evaluation we have determined that this
method is inefficient. For most types of queries finding the proper threshold for
the value of cosine was problematic. This threshold is used to decide whether a
document answers the query or not. Only in the case of querying for incidents
involving mini-bus the results were reasonable. In this case we have obtained
value of F-measure at 0.37, but the value of precision was merely 0.35. Moreover,
the retrieved set of records contained quite high number of incidents involving
insects. This may be a result of the two categories (mini-bus-related and insect-
related) being identified as semantically close. This semantical closeness is most
likely a result of existence of several reports involving both kinds of incidents.

As the results obtained with simple cosine approach were far from satisfactory
we had to look for improvements by changing the way the LSA representation
was used. In the next attempt we divided the corpus of texts into a pre-set
number of clusters. After several experiments we have determined that the best
number of clusters in this case is ten. Each cluster was meant to contain reports
that share similar context. It was indeed possible to perform clustering in such a
way that the clusters were semantically consistent. The best cluster was associ-
ated with incidents involving mini-buses and contained 93% of relevant reports.
This was, in fact, the best single result we have obtained with any of the meth-
ods used. Unfortunately, results obtained with use of this cluster were inferior
to manual retrieval attempts since the precision value for this record is only
0.33. This means that a large number of incidents involving types vehicles other
than mini-bus was also present in this cluster. The clustering helped to increase
the quality of searches involving Hymenoptera. In this case, union of four most
prominent clusters contained 97% of all relevant incident reports. The problem
with relatively low precision of this approach still remains. For Hymenoptera
queries the clusters provided precision at the level of 0.56, which yields the value
of F-measure at 0.709. To put this in context, the manual filtering on lemmatized
corpus had value of F-measure at 0.985. Clustering approach provided also some
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results for queries involving carbon monoxide. One of clusters that were found for
this case had the recall 0.768, which is the highest value that we have achieved
in all of our experiments. Nevertheless, this cluster is still only marginally useful,
as it has very low precision, resulting in value of F-measure that is only 0.282.

To sum up, the best overall results w.r.t. precision, recall, and F-measure were
obtained using the semi-manual retrieval with pre-defined set of search terms.
This can be further improved by lemmatization which, combined with removal
of additional stop words (using Morfologik library), significantly reduces data
size and hence the computational effort. The downside of this approach is the
necessity of defining and manually entering several search terms. Experiments
show that entering search terms one-by-one is ineffective. The have to be several
of them in the filter so that they cover a broad range of possible combinations
that may occur in incident descriptions. This requires the user to have a good
overview of the data corpus and some domain knowledge about incidents stored
in EWID.

The problem with requirements for extended users’ expertise can be to some
reasonable extent — as our initial experiments show — addressed with use of
LSA. Conversion of EWID description to LSA representation makes it possible
to group (cluster) similar reports. In order to make the demonstrated approach
usable we would have to prepare tools that allow user to navigate through the
cluster in an intuitive and efficient manner. In particular, the user can be pre-
sented with clusters that are represented by a selection of frequent and relevant
terms that occur in descriptions that belong to such clusters. Yet another pos-
sible extension of our approach could make use of hierarchical clustering. Last,
but not the least, we are considering building a search engine that would make it
possible for user to perform a faceted search (see [10]) for relevant reports with
use of clustering. Facets such as the number and relevance of search terms in aa
given cluster may be then used to discriminate between the valuable information
and noise.
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Abstract. SOS rule formats are sets of syntactical constraints over SOS
transition rules ensuring semantical properties of the derived LTS. Given
a rule format, our proposal is to try to relax the constraints imposed by
the format on each single transition rule at the price of introducing some
reasonable constraint on the form of the whole set of rules, obtaining
a new format ensuring the same semantical property and being less de-
manding than the original one. We demonstrate that this can be done by
applying such an idea to a well established rule format ensuring the prop-
erty of congruence for the rooted branching bisimulation equivalence.

1 Introduction

Structural operational semantics [1] (SOS) is a standard framework to provide
process description languages with a semantics. The abstract syntax of a lan-
guage is given through a signature, namely a set of operators together with their
arity. The semantics is given through a labeled transition system (LTS), namely
a set of states that represent processes and that are terms over the signature,
together with a set of transitions between states describing computational steps.
An LTS is defined by means of a transition system specification (TSS), namely a
set of transition rules of the form %, which, intuitively, permit to derive
transitions between processes from transitions between other processes.

To abstract away from information carried by an LTS that may be considered
irrelevant in a given application context, several notions of behavioral equivalence
were defined (see [2,3]). Some of these equivalences, like weak bisimulation [4]
and branching bisimulation [5], equate LTS states that incorporate so called
silent steps representing internal moves by processes that are not observable by
the external environment, and are referred to as weak equivalences. To ensure
compositional modelling and verification, it is crucial that a given behavioral
equivalence be a congruence w.r.t. all operators of the signature.

Since [6] a transition rule format is a set of syntactical constraints on the rules
of the TSS, aiming to ensure a given property of the LTS. Several rule formats
were developed to ensure the property of congruence for a given behavioral
equivalence (see [7] for a survey). The original formats for weak equivalences
were proposed in [8]. At present, the standard formats are those in [9-11].

Sometimes the syntactical constraints imposed by the formats on the premises
of the transition rules are quite strict. For instance, the rule formats in [9-11]
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prohibit the features of lookahead, namely the ability to test for two consecutive
moves by a process, and double testing for running processes, namely the ability
to test for two different moves by a process. Our idea is that in some cases it
is worth to relax the constraints on the single rules, at the price of introducing
some constraints on the form of the whole set of transition rules in the TSS, pro-
vided these are not too heavy. To demonstrate how this can be done, we consider
the format of [9] for rooted branching bisimulation, we relax the constraints of
this format by admitting both lookahead and double testing, and we add the
reasonable constraint that lookahead and double testing come together with the
ability of testing for an arbitrary number of silent steps, which means introduc-
ing a constraint on the set of rules of the TSS since a single rule is required for
each number of silent steps. A natural extension of our work is to apply the same
strategy to the formats of [10].

The paper is organized as follows: in Section 2, we recall some base notions
on SOS, in Section 3 we recall the format of [9], in Section 4 we present our
congruence format for rooted branching bisimulation and we end with some
conclusions and discussion of related work in Section 5.

2 Preliminaries

In this section we recall some definitions that are standard in the SOS framework.

As usual, we assume that the abstract syntax of a process description lan-
guage is given by a signature, namely a structure X = (F,r), where (i) F is
a set of function names, also called language operators, and (ii) r : F — N is
a rank function, which gives the arity of a function name. An operator f € F
is called a constant if r(f) = 0. We also assume a set of (process) variables
V disjoint from F, and let z,y, 2z range over V. Let W C V be a set of vari-
ables. The set of Y-terms over W, notation T'(X, W), is the least set satisfy-
ing: (i) W C T(X,W), and (ii) if f € F and t1,--- ,t,p) € T(X, W), then
[, s tpy) € T(Z,W). T(X,0) is the set of all closed terms, also called pro-
cesses, and abbreviated as T(X). T(X,V) is the set of all open terms and abbre-
viated as T(X). By = we denote the syntactical equality relation between terms.
Finally, Var(t) C V denotes the set of variables in term ¢, namely Var(x) = {z}
and Var(f(t1, ..., tup)) = U] Var(t:).

In SOS framework, the semantic model is that of LTSs.

Definition 1 (Labeled Transition System). A Labeled Transition System
(LTS) is a triple (T(X), A,—), where i) X is a signature; i) A is a countable
set of actions; and 111) — C T(X) x A X T(X) is a transition relation.

Following standard notation, we write ¢t — ¢’ for (t,a,t') € —. This represents
a computation step of kind a taking process t to process t'.

LTSs are built by means of transition systems specifications, namely sets of
transition rules of the form % Here we assume that these rules are in
the ntyft-format [12]. This choice is reasonable since ntyft-format is very general

and for transition system specifications that are complete (see Def. 5 below)
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it guarantees that bisimilarity equivalence relation is a congruence w.r.t. all
operators in F'.

Definition 2 (ntyft-rule, [12]). A ntyft-rule is of the form

{t; Dy ljedt {te 24| ke K}
f(.fL'l,...7.'L‘r(f)) St

with J, K at most countable sets of indexes, t;,ty,t € T(X), aj,br,a € A, y; €V,
fEF, z1,....;xp €V, such that:

— the x1,..., 2.5 and the y; for j € J are all distinct variables.

The expressions t; AN y; (resp. tx %) above the line are called positive (resp.
negative) premises. Given a rule p, we denote the set of positive (resp. negative)
premises by pprem(p) (resp. nprem(p)), and the set of all premises by prem(p) =
pprem(p) U nprem(p). The expression f(z1,...,,(s)) — t below the line is
called conclusion, notation conc(p), where f(x1, ..., y)) is called the source of
p, notation src(p), the z; are the source variables denoted by x; € src(p), and
term ¢ is the target of p, notation trgt(p). We denote the set of variables in p by
Var(p), free variables by free(p) = Var(p) \ ({z1,..., s} U{y; | j € J}), and
bound variables by bound(p) = Var(p) \ free(p).

Definition 3 (ntyft-TSS, [12]). A ntyft-transition system specification, ntyft-
TSS for short, is a set of ntyft-rules.

Assigning an LTS to a T'SS having rules with negative premises is not trivial.
See [7] for a deep discussion. Let us describe the approach we adopt here, namely
that of least three-valued stable model, introduced in [13] in logic programming.

An expression t — t' (resp. t —4) is called a positive (resp. negative) literal
where ¢, € T(X) and a € A. So, premises and conclusions in rules are literals.

A substitution is a mapping oy : V — T(X). A substitution is closed if it
maps each variable to a closed term in 7(X). A substitution extends to terms

by ov(f(t, ... tp)) = flov(t1),...,ov(tys))), to literals by oy (t = t/) =
op(t) % op(t') and oy (t 7%) = oyp(t) Y% and to ntyftrules by av(p) =

7 Eprem(p) ov(m)
oy (conc(p))
ntyft-rule. We denote with % a closed ntyft-rule, and with % a closed ntyft-rule

having only negative premises (i.e. all elements in N are negative literals).

Given a set of closed positive literals P, a collection of closed negative literals

N holds for P, denoted P |= N, iff for each ¢ 7bé € N we have that t 2 ¢/ g P
for any t' € T(X).

. A closed substitution instance of a ntyft-rule is called a closed

Definition 4 (Proof of a closed transition rule). 4 proof from a TSS T of

a closed transition rule % 18 an upwardly branching tree in which all upwardly

paths are finite, and the nodes are labeled by closed literals such that:
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— the root is labeled by m;

— if K is the set of the labels of the nodes directly above a node labeled I, then:
o cither K=0 andl € H;
e or % is a closed substitution instance of a transition rule in T.

Given a TSS T, we consider a partitioning of the collection of positive literals
to three disjoint sets: i) the set C of positive literals that are certainly true; ii) the
set U of positive literals for which it is unknown whether or not they are true; and
iii) the set of remaining literals that are false. Such a partitioning, determined
by C and U, constitutes a three-valued stable model, denoted (C, U), for T if:

— a positive transition 7 is in C if and only if T proves a closed transition rule
%, where N contains only negative literals and C U U = N;

— a positive transition 7 is in C'U U if and only if T" proves a closed transition
rule %, where N contains only negative literals and C = N.

Each TSS T allows an (information-)least three-valued stable model (C, U),
in the sense that the set U is maximal. In [14] two-valued stable models were
studied, which are three-valued stable models for which the set of unknown
positive literals is empty.

Definition 5 (Complete TSS, [15]). A TSS is complete if its least three-
valued stable model is a two-valued stable model.

If a TSS is complete, then it allows only one three-valued stable model, which
is taken as the LTS built from the TSS. Only complete T'SSs are considered to
be meaningful. Notice that a TSS that does not contain transition rules with
negative premises is complete for sure.

3 Rooted Branching Bisimulation as a Congruence

Behavioral equivalence relations over processes are usually defined to abstract
away information provided by an LTS which is not considered to be relevant
for a given application context. Here we consider branching bisimulation, one of
those that identify LTS states that incorporate so called silent steps.

In the following we assume that A contains the special silent action 7. The
reflexive and transitive closure of relation — is denoted with —. Finally, let us
introduce notation t —,, ' for n € N: we have t —»o t' if t =t/ and t 5,1 t/
if t = ¢” and t” =, ¢/ for some ¢ € T(X). Hence, == J,,cy —n-

Definition 6 (Branching bisimulation, [5]). Take a three-valued stable model
(C, U). A symmetric relation B over T(X) is a branching bisimulation with re-
spect to C'if whenever s Bt and s — s' € C' we have:

— eithera =1 and s’ B t;
—ort St t" 5t € O fort' t" € T(X) such that s Bt" and s' Bt'.
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We call s and t branching bisimilar if there exists a branching bisimulation
relation B such that s B¢. The union of all branching bisimulations over T (X) is
the greatest branching bisimulation over 7(X), it is called branching bisimilarity
and it is denoted with €, . Branching bisimilarity is an equivalence relation [16].

A crucial property of process description languages to ensure compositional
modelling and verification is the compatibility of process operators with the
behavioral relation chosen for the application context. In algebraic terms the
compatibility of a behavioral equivalence R with operator f € F' is a congruence.

Definition 7 (Congruence). An equivalence relation R over T(X) is a con-
gruence if for all f € F, f(s1,...,8¢p) Rf(t1,...,tiy)) whenever s; Rt; for
i=1,...,r(f).

Branching bisimulation is not a congruence for the nondeterministic choice

operator + defined by rules TITIYL gpd B2 , which is offered by most
T1+T2—>Y1 T1+T2 Y2

of process description languages in the literature. To remedy to this problem the
rootedness condition is usually assumed.

Definition 8 (Rooted branching bisimulation). Take a three-valued stable
model (C, U). A symmetric relation R over T (X) is a rooted branching bisim-
ulation with respect to C' if whenever s Rt and s = s’ € C we havet “>t' € C
for t' such that ' Syt

We call s and t rooted branching bisimilar if there exists a rooted branching
bisimulation relation R such that s R t. The union of all rooted branching bisim-
ulations over T (X)) is the greatest rooted branching bisimulation over 7 (X)), it is
called rooted branching bisimilarity and it is denoted with <,;. Rooted branch-
ing bisimilarity is clearly an equivalence relation.

In the following we recall the rule format RBB-safe [9], which ensures that
rooted branching bisimulation is a congruence for all operators in the TSS.

A patience rule for the i-th argument of a function symbol f € F' is a niyft-
rule of the form

-

f(l'lwuvxr(f)) - f(xlvuwxz’flayiyxiJrlv~~’71'r(f))

Following [9], we assume that each argument of each function symbol f € F
is labeled either tame or wild. A context, denoted with C[], is an open term in
T(X) with one occurrence of the context symbol [].

Definition 9 (w-nested context, [9]). The collection of w-nested contexts is
defined inductively by:

— [] is w-nested;
— if C[] is w-nested, and argument i of function symbol f is wild, then also
J(tr, oo tion, Cl] tign, - tegyy) s w-nested.
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Definition 10 (RBB safe TSS, [9]). A T'SS T is called RBB safe, with respect
to a tame/wild labeling of arguments of function symbols in F, if each of its
transition rules is

1. either a patience rule for a wild argument of a function symbol,
2. or a ntyft-rule p with source f(x1,...,%.s)) and right-hand sides of positive
premises {y; | j € J}, such that the following requirements are fulfilled:
(a) Variables y; for j € J do not occur in left-hand sides of premises of p;
(b) If argument i of f is wild and does not have a patience rule in T, then
x; does not occur in left-hand sides of premises of p;
(¢) If argument i of f is wild and has a patience rule in T, then x; occurs in
the left-hand side of no more than one premise of p, where this premise
1. 1S posilive,
ii. does not contain the relation —s, and
1. has left-hand side x;;
(d) Variables y; for j € J and variables x; for i a wild argument of f may
only occur at w-nested positions in the target of p.

Theorem 1 (Rooted branching bisimulation as a congruence, [9]). If a
complete TSS is RBB safe, then the rooted branching bisimulation equivalence
that it induces is a congruence.

In [9] several counter-examples are given to show that the syntactic con-
straints of Def. 10 cannot be relaxed in any trivial way. Our aim is to show
that the constraints that prohibit lookahead (constraint 2a) and double testing
for wild arguments of operators (constraint 2c¢) on the single rules of the TSS
can be relaxed, provided that suitable and reasonable (i.e non too-demanding)
constraints on the whole set of rules of the TSS are introduced. In the following
we assume a T'SS T containing the CCS-like sequencing operator - defined by
the rules — for a € A, the CCS-like nondeterministic choice operator +

recalled agoi/;)ghe idle process 0 and the unary operators f1, fo defined below.

Constraint 2a in Def. 10 prohibits lookahead, namely the ability of testing
for two (or more) subsequent moves by a source argument. An example of rule
violating this constraint is the following rule pys, for operator fi:

a b
T1 — Y1 Y1 — Y2
fl(xl) i) 0

Let us consider processes s = a-b-0 and t = a-7-b-0. We have s &, t. However,
we have f;(s) 2 0 while f1(t) 4. Thus fi(s)% s fi(t). In this example the role
of the silent action 7 in the definition of ¢ is crucial. On one side, the capability
of performing 7 is not discriminating in the evaluation of branching bisimulation
equivalence of processes (see Def. 6). Hence, processes b-0 and 7 - b - 0, which
are reached through action a by s and ¢, respectively, are branching bisimilar,
thus implying that s €, t. On the other hand, action 7 becomes relevant when
we focus on exact process evolution sequences. While process s can immediately
perform b after a, process t cannot, namely after performing a it has to do the
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action 7 to reach a state in which it is able to perform b, and these two different
evolutions are discriminated by the premises of pg,. Our proposal is to permit
testing for an a move followed by a b move, provided that this comes together
with the testing for an arbitrary number of 7-moves between these two moves
labeled a and b. This means admitting the following set of rules in the TSS,
provided we introduce the constraint that the T'SS contains all of them:

b
171i>y1 yl‘e’>n92 y2‘+1/3‘neN
fi(z1) = s

Let 7™ denote the sequence 7 -...-7 of n actions 7, and s, = a-7"-b-0 (notice
s = 5o and t = 51). We have that fi(s,) — 0 for all n € N, thus implying that
f1(8m) € b f1(8n) for all m,n € N.

Constraint 2¢ in Def. 10 prohibits double testing, namely the ability of testing
for two (or more) moves by a source argument, for arguments labeled as wild.
An example of rule violating this constraint is the second of the rules below:

b
$1i>y1 ae x11>y1 T1 —> Y2
f2(z1) = faltn) f2(x1) =0

where the argument of fs has to be wild due to constraint 2d of Def. 10 applied
to the first rule. Let us take processes s =a-(a-0+b-0) and t = a -/, with ¢/
defined with the classical recursive construct as ¢’ =a-0+7-(b-0+7-t"). We
have s £, t. However, we have fa(s) - fo(a-0+b-0) - 0 while fo(t) = fa(t')
and neither f(¢') nor any process reachable from f5(¢') through any sequence of
T-moves can make any ¢ move. Thus fa(s)$2 4 f2(t). Here the processes a-0+b-0
and ', which are reached through action a by s and ¢, respectively, are branching
bisimilar. Their difference, sensed by the second rule for fs, is that a-0+5b-0 can
perform both a and b, whereas ¢’ is not able to reach (through any sequence of T
moves) any state in which both a and b are enabled, despite it can reach through
T actions a state where a is enabled and another state where b is enabled. Our
proposal is to permit double testing for moves a and b, provided that these moves
may follow an arbitrary number of 7 steps. This means admitting the following
set of rules in the TSS, provided we add the constraint that the T'SS contains
all of them:

b
T Sm Y1 Y1 Y2 T~ Y3 Us UL e
fg(Il)—c—)O ’

Notice that with these rules we get both fa(a-04b-0) < 0 and fo(t) = 0,
thus implying fa(s) & f2(t).
4 Congruence Format for Rooted Branching Bisimulation

As discussed in the previous section, lookahead and double testing can be admit-
ted in the RBB safe format of [9], provided that sets of rules testing for sequences
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of 7 moves of different length are all introduced in the TSS. Below we introduce
the notion of meta transition rule, which denotes a set of transition rules that
test for the ability of performing sequences of 7 moves of all possible lengths.

Definition 11 (Positive meta premise). A positive meta premise is an ez-
pression of the form
t =2 Y

The meta premise t =>— g represents the set
[t =% 9] = {{timy’ y’i>y}|n€N}

of countable many sets of premises. Intuitively, t =>-%+ y holds if there exists an
n € N and a substitution oy such that oy (t) can reach a state able to perform
the action a through a sequence of n T-actions.

Definition 12 (Meta transition rule). A meta transition rule, notation p,
s of the form

{t, Sy liedy {t2plkeK} (a=—="byllcL)
Far,ap) St

with J, K, L at most countable sets of indexes, tj,ty,t € T(X), aj, by, a;,a € A,
Yi, 2,y €V, f€F, x1,...,2,5) €V, such that:

— the x1,...,%y), the y; for j € J and the y; for I € L are all distinct
variables.

A meta transition rule p like in Def. 12 represents the set [5] of all the transition
rules of the form

{t; Dy ljedt {t 24| keK} {m|leLl}
[l ap) =t

such that u; € [z — u]-
Definition 13 (Meta TSS). A meta TSS is a set of meta transition rules.

The meta TSS T represents the T'SS [T = User[p]. Clearly, [T7] is a ntyft-TSS.
So all definitions of Section 2 directly lift to meta TSSs.

Now, we are able to extend the RBB safe format of [9] with lookahead and
double testing for running processes.

Definition 14 (Meta RBB safe TSS). A meta TSS T is called meta RBB
safe, with respect to a tame/wild labeling of arguments of function symbols in F,
if each of its transition rules is

1. either a patience rule for a wild argument of a function symbol;
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2. or a meta transition Tule p of the form

aj . b ap
{ti Sy ljedt {te 24 lkeK}) {a="Syl|leL}
fl@e, . aqpy) >t

with constraints:

(a) actions ay, forl € L, are in A~ {7}, namely they can not be action T;

() if z; € [Ujeyvar(t;)UUpeg var(te)] fori=1,....r(f), theni is a tame
argument for f;

(¢) noy; forj € J andy, forl € L occurs in [J;c ;var(t;) UUge g var(te)];

(d) variables x; for i wild argument of f, y; for j € J and y; for 1 € L may
occur only at w-nested positions in the target t.

Notice that Def. 14 admits lookahead, since for I € L we may have that z; = y;
for some j € J or z; = yp for some I’ € L. Double testing for a wild argument &
of an operation f € F' is admitted since we may have z; = 2y = x; for [,1' € L.

Let us remark that meta rules have been already used in [10], called GSOS
rules with lookahead, with the purpose of observing a partial form of lookahead,
namely a sequence of 7-moves followed by a non silent move.

Notice that in Def. 14 we do not need the constraint 2b of Def. 10, which
imposes that testing for a move by a wild argument for an operator f requires
that there is a patience rule for it. To explain the reason, let us take the operators

@ b
T — Y1 1 — Y1
(1) = g(y) g(x1) —b—>g(y1)

that do not respect Def. 10 since the patience rule for the argument of g is
missing, and processes a-b-0 and a-7-b-0. We have a-b-02,4a-7-b-0
but f(a-b-0)%2,. f(a-7-b-0) since f(a-b-0) < g(b-0) 20 whereby
fla-1-b-0) % g(t-b-0) 7b'§. Definition 10 requires the patience rule for the
argument of g, so g(7-b-0) — g(b-0) 250 and, therefore, f(a-b-0) <, f(a-7-0-0).
By adopting the meta rules as in Def. 14, we can write

T = (7 T :>‘b+ Y1
f(z1) = g(y) g(z1) 2 g(y1)

and the patience rule for the argument of ¢ is no more needed, since we have
Fla-7-b-0) % g(r-b-0) 2 0 and, thus, f(a-b-0), f(a-7-b-0).

Let us argue that all constraints in Def. 14 cannot be relaxed in any trivial
way. Firstly, let us show why, as in [9], some arguments of functions deserve a
special treatment. These arguments are labeled as wild. The special treatment
consists in constraints 2b and 2d in Def. 14.
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Ezample 1. Let us consider the transition rules

T N Y1 z1 o Y1
flx) =0 g(x1) = fy1)
and processes a.7.a.0 and a.a.0. We have a.7.a.0 €, a.a.0. However, we have
g(a.7.a.0)%2 4 g(a.a.0). In fact, g(a.7.a.0) = f(7.a.0) and g(a.a.0) = f(a.0),
where f(7.a.0)%2, f(a.0) since f(7.a.0) 4 and f(a.0) = 0. The rule for g has
f(y1) as target, where y; occurs in the target of the premise z1 — %;. This
implies that it may happen that when the argument z; of g is instantiated by
two processes p and p’ with p €,,p', we have that the argument y; of f is
instantiated by two a-derivatives, ¢ and ¢’ respectively, such that ¢ £, ¢’ but
q%2 b q¢'. Arguments of operators that may be instantiated with processes related
by €, but not by &, are labeled wild. This is exactly what is required by
constraint 2d in Def. 14. As required by constraint 2b in Def. 14, they cannot
be tested by premises of the form z - y since these premises are able to
discriminate them. |

By next example, we show why meta premises cannot test for 7 moves (con-
straint 2a, Def. 14).

Ezample 2. Let us consider the transition rules
a T
1 — T =—=>—
g(a1) = f(y1) flx) =0

We have a.7.a.0 €, a.a.0. However, g(a.7.a.0)%2 4 g(a.a.0). In fact we have
g(a.7.a.0) = f(r.a.0) = a.0 % 0, whereby g(a.a.0) % f(a.0) 4. |

By next example, we show why in meta premises we cannot have an arbitrary
term in the left side, and we only allow variable z;.

Ezample 3. Let us consider the transition rules

B g(r1) == B
glz1) = n f(x1) S m h(x1) = f(y1)
We have a.a.0 €, a.7.a.0. However, h(a.a.0)%2 4 h(a.7.a.0). In fact we have
h(a.a.0) % f(a.0) = 0, whereby h(a.7.a.0) = f(7.a.0) 4. |

By next example, we show why we cannot allow variables that are targets of
premises or meta premises to be source of classic premises (constraint 2c, Def.
14).

Ezxzample 4. Let us consider the transition rules
Ty DY T =y Y
flx1) = yo g(x1) = yo
We have a.7.a.0 £, a.a.0. However, we have that f(a.7.a.0)%,; f(a.a.0) since

f(a.7.a.0) 24 while f(a.a.0) % 0. Analogously, g(a.7.a.0)% 4 g(a.a.0) since
g(a.7.a.0) 24 while g(a.a.0) = 0. |
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To prove the congruence result, we have to deal with well-founded rules.

Definition 15 (Well-foundedness). Let H be a set of premises and meta
premises. The variable dependency graph of H is a directed graph Gy = (V, E)
given by:

=V =Upey Var(h);
—-E={{z,y) |t S yeHandac Var(t) orz ="y € H}.

We say that H s well-founded if any backward chain of edges in G is finite.
A meta transition rule p is called well-founded if the set of all its premises and
meta premises is well-founded. A meta TSS is called well-founded if all its meta
transition rules are well-founded.

Theorem 2. If a complete and well-founded meta TSS T is meta RBB safe,
then the rooted branching bisimulation equivalence that it induces is a congru-
ence.

5 Conclusions

We considered the format of [9], which ensures the congruence property for
rooted branching bisimulation, we relaxed the constraints on the single rules by
allowing both double testing for wild arguments of operators and lookahead, at
the price of constraining these features to come together the testing for an arbi-
trary number of silent steps. We argued that this means introducing a constraint
on the form of the whole set of rules. Our idea can be naturally extended to the
formats in [10,11].

An example of operator that is captured by our format and that is outside the
formats in [9-11] is the copying operator, originally proposed in [17] for languages
that do not consider silent actions, and defined in [11] by the following rules:

a l r
r1 — Y1 1T — Y1 T1— U
ac A

ep(z1) = ep(y1) cp(x1) = ep(y) || ep(ya)

where [, € A are the left and right forking, respectively, s is the split action,
and || is the parallel composition operator. In [11] this operator is admitted in
the format thanks to the two-tiered approach to SOS proposed in [10,11]. The
idea is to divide function symbols in F' into two classes: principal operators and
abbreviations, where an abbreviation can be obtained by grouping together the
arguments of a principal operator. Proofs are given that abbreviations are syn-
tactic sugar and do not have to obey the syntactic restrictions of a congruence
format, provided they abbreviate principal operators that do so. This is an ad-
vantage since if a given equivalence is a congruence w.r.t. an operator f € F' that
is outside from a congruence format, one can find an operator f* that is consid-
ered to be principal and abbreviated by f and that obeys the constraints of the
format. In [11] an operator for which ¢p is an abbreviation is provided that is
captured by the format. Here we do not need to search for such an abbreviation
since cp is already in the format.
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Abstract. In this paper, we present a rewriting based monitoring algo-
rithm for time propositional temporal logic (TPTL), which is a classic
time extension of linear temporal logic (LTL). TPTL has been shown to
be more expressive than other real-time extensions of LTL, e.g., metric
temporal logic (MTL). We first describe the syntax and semantics of
TPTL on finite time-traces. Using Maude, which is an executable envi-
ronment for various logics, we give rewriting clauses to check whether a
finite time-trace satisfies a TPTL formula. We use our algorithm to test
a concrete example from the European Train Control System (ETCS),
and evaluate it on several benchmarks. The results show the feasibility
of our approach.

1 Introduction

Runtime verification is proposed for checking whether a run of a system satisfies
or violates a given correctness property [1]. It is seen as a lightweight verification
technique when compared to model checking and testing. Runtime verification
is able to avoid the following problems of model checking: i) when checking a
high complexity system, model checking could suffer from the so-called state
explosion problem; i) when checking a black-box system, a model of the system
may not be available for model checking; ii7) the object of model checking is a
model of the system, not the system itself.

Runtime verification is performed by using a monitor. This is a device or
a piece of software that reads a behavior of the system under monitoring and
gives a certain verdict (¢rue or false) as the result. A behavior of the system is
presented by its trace, which is an observable execution sequence of the system.
Unlike model checking, runtime verification does not check all executions of
the underlying system, but a finite trace. Hence it does not suffer from the
state explosion problem when dealing with a large system. Furthermore, runtime
verification does not need a model of the system. Therefore, it is well suited to
check black-box systems. Finally, the checking object of runtime verification is
the system itself. Thus, the possibility of introducing additional errors in the
modeling is excluded.

* This work was supported by the State Key Laboratory of Rail Traffic Control and
Safety (Contract No.: RCS2012K001), Beijing Jiaotong University
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One of the most interesting problems in runtime verification is how to build
a monitor from a high level specification. Havelund et al. [2] propose a formula
rewriting based runtime verification approach, constituting part of a project
named Java PathExplorer (JPAX). Their work aims at monitoring Java pro-
grams and has been used in Mars Exploration Rover missions. Feng et al. [3]
propose an MOP framework for software development and analysis, in which
the satisfaction/violation of properties can be detected by executing the code.
Barringer et al. [4] propose a rule-based system for trace analysis RuleR. They
also propose the LOGSCOPE system, which is an extension of RuleR with a
simple, user-friendly temporal logic. d’Amorim et al. present a modified Biichi
automata, which is used for monitoring a system [5].

For checking time-relevant properties, real-time logics have been introduced
into runtime verification. Bauer et al. [6] work on TLTL based runtime verifica-
tion for monitoring real-time properties. They define TLTL by introducing two
operators (>, € I) and (<, € I) with a being an event, and I being a time in-
terval. They build a monitor for a TLTL property, and use event-clock automata
to detect whether a trace is accepted or rejected.

Metric temporal logic (MTL) [7] is a well studied real-time logic. It is obtained
by extending standard LTL with a time bounded temporal operator U[,, 1), where
a, b are natural numbers. Several MTL based monitoring approaches have been
proposed. Thati et al. [8] propose a formula rewriting based monitoring algo-
rithm for MTL. Nickovic et al. propose monitoring algorithms for a restricted
version of MTL, named MITL. Basin et al. [9] propose a monitoring algorithm
for metric first-order logic. Their approach can cope with variables ranging over
infinite domains. They also develop algorithms for MTL with discrete events and
continuous states [10].

Alur et al. [11] propose a “more temporal” real-time logic, named time propo-
sitional temporal logic (TPTL). It is obtained from LTL by introducing a freeze
quantifier “z.”. A TPTL formula can “reset” a formula clock at some point by as-
signing variables in the formula to the time value when the formula is evaluated.
The expressiveness of TPTL and MTL is studied in [12, 13]. It has been proven
that TPTL is strictly more expressive than MTL. Although the verification and
model checking problem for TPTL has been studied intensely, the number of
TPTL based runtime verification approaches is quite limited. One example is
Kristoffersen et al. [14], who give a monitoring algorithm for LTL;, which also
extends LTL by a freeze quantifier. The difference between TPTL and LTL; is
that the latter needs an extra clock variable r for expressing time.

In this paper, we propose a formula rewriting based runtime verification
approach for TPTL. The monitor consists of a TPTL formula and a formula
rewriting algorithm, where the formula is generated from a high level specifica-
tion. The monitor receives a time-trace, which is generated from the underlying
system. It detects failures through checking whether this time-trace violates the
formula. The process is shown in Fig. 1. Our algorithm is developed directly
based on the syntax and semantics of TPTL.
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Specification

Execution of

o
@ System (time-trace)

|

Monitor
TPTL | (Rewriting -./’ Satisfaction/
. e —» . .
Formula 7| Algorithm for ! Violation
TPTL)

Fig. 1. The runtime verification process

Our algorithm is based on Maude [15], which is a high performance system for
model checking, theorem proving, and programming. It can be used for runtime
verification implementation. We use the Maude rewriting logic, in the style of
the LTL rewriting program proposed by Havelund [16]. Additionally, we present
a case study of a concrete example in the railway domain. We translate several
properties contained in the specifications of a signaling system to TPTL formu-
lae, and abstract some executions of the system to time-traces. Then we monitor
these time-traces in Maude. The results show that our approach is feasible for
monitoring time-traces.

The rest part of the paper is organized as follows. Section 2 introduces the
definition of TPTL, including the syntax and semantics. Section 3 presents the
Maude-based program for TPTL based monitor. Section 4 shows a case study
with a concrete example from the railway domain. Section 5 contains the con-
clusion and future work.

2 Preliminaries

2.1 Time-events and Time-traces
Given a (finite) set of atomic propositions AP and a (finite) alphabet X = 247
an event is defined as any single element of X, i.e. e = {p1, ---, pm} with py,
-+, pm € AP. If e is a singleton, we omit the curly brackets in the denotation.
If we denote the set of natural numbers by N>q and ¢ € N>, then a time-event
is defined as a pair te = (e, t) from the set X' x N>¢. The natural number ¢
in a time-event te is a discrete time stamp, to identify the time of the event
emitted by a running real-time system. Given a time-event te = (e, t), we define
Event(te) £ e and Time(te) £ t. A time-trace is defined as a (possibly infinite)
sequence of time-events, i. e. tt = (te [0], te [1], - - -, te [n]), where for each i < n
with ¢ € N>, it holds that Time (te [i]) < Time (te [i+1]) (strict monotonicity).
The length of ¢t is denoted by [tt|.
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2.2 Syntax and Semantics of TPTL

LTL is a widely-accepted logic for specifying properties of infinite traces. TPTL is
an extension of LTL to express real-time properties. It contains a freeze quantifier
“a.”, which assigns the time value when the formula is evaluated to the variable
x. A TPTL formula z. ¢(z) is satisfied by a time-trace ¢t iff p(time(tt[0])) is
satisfied by tt. For instance, a TPTL formula

(O 2. (Request — O y. (Ack Ay < 5+ x)))

expresses the property “whenever an event Request occurs, then the acknowledg-
ment event Ack must occur within 5 time units”. This formula is satisfied, e.g.,
by the time-trace (- - -, (Request, 7), ---, (Ack, 11), - --), since 11 < 5 + 7. More
precisely, TPTL is defined as follows.

Definition 1. (Syntax for TPTL) Given the finite set AP of atomic propo-
sitions and a set V of free variables, the terms w and formulae ¢ of TPTL are
inductively formed according to the following grammar, where x € V, r € N>,
p € AP and ~ € {<, <, =, >, >}:

Tu=z+ 7|

pu=Llp|(pr—=p2)] (prUps)|m~m|a

The following shorthands are used in TPTL as in LTL: ¢ ¢ stands for T U ¢,
O ¢ stands for =¢ —p, and O ¢ stands for L U .

Assume that £ is a function £: V' — Ny for assigning free variables in N>
(time value) such that £(z + r) = £(z) + r and £(r) = r. Given a variable z and
a natural number r, we denote [z := r| for the evaluation £’ such that £'(z) =
r, and &'(y) = E(y) for all y € V\{z}. In runtime verification, the time-traces
to be checked are finite. Hence, we give TPTL finite semantics as follows.

Definition 2. (Semantics for TPTL) Let tt be a finite trace with i € N>
being a position, p a proposition, and ¢1 and ps any TPTL formulae. The sat-
isfaction relation (tt, i, £) |= ¢ is defined inductively as follows:

(tt, i, E) ¥

(tt, 4, ) = p iff p € Event(ttfi);

(tt, i, E) & (p1 = w2) iff (tt, i, E) = w1 implies (tt, i, £) E ¢a2;

(tt, i, E) = (p1 U @2) iff there exists i < j < |tt| with (i, j, ) | @2 and
foralli < j' < j it holds that (tt, j', &) = ¢1;

(tt, 1, &) | m ~mo iff E(m1) ~ E(ma);

(tt, i, &) = x. ¢ iff (tt, i, E[x = Time(tt[i])]) E .

As is proven in [13], TPTL is strictly more expressive than MTL. The property
“whenever an a-event occurs, then a b-event will occur in the future and, later a
c-event will occur within 3 time units” can be expressed by a TPTL formula as:
Oz (a—= O (BAOyY. (¢ Ay < x+3))). This property cannot be expressed in
MTL.
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3 The Rewriting Algorithm for TPTL in Maude

Subsequently, we develop an algorithm for checking whether a finite time-trace
satisfies a TPTL formula. More specifically, when checking the satisfaction rela-
tion between a finite time-trace and a TPTL formula, the formula is continuously
transformed to another formula by consuming the first time-event in the time-
trace. This procedure processes iteratively, until the last time-event is consumed.
It will output a boolean value in B ={true, false}. Our algorithm is implemented
in Maude, which provides an executable environment for various logics. Here we
informally describe some of Maude’s features which are related to the algorithm,
more details can be found in the manual [17].

3.1 Basic Rewriting Operators and Logic Connectives

In Maude, we use the functional modules following the pattern
fmod <name> is <body> emdfm.

The body of a functional module consists of a collection of declarations, of which
we will use sorts (sort and sorts), subsorts (subsort and subsorts), operations
(op and ops), variables (var and vars) and equations (eq).

We first need to define all necessary data types involved in the program,
including atomic proposition (Atom), event (Event), time-event (TimeFEvent),
time-trace (TimeTrace) and free variable (FreeV). These types are defined ac-
cording to their definition shown above. The following Maude program defines
operators “ 7 ¢ - V¢ - 7 and ¢ of 7 for generating an event, a time-
event, a time-trace and a free variable, respectively. Every operator has a priority
feature, which is declared through “[prec n]” with n € N>.

op __ : Atom Event -> Event [prec 23]

op _:-_ : Event Nat -> TimeEvent [prec 23]

op _,_ : TimeEvent TimeTrace -> TimeTrace [prec 25]

op _ of _ : Nat Atom -> FreeV [prec 23]. //receive a Nat

(stands for the value of the variable) and an Atom
(stands for the name of the variable), and generate a
FreeV as the result.

op nil : -> Event . //an emptyset is an event

We also define Atom to be a subsort of Event, TimeFEvent to be a subsort of
TimeTrace, and FreeV and Nat to be subsorts of Atom.

Based on the syntax and semantics of TPTL described above, we define
several operators, “ { }”,“ { }” and “ = 7 for checking whether a time-
trace satisfies a formula. The operator “ { }” receives a formula and an event.
It yields the formula T /1 depending on whether the event satisfies the formula
or not. The operator “ { }"” is defined on basis of “ { }” for checking the
satisfaction relation between a time-event and a formula. A time-event te satisfies
a formula ¢ iff o{Event(te)} returns T. By extending “ { 1}, the operator
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“ = 7 is defined for checking whether a time-trace satisfies a formula. This
operator receives a time-trace and a formula, and generates a boolean value in
B. Given a formula ¢ and a time-trace (te, tt) consisting of a time-event te and
its suffix tt, then (te, tt) = ¢ returns true/false iff p{te}’ returns T/L as the
result.

The calculation rules of logic connectives — (implication), A (and), V (or),
++ (exclusive or), ! (negation) and <+ (equivalence) are declared as usual [16].

In our program, the comparison operators (<, <, =, > and >) and the primi-
tive operator (4+) in TPTL are denoted by <’, </, =', >’, >’ and +’ respectively,
to distinguish the original definition of these operators in Maude. See < as an
example of comparison operators, the declaration for <’ is shown as follows.

vars R R? N N’ : Nat .

vars A A’ : Atom .

op _<’_ : Formula Formula -> Formula [prec 40]
ceq R <2 R’ = true if R < R’

ceq R < R’ = false if R > R’ or R == R’

ceq ( Nof A) < R =true if N <R .

ceq ( N of A) <> R = false if N > R or N ==

ceq (Nof A ) <> (N> of A? ) = true if N < N?

ceq ( Nof A ) <2 (N> of A’ ) = false if N > N’ or N == N’

3.2 Temporal Operators and Freeze Quantifiers

In this part we describe the Maude program for temporal operators and freeze
quantifiers in TPTL. Let TE be a time-event, TT be a time-trace, X and Y be
formulae, and U’ be an operator, which receives two formulae and generates a
formula. The rewriting rules for the temporal operator U/ is presented as follows.

eq TE |= X U Y = false .

eqTE, TT |=XUY =TT |[=X U’ Y .

eq TE, TT |= XU’ Y=TE, TT |= Y or TE, TT |= X and TT |= X
Uy.

eq TE =X U Y=TE |=Y .

In Maude, we denote the formula z. ¢ by (R of ©) @ ¢ with z € AP being
the name of the quantifier, R € N>¢ being the value of the quantifier, and ¢
being a TPTL formula. In addition, we define an operator “@Q@” for assigning
free variables in . The rewriting process of tt |= (R of x) @ ¢ is separated into
two steps as follows.

1. The variable z of z. ¢ is set to the time when the formula is evaluated. Hence,
the formula (R of z) @ ¢ is rewritten to another formula ((Time(tt[0]) of z)
@Q o), where (Time(tt]0]) is the initial time value from the given time-trace;

2. The operator @QQ assigns all occurrences of variable z in ¢ to the value
(T'ime(tt][0]), and proceeds with the ¢t = ¢ checking process. The Maude
program is as follows.
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/* the value of a freeze quantifier (R of A) equals to
T, which is the time of the first time-event in the
time-trace */

eqE :- T, TT |= Rof A) @ X =E :- T, TT |= ((T of A )
@@ X)

eqE :-T|=Rof A) @X=E :-T|=(Tof A) @ X .

ceq (M of A) @ (M’ of A’) = (M of A> ) if A== A’ . // a
FreeV (M’ of A’) is assigned to the value of the freeze
quantifier (M of A) if they have the same name

ceq (M of A) @@ (M’ of A’) = (M’ of A’ ) if A =/=A> . //
a FreeV (M’ of A’) is not assigned to the value of the
freeze quantifier (M of A) if they have different names

/* the value assignment rule for an algebraic formula. */

ceq (N of A) @@ (N’ of A> +> R) = N + R if A == A’ .

ceq (N of A) @ (N’ of A’ +’ R) (N> of A> +’> R) if A =/=
A)

In addition, we introduce the following equivalences into the program for the op-
erator @QQ. These equivalences are declared in the module FREE-QUAN, where
N, N', M and M’ are natural numbers; A, A’, B and B’ are atomic propositions;
E is an event; and X, Y, true and false are formulae.

eq (N of A) @ (X /\ Y) = (N of A) @ X /\ (N of A) @@ Y

eq (N of A) @@ (X ++ Y) = ((N of A) @@ X) ++ ((N of A) @@ Y)
eq (N of A) @ E =E

eq (N of A) @@ (X <> Y) = ((N of A) @@ X) <> ((N of A) @@ Y)
eq (N of A) @@ true = true . eq ( N of A ) @@ false = false
eq (N of A) @ ((N’ of A’) @ X) = (N’ of A’) @ ((N of A) @@ X)
eq (N of A) @@ (<> X) = <> ((N of A) @@ X)

eq (N of A) @ ([1 X) = [1 ((N of A) @@ X)

eq (N of A) @@ (XU Y) = ((N of A) @ X) U ((N of A) @@ Y)

eq (N of A) @ (o X) = o ((N of A) @@ X)

4 Case Study: the RBC/RBC Handover Process

In this section, we apply our TPTL runtime verification implementation to a
concrete example from the European Train Control System (ETCS). ETCS is
a signaling, control and train protection system that is replacing the national,
incompatible safety systems within Europe. ETCS consists of the on-board sub-
system (composed of ERTMS/ETCS on-board equipment, the on-board part of
the GSM-R radio system and specific transmission modules for existing national
train control systems), and the track-side sub-system (composed of balise, line-
side electronic unit, GSM-R, radio block center (RBC), euroloop and radio infill
unit) [18]. In ETCS, the RBC is responsible for providing movement authori-
ties to allow the safe movement of trains. A movement authority is generated
by computing messages to be sent to the trains, where the messages are on the
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basis of information received from external track-side systems and information
exchanged with the on-board sub-system. A route is divided into several RBC
supervision areas. Here we consider the RBC/RBC handover specification. When
a train approaches the border of an RBC supervision area, an RBC/RBC han-
dover process takes place (see Fig. 2). The RBC/RBC handover specification
specifies how a train moves from one RBC supervision area to an adjacent one.

Handing RBC Handover protocol Accepting
overRBC  |eoooommome N RBC
(NRBC messages)

=
A A
Location balise group Border balise group Location balise group

'

!

]

i
>
>

Area of handing over RBC Area of accepting RBC

Fig. 2. The RBC/RBC handover process

We consider properties on basis of the two different specifications: FIS for
the RBC/RBC Handover [19] and RBC-RBC Safe Communication Interface [20].
An execution of the system refers to the following properties in the FIS for the
RBC/RBC Handover.

— Property 1: “the handing over RBC is responsible to send information about
an approaching train to the accepting RBC area (i.e. pre-announcement)”
(4.2.2.1);

— Property 2: “the handing over RBC must send Acknowledgment after receiv-
ing route related information” (5.2.2.5);

— Property 3: “if the Acknowledgment for route related information is missing,
the accepting RBC must send route related information again” (5.2.3.5).

Based on the specification of the Safe Communication Interface, we assume that
the time to take into account an incoming message and produce an answer is
between 30 and 60 time units. We also assume that the tolerance window for
the messages transition time is between 0 and 50 time units. Table 1 shows the
abbreviations used in our case.

Let Mess be any message. We write “sendMess’ for the Mess which is sent
by a component, and “recvMess’ for the Mess which is received by a component.
The above properties can be expressed by the following TPTL formulae.
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Table 1. Abbreviations in case study

Abbreviation Definition
HOVcond Handover condition detected

PreANN Pre-announcement

RRI Route related information

Ackn Acknowledgment

AcknMissing The Acknowledgement is missed

RRIReq Route related information request

MAReq Movement authority request

PosRep Position report

Ann Announcement

TOR Taking Over Responsibility

BPSRE Position report: “Border passed by safe rear end”
BPFE Position report: “Border passed by max safe front end”

— Property 1: ¢1 = O x.(sendPreANN — ¢ y. (recvPreANN A (y < x4 50))).

— Property 2: o = O z.(recvRRI — ¢ y.(sendAckn A (y > x + 30) A (y <
x + 60))).

— Property 3: After an RRI message is sent by the accepting RBC, three time
intervals must be considered: the transition time of RRI (0 < r; < 50), the
time for producing acknowledgment (30 < ro < 60) and the transition time
of the message acknowledgment (0 < r3 < 50). Hence, if the accepting RBC
does not receive the acknowledgment between 30 and 160 (= 50 + 60 +
50) time units after sending an RRI, an AcknMissing message should occur.
The accepting RBC should resend an RRI after the AcknMissing message
occurs, within 50 time units. Now property 3 can be expressed by the TPTL
formula ¢s3, :

e 31 =0 (z.(sendRRI — ¢ y.(recvAckn A (y < x4 160) A (y >z + 30)))
++ z.(sendRRI — ¢ y.(AcknMissing A (y > x + 160))));

e 35 = 0 z.(AcknMissing — ¢ y.(sendRRI A (y < z + 50)));

® 3 =31 N P32.

We assume that the handing over RBC and the accepting RBC have a syn-
chronized clock, beginning at time 0. An example of RBC/RBC handover pro-
cess is given in the FIS for the RBC/RBC Handover specification. Based on
the RBC-RBC Safe Communication Interface specification, we design a poten-
tial time stamp for each event, get an example of real-time executions of this
process, shown in Fig. 3. A corresponding time-trace is as follows.

tty = (sendPreANN, 0), (sendRRIReq, 20), (recvPreANN, 35), ({sendR-
RIReq, recvRRIReq}, 50), (sendRRI, 90), (recvRRIReq, 97), (recvRRI, 115),
(sendAckn, 157), (sendRRI, 180), (recvAckn, 191), (AcknMissing, 350), (sendRRI,
360), (recvRRI, 373), (sendAckn, 403), (recvAckn, 437), (recvMAReq, 492),
(sendRRIReq, 536), (recvRRIReq, 542), (sendRRI, 583), (recvRRI, 592), (send
Ackn, 639), (recvAckn, 652), (recvBPFE, 700), (sendTOR, 738), (sendAnn, 741),
(recvAnn, 752), (recvTOR, 759), (recvCBPRE, 800).
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Fig. 3. An example of message sequence

The calculation results of tt1 |= ¢1, tt1 |E @2 and tt1 | @3 in Maude are all
true. It means that this execution satisfies all the three properties.

Time-trace tty represents an execution in which some errors occur: ¢) the
accepting RBC receives the pre-announcement 60 time units after it is sent; 1)
the handing over RBC does not send the acknowledgment after reception of an
RRI; i4i) when missing the acknowledgment of an RRI, the accepting RBC does
not resend it.

tts = (sendPreANN, 0), (sendRRIReq, 20), (recvPreANN, 60), ({sendR-
RIReq, recvRRIReq}, 65), (sendRRI, 90), (recvRRIReq, 97), (recvRRI, 115),
(sendRRI, 180), (recvMAReq, 492), (sendRRIReq, 536), (recvRRIReq, 542),
(sendRRI, 583), (recvRRI, 592), (sendAckn, 639), (recvAckn, 652), (recvBPFE,
700), (sendTOR, 738), (sendAnn, 741), (recvAnn, 752), (recvTOR, 759), (recv
CBPRE, 800).

The calculation results of tty = 1, tta = @2 and tts |= 3 are all false, which
means that this execution of the system violates the properties.

We repeated similar experiments several times with difference traces. The
checking efficiency is shown in Fig. 4. The case study shows that our TPTL
based runtime verification implementation is feasible to detect failures in the
executions of a system.
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Fig. 4. The monitoring efficiency in Maude

5 Conclusion

In this paper, we have proposed a runtime verification method for TPTL. We
developed a formula rewriting based algorithm, and implemented the algorithm
in Maude. This makes it possible to check the satisfaction relation between a
long time-trace and a complex TPTL formula automatically. Furthermore, we
have presented a case study with a concrete example from the railway domain.
The results show the feasibility of our implementation.

There are several interesting topics for future work. Firstly, as is well known,
LTL with two truth values gives misleading results when checking finite traces.
For this reason, we want to develop a three-valued TPTL, introducing a third
truth value “inconclusive’. This truth value means the satisfaction relation be-
tween a time-trace and a TPTL formula is decided by the potential suffix of
the given initial fragment of the time-trace. Secondly, the clock reset principle
in a TPTL formula z.¢ is to freeze the variable = in ¢ when the formula is
evaluated. This makes TPTL unintuitive in the cases when a property contains
a “clock-reset” condition. Hence an extension of TPTL with modifying the freeze
quantifier “z.” to “1.” is worth to be studied, where 1 is any formula. Last but
not least, to solve the difficulty of writing formal specifications in runtime ver-
ification, we are going to study specification techniques. The long-term goal is
to develop a methodology to semi-automatically translate system specifications
from the railway domain into temporal formulae.
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Abstract. We consider communication places in workflow nets, where
the connected transitions lie in parallel threads. When a workflow Petri
net is constructed structurally, by means of refinements, such places can-
not be modeled structurally. They are added after the net is constructed.
Workflow nets constructed in a structural manner are sound, but addition
of such communication places can result in losing the desired soundness
property. However, there is a method to avoid such misplacement of com-
munication places. We should limit the pairs of connected transitions to
the ones that lie in truly parallel threads and to avoid cycles introduced
by communication places.

Recovery transitions — special kind of transitions used as a powerful
tool in dynamic workflow modeling — allow the manager to move to-
kens arbitrarily, when some unexpected situation happens. They were
extensively studied and proved to be a useful tool in the workflow man-
agement [HA00]. They can be modeled as a kind of reset transitions with
additional feature of depositing tokens taken from a specified region to
particular places in this region, like it was proposed in [Ch06]. Mov-
ing tokens arbitrarily by the manager requires a lot of attention, since
soundness of the net can easily be destroyed. In this paper we present a
sufficient and necessary condition of soundness for a marking in a struc-
tured net with communication places. Verifying the condition turns out
to be fast. The cost is linear with respect to the total number of places
and transitions.

1 Introduction

Workflow management is an area, where workflow designers can prove correct-
ness and flexibility of their models. It has been studied in numerous papers,
like [WSO09], [BPS09]. One of the major problems is how to organize commu-
nication between parallel tasks performed by communicating agents [BPMO5].
Making communication pattern wrongly can easily lead to deadlocks, mutual
waiting or leaving messages as trash, when they are deposited somewhere, and
not consumed by anyone. The danger of bad design increases, when we talk
about management that lasts in time and needs rearrangement due to some
unexpected situations.
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Composing workflow nets in a structural way was proposed in [ChBHO03]. A
number of basic node refinement rules has been introduced. These rules include
sequential split, parallel split, choice and loop splits. They reflect typical pro-
gramming constructs like sequence of actions, an invocation of parallel threads,
instruction of choice and a loop statement. The control of the workflow runs can
be hence guarded by these constructs. Restricting the nets to the nets obtained
from a single node by these structural constructs was proven in to guarantee
soundness, as defined by [vdAtHO00].

As it was already recognized in [ChBHOO03], these constructs are not sufficient
for typical needs of a workflow designer. In the cited paper a number of non-
structural synchronization rules were proposed. By non-structural we mean here
adding of new nodes and edges, which do not result as a refinement of existing
nodes. Among them the most important was the synchronization of two parallel
actions. When in two parallel threads A and B we want an action b from B to
wait until an action a from A has been executed, we can model it by introducing
a new communication place s with arcs leading from a to s and from s to b. Such
construct we call a synchronization or communication, depending on whether we
emphasize the fact that b must wait for a or that a has something important
to communicate to b. Introducing such synchronization places can result in a
possible deadlock or other unsound constructs, like trash tokens generation. In
order to avoid misintroduction of such places, a criterion was proposed, which
is a sufficient condition for soundness. The condition was based on the idea of
the refinement tree, reflecting the history of refinements. It has been proven that
refinement trees are unique up to an isomorphism for a given structural WF-
net. In other words, if a WF-net is constructed structurally, then all the histories
creating this net differ only in unimportant details (like the order of refinements
in disjoint areas), resulting in the same refinement tree.

AN 2
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2O w() w()<~—[s] / \
[T T
0 I\ TN
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N / O\ O\
S O ®)
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»(O

Fig. 1. Example WF-net and an corresponding refinement tree
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In dynamical workflows it is often desired that the control is being changed
during the lifetime of the workflow execution. Such situations are quite normal,
especially when workflows describe processes that last for a long time (months
or even years). Sometimes the manager decides to detour from the anticipated
control flow and would like to “correct” the flow manually moving tokens around.
Situations of this kind can happen in particular, when for instance under some
time pressure we decide to skip several actions or when we decide that some part
of the workflow should be repeated due to unexpected failures, which were not
foreseen during the design. In such cases we would like to support the workflow
management by allowing the manager to perform only sound rearrangements of
the flow. When no such restriction would be set, the manager, quite possibly
without understanding side effects, could make undesirable changes. This can
lead to unwanted behavior, making the net unsound.

One of the main problems with such on-the-fly changes of the markings is
to determine the impact area, which is the least part of the net, called region,
which is affected by the rearrangement of tokens. The refinement tree gives us
precise information — in order to define the impact area caused by any changes
in the net, it suffices to find the latest common predecessor of the nodes, where
the changes were made. The nodes which are not descendants of this node are
not affected by these changes.

The changes we consider are of two kinds. First of them is the addition
of places or transitions in an unstructured manner. An example of such useful
addition is the introduction of a place joining two transitions, which are in (dif-
ferent) parallel threads. If such a place connects transition ¢ with transition r,
then the intention is to suspend the execution of r until ¢ is executed. Clearly the
introduction of such a place can result in a deadlock. In [ChBHOO03] a strong suf-
ficient condition was presented guaranteeing net soundness after such insertion
of a communication place. It turns out that if an inserted place connects such
two transittion-type leaves t and r in the refinement tree that no choice-split or
loop-split node is found on the path from ¢ to r and if no cycle can be detected
in the net after such insertion, then the resulting net is sound.

The second kind of change is of dynamical matter. We allow the manager to
modify the marking by arbitrary moving tokens around some region. A region is
understood as the net unfolded from a single place-type node in the refinement
tree. Inside a region we consider the so-called recovery transitions, which remove
tokens from the whole area and restore them in arbitrarily chosen places. Our
goal is to find conditions, which would protect the manager from depositing
tokens on such places, that the resulting marking would be unsound, hence not
properly terminating.

2 Refinement Rules

This section is a short reminder of WF'-nets refinement rules introduced in
[ChBHOO03]. The idea behind is that having defined the refinement rules preserv-
ing certain network properties, we are able to analyse WF-networks that were
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Fig. 2. Example of net synchronization with corresponding refinement tree

constructed by using those rules. To construct such network one starts with a
single place, and then repeatedly applies context-free rules on network elements.
One of biggest advantages of using refinement rules approach is construction
trace called refinement tree that contains much information about the network
structure. An example of such tree and corresponding network can be found on
figure 1. The rest of this section covers basic rules presented in [ChBHOO03]. All
described rules are depicted on figure 3.

The first two rules are called sequential splits. They are used to create linear
sequence of places and transitions, like p2 — t3 — p4 on figure 1. It’s an example
of splitting a single place. There are two kinds of sequential splits depending
on the node type they are applied to. We call them sequential place split and
sequential transition split respectively. Splits of this type introduce partial order
of transitions in sound transition firing sequences. Splits replace the chosen node
with three other nodes: the first and the last are of the same type and have either
the same inputs or outputs as the original node, respectively. The third node is
the one in the middle that connects two other nodes, so is of opposite type.

The next two rules are equivalent to logical AN D and OR gates respectively.
The first of them applies to places and the second one to transitions and both
are replacing node with two copies of it.

The first split called parallel split introduces two parallel threads that will be
executed simultaneously. In sound transition firing sequences transitions from
different parallel paths can be safely swapped (if partial order defined by other
splits is preserved). Examples of such paths are p2 — t3 — p4 and p3 — t4 — p5
on figure 1.

The second split, called choice split, defines two alternative paths that the
process can follow. During a single process run, transitions of only one of the
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Fig. 3. Basic WF-nets refinement rules. Starting from top: sequential place split, se-
quential transition split, parallel split, choice split and loop split.

paths can be enabled. Examples of such paths aretl — ... - thand 2 —» ... —
t9 on figure 1.

The last split type introduces loops and therefore is called a loop split. A
loop example with nodes later splitted by sequential split rules can be found on
figure 1.

3 Definitions

In this section we’ll present some definitions and notation conventions that will
be used in the rest of the article.

Siblings. For the node v that is a child of sequential split type node p, let
right siblings be defined as siblings that occur after v in p’s children order. The
definition of left siblings of v is analogous.



78 P. Chrzastowski-Wachtel, P. Golab, B. Lewiriski

Prenodes. We define Prenodes(v) set as follows. Let p; be the i-th node on
the path from root to v. Then for each p; of sequential split type, Prenodes(v)
includes p;, left siblings of p;11 and their subtrees.

This definition corresponds to the original refinement tree, without using
additional edges provided by synchronisations.

Ezistential marking function. Below we present notation and definition for ex-
istential marking function which returns information if in a given set of nodes
any places are marked.

M (V) = 0 ifM(v)=0foreachveV
1 otherwise

Structured SWF-net (Synchronised WorkFlow network) is an extension of
WF-net defined as a 7-tuple (P, T, F, s, e, S, C), where

1. (P,T,F,s,e) is a standard structured WF-net with the set of places P,
transitions T, flow function F the source place s, and the exit place e.

2. S — the set of synchronisation places (semaphores)

3. C — the set of edges joining semaphores and synchronised transitions. It is
easy to see that CNF = ()

When two transitions ¢; and to are synchronised via place s, we denote
t1 as in(s) and to as out(s).

4 Soundness Characterisation

The main goal of this chapter is to find properties of marking M in SWF-net
that guarantee soundness. Before introducing these properties we’ll define two
auxiliary sets Before and After, that will help us in those properties formulation
and we’ll explore some important properties of them.

4.1 Before and After sets

Intuitively, Before (v) and After(v) sets include places and transitions, that are
over or under vertex v in WF-net graph respectively. In the case of SWF-nets
we consider only such nodes that are not synchronisation places during Before
and After sets construction.

We define Before (v) set as follows. A leaf [ is in Before (v) if and only if there
exists a predecessor g of [ being a left-sibling of some node lying on the path
from the root to v inclusively. Similarly for After(v) we consider right siblings
instead. We ignore the synchronisation places.

An important feature of Before and After sets is that Before (v) and After (v)
sets are not containing v itself, so immediate conclusion from Before and After
sets definitions is that Before (v) N After(v) = @) for each node v.
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It is worth to explore, how Before and After sets are constructed in the case
of loops. We can distinguish two cases depending on whether loop contains the
node for which these sets are constructed or not.

Let us consider loops from the first case. Let [ be the loop that was created
by splitting place p; and transition ¢;. In this case Before and After sets will
either contain leaves only from p; subtree or only from t; subtree.

In the second case the Before and After sets can either contain all the leaves
of the given loop or none of its nodes.

In the forthcoming text it is important to have clarity about Before and After
sets containment rules. Let v, vy, v, be the vertices such that v, € Before (v) and
v € After(v). Clearly, Before(vy) C Before(v) and After(v,) C After(v). We
also have v € After(vy) and v € Before (vy). And so, finally, After (v) C After (vy)
and Before (v) C Before (v,).

The Before and After sets have some interesting properties in the context of
sound marking, that we will formulate in the following proposition. We say that
a node (place or transition) = in a Petri net is reachable from a given marking
M if it is not dead in the case z is a transition or it can be marked by some
marking reachable from M, in the case z is a place.

Proposition 1 Let M be a sound marking of WF-net with synchronisations.
For each place or transition x we have:

1. M(z) > 1 implies M (After(z)) =0
2. M(Before(z)) > 0 implies M (After(z)) =0
3. M(Before(x)) > 0 implies M (x) =0 and x is reachable.

Proof. Let (P, T, F,s,e,S,C) be a structured SWF-net and M a sound marking
on this network.

We begin the proof with some observations. When constructing the Before
and After sets, we take into account only subtrees related with nodes that are of
sequential split type. The sequential split type nodes determine the partial order
of transitions in possible transition sequences transforming any sound marking
M (in particular M!) into M. Some transitions are incomparable in this order
because of different types of nodes, for example AND nodes that introduce
concurrency in nets. This partial order results in important properties of Before
and After sets.

For a transition ¢ € T that is not a part of any loop, the set After(t) con-
tains all transitions that can fire after ¢ occurs in a sequence transforming a
sound marking M into Mi and that this firing is directly dependent on ¢. If the
transition ¢ is in a loop, the same condition holds, except for some other transi-
tions from this loop — not all of them are included in After(t) set. But still, all
transitions from the loop that belong to the After(t) set in order to fire, need
transition ¢ to fire before them.

It is important to stress out here, that we only consider transition sequences
that contain ¢ when writing about firing dependences. In the case of transitions
that come after AND nodes, there are at least two independent paths which
can lead to those transitions firing, so there are possible situations, when ¢ won’t



80 P. Chrzastowski-Wachtel, P. Golab, B. Lewiriski

occur in such sequences but the considered transitions will still fire. Neverthe-
less, if t occurs in such a sequence, it determines the path that the process went
through and we know that ¢ firing is necessary in order to make the next transi-
tions firings possible. We have a similar situation in the case when ¢ results from
loop main transition fragmentation (as ¢7 and ¢8 on figure 1).

With this observation, we can move to the main part of the proof.

1. The first step is a direct result of our observation. If z = e then this point
is obvious. If « # e then M (z) > 1 means that z is a place and « is an input for
some transitions 1, C T'.

Firstly, let’s consider nets that contain no loops. Each transition in any se-
quence transforming M; into M can occur only once. Since x isn’t empty, we
know that none of the T, transitions will occur in possible transition sequences
transforming Mi into M. Taking into account our observation this also means
that none of the transitions from After sets of T, transitions will occur in such
sequences. It means that none of outputs of T}, transitions or outputs of transi-
tions from their After sets is marked. We also know, that all the transitions from
T, all their outputs and their After sets are in After (x). Moreover it is easy to
find that these are the only items in After(x). So we have M (After(z)) = 0.

The case of loops is very similar. The only problem is that z can be a loop
element. It is possible in this case, that not all of T,, transitions will be in A fter (x)
set — some of them can be transitions starting new loop iteration. However, it
is easy to recognize that this makes no problem, and reasoning for transitions
from T, that are in After(x) is still valid.

2. This property is a simple consequence of 1. We know that for all places from
Before (x) that marking M is greater than zero and their After sets markings
is zero too. We also know that After(z) set is a subset of those After sets, so
M (After(n)) = 0.

3. First part of this property is also a consequence of point 1. We know, that
for all places from Before (x) for which the marking M is greater than zero, their
After sets markings equal zero. We also know that z is an element of those places
After sets, so M (z) = 0.

The fact that x is reachable is a result of our observation. Let ¢, be such a
transition that is in After set of some place from Before (x) that the marking M
is greater than zero, and for which this place in an input. We know that z is in
t,’s After set, so there exists a transition ¢, for which  is an output and either
ty € After(t,) or simply ¢, = t,. Because marking M is sound, it is possible for
ty to fire. In the case when t, # t,, we know from the observation and from the
fact that the marking M is sound [ChBHOO3], that it is also possible for ¢, to
fire, so x is reachable.

4.2 Properties of sound SWF-net markings

In this section we’ll give a characterisation of SWF-net sound markings in the
form of a short lemma. Before formulating the lemma, it is worth noticing, that
as in the case of standard WF-nets, if M is a sound marking of WF-net with
synchronisations, then M is 1-bounded (there can’t be two tokens at a one place).
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Lemma 1 Let N'= (P,T,F, f,e) be an WF-net and Ny = (P, T, F, f,e,{s},C)
be the same net with added synchronisation place s. Given Ny marking M is
sound if and only if:

1. My is sound in N
2. Ezactly one of following holds:
(a) M (Before(in(s))) >0
(b) s is marked
(c) M(After(out(s))) >0
(d) Synchronisation was skipped, so M (Before(in(s)) U After(in(s))) = 0
and M (Before (out(s)) U After (out(s))) =0

Basically, the lemma describes intuitions about how synchronisation place
should work. It says, that we have four different states, that our process can be
in. First three cases are straightforward: it can be either before synchronisation,
during synchronisation or after synchronisation. The last one is the case, when
the synchronisation occurs in one of the branches that resulted from an choice
split, and an active branch is not the synchronised one. An example of such
situation is depicted below on figure 4.

/\
/\

\/

Fig. 4. Example of synchronisation skipping marking

Therefore, for the sake of precision, we can describe the first three states
as: synchronisation place is active, process is during synchronisation and syn-
chronisation is inactive, but either synchronisation has occurred, or the process
branch without synchronisation is at the evaluation point, when marked places
are in After (out(s)) set. The last one describes situation when process finished
considered fragment with alternative). Nevertheless it is more convenient to use
definitions presented in the previous paragraph.
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To show that the above intuitions are right, we will now prove our lemma.

Proof. Tt is important to remember that synchronization of items in loops is not
allowed, so in every valid transition sequence in(s) and out(s) can occur only
once.

Firstly let us assume that a marking M is sound in Ny = <P, T,F, f,e,{s}, C>
net.

What synchronisation point does, is prohibiting certain transition sequences
that allow obtaining marking M|y from M; in NV, by enforcing firings of one tran-
sition group before another. It is important that synchronisation is not adding
any new possible transition sequences. This means, that any transition sequence
that leads to the marking M in N is also valid in A, leading to the marking
M|s. This means that M|, is sound in AV, so 1. holds.

For the case when there exists such OR place that allows to skip synchroni-
sation, let p;, be the place before such fork, and p,,; first place after it. From
the rules of synchronization we know that in this case p;, is in Before (in(s))
and oyt is in After (out(s)).

It is easy to see, that each of the conditions a), b) and c) exclude d) and vice
versa. Now we’ll show that a), b) and ¢) exclude each other. If M (Before (in(s))) >
0, then we know from the proven proposition, that there is no transition sequence
that leads to a marking M containing in(s), so s will be empty for each valid
subsequence of those transitions, which means that there was no possibility for
out(s) to fire, so again from the proposition, M (After (out(s))) = 0.

If s is marked, than in(s) has already fired. We know that M|y is valid
so, Before (in(s)) marking must be empty. Again from the proposition we have
M (After (out(s))) = 0, because there was no possibility for out(s) to fire.

If M (After (out(s))) > 0 then it means that transitions in(s) and out(s) have
already fired, so s is empty and from the validity of M|, either M (Before (in(s)))
is empty or the process was run following a path where no synchronisation occurs.
In the second case we have M (pour U After (powt)) > 0, we have that M (s) = 0
and M (Before (in(s))) = 0, because M (p;,, U Before (p;,)) = 0 according to the
proposition.

If none of the conditions a), b) or c¢) holds, we have M (Before (in(s))) = 0,
M (s) = 0 and M (After (out(s))) = 0. There are two possibilities. Firstly, we
may consider situation when M (After(in(s))) > 0 and M (Before (out(s))) > 0,
but in this case s can’t be empty, because it would make impossible for out(s)
to fire and we know from the proposition that it has to fire in order to clean up
tokens from Before (out(s)).

The only valid option is M (After(in(s))) = 0 and M (Before (out(s))) = 0,
which means that all tokens are in After(p;,) N Before (pout) on process path
disjoint with the synchronisation. There are no other options because of the
synchronisation rules, which allow to synchronize only these transitions, which
are not separated by choice or loop split nodes in the refinement tree. So we
know now that a), b), ¢) and d) exclude each other and in each case one of them
must hold, so soundness of Ny means that 1. and 2. hold.

Now lets assume that 1. and 2. from the lemma hold.
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M|, is sound, so let (x;) be a sequence of events leading to M. in N. It’s
easy to see, that in case when one of b), ¢) or d) holds, the same sequence can
be fired in N. In the case when s is not empty, this sequence will clean s. A bit
harder is the case when a) holds, but one can easily see, that it is possible to
rearrange (x;) so that in(s) will occur before out(s) and still all transitions from
Before (in(s)) will be before in(s) and all transitions from After (out(s)) will be
after out(s). Rules of synchronisation guarantee that such operations will lead
to valid transition sequence, which will also be valid in N, and will lead to the
same result as the original sequence.

This proves that if 1. and 2. from the lemma hold for a given marking M
that the marking is sound.

We have proved implications in both directions, so the lemma is valid.

5 Soundness Checking

The algorithm for checking the soundness of a marking will be a modification
of the soundness checking algorithm (theorem) from presented in previous work
[ChO6].

As a reminder, two functions w and W were defined as follows:

1 if v = root

w(parent (v)) if v is a child of a node which is not a parallel
split node

if v is a child of a node of the parallel split node,
with ¢ children

w’ (parent(v))

M (v) w'(v) for each place-leaf v
W(v) = ¢ > conw W(y) for all internal nodes =
0 for each transition-leaf ¢

The theorem stated that a marking is sound if and only if for each tree node
x either W*(w)(xz) = 0 or W*(w)(x) = w(s). We will now define new functions
w®, W* and S such that W* and S will have the same signature as W and
w?® will have the same signature as w. Note that the values in W and S are
determined only by leaves — for the internal nodes we take sum of the values of
their children. For both in(s) and out(s), we will add additional weight to the
path from the node to the root, and propagate this change downwards for the
pre-nodes (nodes occurring to the left of it). Let ¢ be a constant such that for
every node z the condition w(z) > ¢, is satisfied.

We will apply the following transformation two times to W presented in
[ChO6] for both in(s), out(s), with ¢ equal to ¢;, —c; respectively.

For every node v on the path from ¢ to root we add the weight ¢

w'(v) =w) +ec
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For every node v € Prenode (in(s)) (nodes on the left of the path from in(s)
to root)

1 if v = root
. w*(parent(v)) if v is a child of a node which is not a parallel
w®(v) = split node
w? (parent(v))

if v is a child of a node being a parallel split
node, with ¢ children

C

For the remaining nodes w®(v) = w(v). The function W remains unchanged,
except for the fact that now it depends on w?.

s - (M (s) + M’ (After (out(s)))) if t = in(s)
S(M)(t) = { —cs - (M*(After (out(s)))) if t = out(s)
0 for every other case
We will use this transformation two times to nodes in(s), out(s) with ¢ being

inverses of each other. Notice that this pair of transformations together changes
nodes only inside the smallest subtree containing them.

el el

N N
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Fig. 5. Example of SWF-net with marked weights defined by functions from the the-
orem. The marking on the left is sound, while the marking on the right isn’t, which
results in weight explosion in ¢1.

Theorem 1 A marking M of the SWF-net N is sound if and only if for each
node v in the refinement tree either Wi, (v) + S(v) = w(v) or Wi, (v) =0
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Proof. We will prove it by using the sound characterisation lemma.

Let M be a sound marking. By the above lemma, exactly one of following
holds:

1. M (Before(in(s))) > 0

2. s is marked.

3. M (After(out(s))) >0

4. Synchronisation was skipped, so M (After (in(s)) U Before (in(s))) = 0 and
M (Before(out(s) = 0) U After (out(s)))

/Cz\ /Cz\ A AN
@ [=] D [+] @ & [ &[] G [e]

Fig. 6. Derivation Tree with paths highlighted

Lets reason case by case, we will prove that in each of these cases our algo-
rithm will correctly verify the marking:

1. If M (Before (in(s))) > 0: Both in(s) and out(s) are inactive (which means
S(in(s)) = S(out(s)) = 0). The marking M is sound, so M (After(out(s))) =0
and M (After (in(s))) = 0. This means that all the marked nodes are in modified
left sides (“Before”) of trees, so the verification behaves just as in the W without
synchronisation, because all the weights were just decreased by some amount.

2. If synchronization place s is marked: in(s) is active and out(s) is inactive.
Since M(After (in(s)) U Before (in(s))) > 0 and M (Before (in(s))) = 0, we have
M (After(in(s))) > 0 and because the marking is sound, it meets S(in(s)) in
some node in the path to root, and then S(in) modifies it to the correct amount
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3. M (After (out(s))) > 0: both in(s) and out(s) are active. Of course in this
situation M(After (in(s)) U Before (in(s))) > 0 and M (Before (in(s))) = 0, so we
have M (After(in(s)))) > 0 The marking is sound, so it meets the S(in(s) in some
node in the path to root, and then S(in(s)) modifies it to the correct amount.
Similarly, since M (After(out(s))) > 0 and marking is sound, the verification
succeeds until it meets at the path from in to root and here it is corrected by S
from in(s)

4. Tf synchronisation was skipped, so M (After(in(s)) U Before (in(s))) = 0
and M (Before(out(s) = 0) U After (out(s))): The modifications to weights we
made apply only to nodes in the path from in(s) to out(s) and they are all
empty in this case.

This proves that in every case, our verification succeeds.

Let us prove the opposite implication now. Let M be such a marking that for
each node v in the refinement tree either W3 (v) + S(v) = w(v) or W3,(v) = 0.
We will show that the cases from the lemma are exclusive:

1. excludes (2. or 3.) Let’s assume M (Before (in(s))) > 0. Then if 2. or 3.
then in(s) is active, but since M (Before (in(s))) > 0, there is an active node
that is on the left hand side from the path from in(s) to root, but it was already
modified by ¢, so when S will meets, there will be ¢ added two times.

2. and 3. Easy case, W (in(s)) = w®(in(s)) - (M (s) + M?(After(out(s)))) =
2w (in(s)) > w(in(s))

It is easy to see that 4. is disjoint from the other cases too. We need only
to distinguish 4. from 2.: If M (s) > 0 then W (in(s)) > 0, and since 4. holds,
W (out(s)) = 0, so in the place where paths from in(s) to root and out(s) to root
meet there will be an unbalance.

Hence the cases from the lemma are disjoint. We need to prove now that
at least one of them holds. Let’s assume none of them holds. Then in(s) and
out(s) are not active. Assume that M (Before (out(s))) isn’t empty. Because of
1., M (Before(in(s))) = 0, so there are nodes enabled to the right from the path
from out(s) to the root node, that are below least common ancestor of in(s)
and out(s). When the weight of those active nodes gets passed to the path, they
need S to have W3, (v) + S(v) = w(v), but in(s) is inactive, so we came to a
contradiction.

Similarly, assume M (After (in(s))) > 0. Because of 1., M (After (out(s))) = 0,
so there are enabled nodes to the left from path from out(s) to the root node, that
are below least common ancestor of in(s) and out(s). When the weight of those
enabled nodes get passed to the path, they need S to have W3, (v)+S(v) = w(v),
but in(s) is disabled, so we came to a contradiction.

These two arguments imply that 4., M (After(in(s)) U Before(in(s))) = 0
and M (Before(out(s) = 0) U After (out(s))), so at least one of the cases from
the lemma holds.

Now we need to prove the first part of the lemma, that M|, is sound in A.
The proof of this fact is identical to first part of this proof. We show that if one
of 1., 2. or 3. occurs, the rest of checking behaves identical to checking done in w.
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6 Conclusion

We have proven that the important construction of creating a channel between
two transitions (like links in BPEL4AWS) can be done in a semi-structured man-
ner with the preservation of soundness. We have discovered a condition that
is sufficient and necessary for a marking to preserve soundness. The condition,
based on the structure of the refinement tree is fast to verify; in fact it is linear
with respect to the number of nodes of the net (so even better than the size
of the net: the edges, with possible quadratic number of them, do not count).
This condition allows us to determine soundness of an arbitrary marking and
allow on-the fly changes of markings during the execution of a workflow. Such
changes are considered a powerful tool for a manager to change a marking in
an arbitrary manner in case of an unexpected detour from the normal workflow
run. Support by automatic verification, if such changes can cause an undesired
behavior (like deadlock or creation of trash tokens) is an important improvement
of the technology.
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Abstract. A network system is given as a set of Petri net-like struc-
tures called agents. Each agent has a singled out place interpreted as
a communication port with ingoing edges labelled with send(p1, ..., pn)
and receive(qi, ..., ¢gm) commands, where p;, ¢; are names of ports of its
interlocutors. Every such edge exits a transition emiting a request for
send or receive message. A transmission channel between the agent and
its intelocutors is established when its port holds a send or receive com-
mand, while ports of its interlocutors hold respective (matching) com-
munication commands. This gives rise to communication between the
agent and its interlocutors, after which the channel is disrupted: hence
floating channels. Some behavioural properties of such network system
are examined, their decision complexity, deadlock and fairness in their
number.

1 Introduction

A system of communicating agents here is a collection of Petri net-like struc-
tures [Rei 1985], such that in every net there is a singled out place serving for
communication and called a port. Each arrow entering the agent’s port is la-
belled with a send or receive communication statement with parameters being
names of ports the agent sends a message to, or receives from. Firing a transi-
tion the arrow outgoes, results in putting the arrow’s label in the port. If it is a
send (receive) statement and all ports - its parameters - hold matching receive
(send) statements, then a communication channel between senders and receivers
is set up ("matching” in the sense of "hand-shaking” [Hoa 1978], [Hoa 1985],
[OCCAM 1984]). The channel is realized as a special transition, called a trans-
mission, with sending and receiving ports as its preset and postset respectively.
Firing such transition represents a message transfer between the ports involved.
After firing, this transition disappears, thus the channel is disrupted. That is
why we say that the channels are floating. Such systems are defined, examples
shown and some behavioural properties investigated. If the 1-safe Petri nets
are taken as the agents, then complexity of a number of decision problems for
systems with floating channels become straightforward conclusions from known
results, collected e.g. in [ESP 1998]. Some problems, namely deadlock and two
kinds of fairness is analysed in the framework of the proposed model and their
set-theoretic characteristics are given.
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2 Communicating Agents

Let A={A4,,,Ap,,...,Ap,} be a set of agents, each agent A, (1 =1,2,...,d)
equipped with a single communication port p;, their set P = {p1, pa,...,pa}. Ais
treated as a distributed system whose agents are capable of intercommunicating
through their ports. Suppose that the agents are autonomous, i.e. do not share
any of their constituents. Let !(pg,, pk,,...) and ?(py,,pi,,...) be a shorter no-
tation of send(pk,,Pk,,..-) and receive(py,,pi,,...) operations respectively, i.e.
sending a message by an agent to ports pg,, Pr,, ... and receiving a message from
ports pi,,Pi,;.... Here ki, ko... and Iy,ls... are subsequences of the sequence
1,2,....,d. These communication operations may assume a varying number of
parameters and are executed in the synchronous, i.e. hand-shaking mode. Let
C denote a set of all possible communication operations of all the agents, along
with the empty (no communication) operation ©. Since apart from communi-
cation, other computational activity of the agents is inessential, such fragments
of their activity are not taken into consideration. That is why we assume that
agent A, with port p is represented as a single place net with a specific firing
rule (semantics):

A, = ({p}, T, F,) for pe P where:

T, is a set of transitions, i.e. actions inserting send or receive operations in the
port p,

F, : T, x {p} = C, is a set of arrows from transitions to place p, each arrow
labelled with a send or receive operation the agent A, can issue, i.e. C, C
C — {©}. Suppose no agent can send/receive message to/from itself. That is:

Fy(t,p) is either /(pr,, Prys--.) OF 2(p1y, pry,...) With pr, Zp#py (i=1,2,..5
i=1,2,..).

The local communication state (for short: a local state) of the agent A, is a
function M, : {p} — C, U{6O}.

The set of all states of the agent A4, is S, = (C, U {6}){P}

Semantics of transition ¢ € T, is arelation [[t]] € S, xS, defined by (M,, M;D) €

([t]] iff My(p) = © AM,(p) = F,(t,p) (M, is the next state following M,
obtained in effect of firing transition t)

Semantics of agent A, : [[4,]] = U [[t]]

teT,

Fig.1 depicts agent A, capable of communicating with agents A, A,,, Aps, Ap,,
Ap, and passing from the state M, = {(p,0)} to the state M, = {(p,!(p1,p4)}
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Fig. 1. Example of agent A, and result of firing transition t¢3

as a result of firing transition ¢3. This means that A, issued a request for sending
a message to A, and A4,,.

The global communication state (for short: a global state) of the system A is a
function

M : P — C, their set S = CP, thus the local state M, is a restriction of M
to {p}. The state (global and local) will be treated as a set of pairs of the form

(0, (Pky» Phys ) and (p, ?(p1y, P1ys ) fOr P, DRy s Phys DL, DIy - € P

2.1 Transmissions

For n,m > 1, let ai,...,a, and by,...,b,, pairwise distinct, be ports of
agents A, ..., Aq, and Ay, ..., Ay, . Let a;:l(b1,...,b,) denote the pair
(ai,!(b1,....,bm)) meaning "agent A,, sends a message to agents Ay, ,..., Ap,”
and b;:?(ai,...,a,) the pair (b;,?(a1,...,a,)) meaning "agent A, receives a
message from agents Ag,, ..., As,”. A transmission (matching send and receive
operations) is a pair t = (°t,t*) of sets of the form:
‘t ={ap:!(b1, ..., bm), oy an:l(b1, ..., b))} (pre-set of transmission ¢)
={b1:?(a1, .., an), .., bm:?(a1, ...,an)} (post-set of transmission ¢)
Let *t® = 'tUt’ and °t® | P be a projection of *t®* onto the set P, i.e.
°t* | P={a1,...,an,b1,...,b,n}, that is, the set of ports the transmission ¢ is
involved in. Note that *t® is of the same type as the global state M: both are
sets of pairs of the form (z,!(...)) or (z,?(...)).

Expressions a;:!(b1,...,bn) and b;:?(a1,...,a,) denote matching labelled com-
munication operations.

Note that a transmission depends on a state: it may come into existence in a
certain global state and disapear in another. Such emerging and disappearing
during system’s activity transmissions are typed in bold letters, to distinguish
them from the static transitions of the agents.
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Let TR denote the set of all possible transmissions in the system. If a transmis-
sion t€TR exists in a state M (i.e. *t* C M) then its semantics is a relation
[[t] € SxS defined by (M, M’) € [[t]] iff M' = M—*t*U{(z,0)| = € *t* | P}.
This means that M’ is M in which all pairs (z,!(...)) and (z,7(...)) belonging
to *t® are replaced with pairs (x,©), i.e. M’ is the result of ”firing” transmission
t at the state M. This models the transfer of a message from senders to receivers
and disruption of the communication channel.

In Fig.2 a collection of 6 ports of agents A, Ay, Ap,, Aps, Ap, s Ap, are depicted.
The global state of this system is

M= p b1 |P2|P3| P4 |P5
(p1,p4)|?(p)|©|O]?(p)| O

Transmission ¢t = ({(p:!(p1,p4))}, {(p1:?(p), (pa:?(p))}) transforms M

D |P1|P2|P3|P4|P5
ele|e|e|e|e

into M’ = in effect of sending

simultaneously a message from agent A, to A,, and A,,

System 4 = {Ap, Ap1 ..... A

p5} System A = {Ap, AP]""’ A

P5}

before communication

Ps

after communication

Ps

Fig. 2. Transmission of a message from agent A, to A,, and A,, through channel =.
Here, * t* | P ={p,p1,pa}

2.2 Existence of transmissions

A transmission t€ TR exists in a global state M of the system A iff *¢* C M.
Given a global state My and a transmission ¢, the realizability of ¢ starting
computation from My is expressed as: does there exist a state M reachable
from My such that *t® C M ? Thus, the existence problem for ¢ reduces to
some versions of state reachability and inclusion problems. Their solution in the
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form of yes/no decision and, possibly, their complexity, depends obviously on
the formal description of agents. For example, let us assume that agents are
described as 1-safe finite Petri nets (places are valued in the set {0,1}) obtained
by replacing labels of arrows entering ports by weights 1. Then, the existence of ¢
reduces to the problem ”For a given marking My and place p, is there a reachable
from My marking with a token in p?”, which is known to be the PSPACE-hard
(PSPACE - the set of all decision problems solvable by a Turing machine with a
polynomial amount of space), see e.g. [ESP 1998]. Indeed, after the replacement
of arrow labels, the whole system becomes one disconnected 1-safe Petri net.
Denote by mgq the marking of it, such that each place (port) z € *¢* | P holds
a token (i.e. mo(x) =1) iff My(z) # O. In such system net each z € *t* | P
has no outgoing arrow, thus, if a token enters this place at a certain marking
reachable from myg, then it will stay there indefinitely. Now, decide if there is a
marking m reachable from mg and satisfying m(z) =1 forall z € *t* | P. If
yes (and only if), then in the original system (before replacement of the labels of
arrows entering ports) there exists the transmission ¢, because *t* C M, where
M is m restricted to ports x € °t®* | P holding communication operations
I(...) and ?(...) instead of tokens.

Note that the assumption on agents’ internal (i.e. without communication)
activity as specified by Petri nets, corresponds to the concept of self-modifying
nets ([B-D 1997], [Val 1978], [Val 1981], [Cza 2013]). Indeed, transmissions are
in fact a special kind of transitions appearing and disappearing, so the system
changes its structure in the course of its performance.

3 Semantics of the System A and some PSPACE-hard
Decision Problems of its Behaviour

Let T= T, and F = |J F, ie. the set of all transitions and arrows in
peP peEP

the system A respectively. The triple A = (P,T,F), denoted also by A, is a

net representation of the system. Its semantics is the union of semantics of the

transitions ¢ € T and message transmissions t€TR: [[A]]= U [[7]]. If
TETUTR

(M, M') € [[A]] then M’ is the next to M state evoked by a transition ¢t € T' or a
transmission t€TR. For 7€ V =TU TR denote M — M’ iff (M,M') €
[[7]]. A run starting at M is a chain My —% M; —2 M, —> ..., finite or
infinite, but if finite My —» M; —2 My —2 ... =% M,, then none M satisfies
(M, M) € [[A]]. A finite or infinite word v = 717973... € V¥ = V*UV>®
occurring at this run is a path starting at My. If finite v = 717973...7), €
V* then M — M’ denotes M % M; —% M, — .. =" M’. The
set of all finite and infinite runs starting at M is RUN,(M) and RUN (M)
respectively and RUN (M) = RUN.(M) U RUNy(M). The set of respective
paths is PATH(M) = PATH, (M) U PATH.(M), thus PATH(M) C V*.

Assuming, as above, that agents are described by 1-safe Petri nets obtained by
replacing labels of arrows entering ports by weights 1, one can simulate behaviour
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of the system by a 1-safe net as follows. Let a state M be given. For each
transmission t€TR create a transition ¢ ¢ T defined as ¢ = (°¢,¢*) with
*°t = *t* | P, t* = (, and make arrows from ports p € *t* | P to t.
The extended net is a triple A = (P,T,F), where T = TU set of newly
created transitions, and F = FU set of newly created arrows weighted with 1. A
marking of A is obtained from marking of A by replacing operations !(...), ?(...)
with tokens wherever such operations are in some ports and removing @ from
remaining ports. Fig.3 depicts a simulation of transmission ¢ from Fig.2 by the
newly created transition ¢ and result of its firing. Remember: while ¢ appears
and disapears in the course of the system activity, the transition ¢t € T is the
ordinary transition of the Petri net A simulating system A, thus a unchangeable
member of the A’s static structure.

Net 4 = :{Ap, Apz."."’ Ap5} . P,
before firing transition ¢ after firing transition ¢
Ps Ps

Net 4= {4, 4, .. 4, }

P4

-

O

P Py P
f e
©\® @ @

O O

Fig. 3. Transition t = ({p,p1,pa},0) with empty post-set simulates behaviour of
message transmission t in Fig.2

D3 P>

Some problems concerning behaviour of the system A may be reduced to
problems concerning behaviour of the Petri net A. To mention a few (suppose
runs start from a given marking):

a. Existence of run with a given message transmission occurrence

b. Existence of reachable dead marking (no transition can fire at it)

c. Existence of finite run (equivalent to b)

d. Existence of infinite run

e. Existence of run with infinite number of a given message transmission occur-
rence

f. Existence of run with never accomplished a given request for communication

All these problems are PSPACE-hard for 1-safe Petri nets ([ESP 1998]) and A is
such net. Therefore, by virtue of the obviously polynomial simulation procedure
described above, the problems for systems specified like A in this paper, are
PSPACE-hard provided that internal activity of agents is specified by 1-safe
Petri nets.
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4 Deadlock and Fairness: Emptiness and Finiteness of
Sets of Paths

Out of several concepts and kinds of deadlock and fairness found in diverse mod-
els of distributed computing, let us consider those arising from communication
and described in terms of the model pursued here.

4.1 Deadlock

System A is deadlock-free at a state M if for each agent requesting for communi-
cation there is a finite path starting at M, such that the agent will be permitted
to accomplish the request on this path. A deadlock is a negation of this property.
For an agent A, € A= (P,T,F), with port p and for a state M €S define:

Dy(M) &L [ AM . (M = M' ATE(EE v Ap:M(p) € *£*))]

where t€ v means ”transmission ¢ € TR occurs on the path v” and p:M(p) €
°t® means "t accomplishes request for communication issued by agent A, and
pending at the state M”.

In words: never agent A, requesting for communication at the state M will
be permitted to accomplish the request by a certain transmission occurring on
whichever finite path starting at M.

The system is subject to a deadlock at the state M iff:

Ap.M(p) # O A Dy(M).

Proposition 4.1.1 (set-theoretic characterization)

D, (M) if and only if PATH(M)NV*tV* ={ for each ¢ satisfying p:M(p) €
ote

Proof

D,(M) <=

-3IM' Fv.(M L M ATt (t cv Ap:M(p) € *t*)) <= (swapping quantifiers)
~Ju. M (M -2 M’ A3t.(t v Ap:M(p) € *t*)) <= (De Morgan law)
Vo.~IM' (M -2 M/ A Jt.(t € vAp:M(p) € °t°%)) >

no M’ in this formula
Vo.((3M' .M -2 M) ATt (tEv Ap:M(p) € *t*)) <= (De Morgan law)
Vo.(~(3M' .M -5 M)V ~3t.(tEv A p:M(p) € °t%)) <
Vo.(3M'.M -2 M) = ~3t.(t Ev Ap:M(p) € *t%)) <>
Vo.(v € {u|3IM'.M - M'} = —Elt.(tév Ap:M(p) € *°t®*)) <= (definition of
PATH(M))
Vu.(v € PATH(M) = —3t.(t €v A p:M(p) € *t*)) =
{v|ve PATH(M)} C {v| ~3t.(t Ev Ap:M(p) € *t*)} =
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PATH(M) C {v| ~Jt.(t Ev Ap:M(p) € *t*)} =
PATH(M) C V* — {v|3t.(t Ev Ap:M(p) € *t*)}

Therefore:

PATH(M) CV* = V*tV* for each t satisfying p:M(p) € *t* where V*¢tV*
is the set of all finite words over V' where ¢ occurs. Thus:

if p:M(p) € *t* then PATH(M)— (V*— V*tV*) = 0.

Since X — (Y -2)=(X-Y)U(XNZ) for any sets X,Y,Z then
PATH(M) — (V* = V*tV*) = (PATH(M) - V*)U(PATHM)NV*tV*) =10
(Because PATH(M)—V* ={). Finally:

D, (M) iff Vt.(p:M(p) € *t* = PATH(M)NV*tV* =0) ]

Theorem 4.1.1

A deadlock at a state M occurs iff:
Ip.[M(p) # O AN (NVt.(p:M(p) € *t* = PATH(M) NV*tV* = ()] g

Thus decidability of such deadlocks reduces to deciding whether transmission
does not occur on any path starting from M (provided that there are a finite
number of agents, thus also transmissions), which depends on algebraic structure
of the set PATH(M).

4.2 Weak fairness

System A is weakly fair at a state M if each agent requesting for communication
at M will be permitted to accomplish the request on every infinite path starting
from M. This is expressed by the formula:

Vp.[M(p) # © = WYo.(v € PATHoo(M) = 3t.(t€ v Ap:M(p) € *t*))]

Theorem 4.2.1

System A is weakly fair at a state M iff
Vp.[M(p) # 6 = (Vt.(p:M(p) € *t* = PATH (M) — V*tV>° ={))]

Proof

Vo.(v € PATHo (M) = 3t.(t€ v Ap:M(p) € *t*)) —

{v|v € PATH (M)} C {v|3t.(t€ v Ap:M(p) € *t*)} =

PATH (M) C V*tV for each t satisfying p:M(p) € *t*. Thus

Vt.(p:M(p) € *t* = PATH (M) — V*tV> = () O
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4.3 Strong fairness

System A is strongly fair at a state M if each agent requesting for communication
at M will be permitted to accomplish the request on every finite path starting
at M if all these paths are ”sufficiently long”, i.e. of the length at least k, for a
certain k. So, all these paths may be jointly (”uniformly”) bounded in lentgh.
This is expressed by the formula:

Vp.[M(p) # O = 3k.F,(M, k)] where

Fo(M, k) €4 wo.((v € PATH, (M) AJv| > k) = 3t.(tE v Ap:M(p) € *£*)

Theorem 4.3.1
System A is strongly fair at a state M iff

Vp.[M(p) # © = (Vt.(p:M(p) € *t* = |PATH, (M) — V*tV*)| < 0)]

Proof

Fp(M, k) <=

{v|v e PATH.(M)} n{v||v] >k} C {v] Et.(té vAp:M(p) € *t*)} —
PATH,(M)NV*V* C V*tV* for each t satisfying p:M(p) € *¢t°

where VFV* is the set of finite words of the length at least k and V*#V* the set
of finite words where ¢ occurs. Thus:

Vt.(p:M(p) € *t* = PATH,(M)NVFV* —V*tV* = ).

Now, let H,(M,k) = PATH,(M) N V*V* — V*tV* for each t satisfying
p:M(p) € *t°.

We show that |H,(M,0)| < co if and only if 3k.H,(M,k) =10

(|X| is cardinality of the set X).

(=) Let Vk.Hp(M,k) # 0. Then N (H,(M, k)) < AN(Hpy(M,k+1)) where A\(L)
is the length of a shortest word in the set L.

Thus kli_{r;Q)\(Hp(M, k)) = oo, which implies

(since Hp(M,k) D H,(M,k+1)) that H,(M,0) contains words of arbitrary
length, hence |H,(M,0)| = oo.

(<) Let |Hp(M,0)| = co. Then H,(M,0) contains words of arbitrary length,
thus, for any k it contains a word w with |v| > k. Because v € VFV* and
Hy(M,k) = Hy(M,0)NV*V* we have v € H,(M,k) hence H,(M,k)# (0.0

4.4 Equivalence of weak and strong fairness

To demonstrate the equivalence between the two kinds of fairness in the model
considered here, let us recall a version of the:

Konig’s Lemma [Kon 1927]:
Let X be a set and T a tree of the properties:

— the number of sons of every node in 7 is finite;
— for any k > 0 there is a finite branch b in 7 with |b| > k and b C X



Floating Channels between Communicating Nets 97

Then there exixts a infinite branch B in 7" with |B| C X.

Theorem 4.4.1
The weak and strong fairness are equivalent.

Proof

By the Theorem 4.2.1 and 4.3.1 it suffices to demonstrate that

|PATH,(M) — V*tV*| < 0o <= PATH. (M) — V*tV> = for each
transmission ¢ such that p:M(p) € *t* for every port p with M(p) # 6.
Implication ”=" is evident, it remains to show ”<”. Suppose

|PATH, (M) —V*tV*| = co. Note that the set of paths starting at M is prefix-
closed: each prefix of v € PATH(M) belongs to PATH(M). To each v assign
a unique element node(v) in this way that v # ve = node(vy) # node(vs)
and let NODE(M) = {node(v)|v € PATH,(M)}. This set with internodal
relation defined by "node(u) is father of node(v) iff v = ur for a certain 7€ V”
is a tree T with node(e) as the root (e is the empty path) and finitely many sons
of each father. So, every path v € PATH,(M) is a branch in 7. By assumption
|PATH,(M)—V*tV*| = oo there are infinitely many finite paths, thus branches
in 7 on which no t exists. Therefore there must be an arbitrarily long branch in
the tree. Setting X = PATH,(M) and applying the Konig’s Lemma, we come
to contradition. a

Summing up the results obtained above, the set-theoretic characteristics of the
deadlock and fairness at a state M are in the following table:

Deadlock PATHM)NV*tV* =0
Weak fairness |PATH (M) — V*tV>® =)
Strong fairness||PATH, (M) — V*tV*| < oo

for every transmission ¢.

5 Counting States

If the agents do not send and receive messages to/from themselves then the total
number of (global) states of n-agent system is (2" —1)™. Indeed, each agent may
issue % —1 send !(...) requests and the same number of receive ?(...) requests,
that is 2" —2 requests for communication. Since the agent may assume O as its
local state, the number of local states it may assume is 2" — 1. The set of global
states is the Cartesian product of sets of the local states of all agents. Therefore

the number of global states is (2" —1)-...- (2" — 1) = (2" —1)™. For instance,

for agents p1, p2, p3: e

the set of local states of p1 = {0, !(p2), ?(p2),!(p3), ?(p3), (P2, p3), 7 (P2, p3)}
the set of local states of po = {©,!(p1),?(p1), (p3), ?(p3), (p1,p3), ?(P1,p3)}
the set of local states of ps = {©,!(p1), ?(p1), (p2), ?(p2), (p1,p2), ?(P1,02)}
Thus, the system of three agents has 73 = 343 global states.
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The Mathematical Model
for Interference Simulation and Optimization
in 802.11n Networks

Iwona Doliriska, Antoni Masiukiewicz, and Grzegorz Rzadkowski
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Abstract. One of the key problems in 802.11 standard networks are
interferences. It is not possible to avoid the influence of other wireless
systems. One can only minimize the power level of unwanted signals.
Typically the designer should find the best localization of access points
(AP), but there is no planning and coordination between different private
networks. To reduce the level of interferences, the transmitting power
reduction is applied. The mathematical model was built to analyze the
relationship between the coverage and the level of interferences. The
results of these simulations are presented in this article.

Keywords: Wi-Fi, interferences, 802.11n standard, WLAN, throughput

1 Introduction

The 802.11 standard networks are the most popular solution of wireless commu-
nication today, besides the mobile telephony networks. One of the key problems
in such networks is the issue of interferences (see [6]). The main sources of in-
terferences are various radio systems or devices, which operate on the same or
similar frequency range. These networks produce both, adjacent and inter chan-
nel interferences. The reduction of internal system interferences is crucial for
obtaining the proper QoS of the transmissions (see [1]). Basic methods of the
interference limitation implement proper planning, which means the proper ar-
rangement of the access point localizations. The next step is a selection of the
transmission frequency dedicated for each channel. Such planning is not possible
in any network. One of the important features of the 802.11 networks is the fact,
that they operate at the public free frequency range (ISM Industrial, Scientific,
Medical), so the high number of different devices can operate at the same time
on a similar area. These devices could be elements of home or office networks.
There is no coordination between such networks.

Another method of interference reduction is the diminish of the transmitted
power (see [7]). In the authors opinion this method is not very efficient especially,
if the coverage is an important issue. The authors built the theoretical model
and carried out several calculations to show both advantages and disadvantages
of such solution.
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2 The Structure of 802.11n Physical Layer

The structure of the Physical Layer has a great influence on the internal system
interference level. For 2.4 GHz transmission frequency range, only three channels
(numbered 1, 6 and 11) are the so called not overlapping channels (see [9]). The
standard deviation between the central frequencies of these three channels is
25 MHz. The level of signal within a channel is limited by the mask. The mask
is a filter with specially developed characteristic. The characteristics of filters for
1, 6 and 11 channels in the 802.11n standard are presented in Fig. 1.

10

10 [ | 1]

L =4=—channel 1

m {f)

20 —

‘ =fli—channel 6
30 / channel 11
“Ud d L dma

-50

Fig. 1. Filter’s (masks) characteristics for 1, 6, 11 channels in the 802.11n standard.
Source: own preparation.

The channel masks overlap partly, even for non overlapping channels. Some
interchannel interferences are always present in the system, when more than one
network is operating on the same area. The final level of the interference signal
power depends strongly on many parameters. The distance plays an important
role, because the level of the received power decreases while increasing the dis-
tance between Wi-Fi stations. Two disadvantages are produced by interferences
(see [2]). The first is the diminish of signal to noise ratio, because the interference
power is treated as noise within the transmission channel. The thermal noise and
the interference power are produced by uncorrelated sources, so we can calculate
the summarized noise as the sum of power density of the thermal noise and the
interference power (see [8]):

Pnoise = Lint + Pwhite,noise . (1)
The noise power diminishes the channel throughput. The throughput is the most
important parameter determining the QoS of the transmission. The channel
throughput could be described by the following formula (see [3]):

noise

C =Bl (1 1 Latgnat “’9"‘“> : (2)
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where B represents the bandwidth of the transmission channel. The second dis-
advantage of interferences especially, when their signal power is relatively high,
is the effect of the spurious carrier detection. The high level of interference power
blocks the transmission channel. Some methods of interference level reduction
are discussed in the next section.

3 The Methods of Interference Level Reduction

A high level of interference power could be reduced by a proper arrangement of
access points (see [4]). It is possible only in some networks eg. private networks,
company networks. On the other hand, in some networks, the access points are
arranged in a totally chaotic way. There is no coordination of AP localization
and no coordination of utilized channels. An example of a set of private networks
is shown in Fig. 2. Such a situation happens very frequently, especially in the
multi-family or office buildings.

|TVDE | Hetwork name |Sie{:ur1"l\r | 802.11 |Mst |Channe| |Signa|strerg1h |
ampmmimas & [6]4] 7] 11
szara mysz ] (b1Y] 54 n | ]
DaM ] 06 TR | I I
wia bpssystern.com (b]Y] 1] nm ]
UPCO043960 il Qe 12 A I
szozekus_new ] b19ln] 130 3 |
dom a 5T S T E—
wnet1 370 il (b TE T - e
Tommy & 06 S | I
DOKTOR_NET o OO s 12 ]
maksi A 5 oI T E—

=

OO® 1 2z ]

o cannibalnetwork,

Fig. 2. The sample set of private 802.11 networks. Source: own measurement (Card
WLAN Monitor-Dell Wireless 1450).

Many devices use the same channel (5 devices - channel nr 11), some devices
use channels other then 1, 6, 11, so the choice of a channel is random. Network
planning let us achieve capacity, range and QoS (see [7], [4], [5]). There are several
methods of WiFi network planning described in the literaturte, e.g. Neldeare-
Mead direct planning (see [4]). This method enables the optimal determination
of localization of AP stations. The coefficient of channel frequency reuse could be
calculated (co channel interference reduction factor). This factor is the function
of the number of available channels/frequencies especially those not overlapping
and could be expressed by following formula:

Q = V3N, (3)

where the N is the number of available channels.
The second solution suggests [7] reduction of transmitted power, but as a
side effect a decrease of coverage occurs. This solution reduces the interference



102 I. Dolinska, A. Masiukiewicz, G. Rzadkowski

power level, but on the other hand leads to dead areas with no coverage, what
is shown in Fig. 3.

Lack of coverage / ﬁ

Fig. 3. Effects of transmitted power reduction. Source: own preparation.

The smaller is the coverage of one cell, the more cells we have to produce
to obtain the full coverage. This means more APs and in the end, more trans-
missions at the same time, but it does not mean that we reduce the interference
power level. The authors present some proof in Sec. 5 and Sec. 6.

4 Correlation Between Coverage, Transmitted Power and
the Interference Power Level

The basic equation, which describes the radio wave distribution in a free space
is the Friis formula (see[3]):

_ PtIGT'IJGtI)\2 _ thGrmGtwc2

Fra (1) (47‘(‘7‘)2 (47r7°)2 f2

(4)
This formula allows us to calculate the received power (P,;) depending on the
transmitted power (Py;), the gains of receiving and transmitting antennas (G,
G..), the channel frequency f and the distance between the transmitter and
receiver (in so called free space, the r power is equal 2):

k
= 22

Pry(r) (5)
Using the formula (4) we can calculate the attenuation of radio signal in a free

space:
Podb (T) = PtzGrmGtszsplv (6)

Lot = - _
P P 12 (109252 (109)

Lysp could be presented in the logarithmic scale:

2 (3-108)° B (407;1%)2‘ -

Lygp [dB] = —10log L1, (8)
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and finally we obtain the following formula [6]:
Lysp[dB] = 32,44 4 20log r[km] + 20log f[M H 2], (9)

where 1 is in [km] and f in [MHz]. The more general formula takes the following
form (see [6]):

2
1672y f2

This formula for frequencies f in [Hz] or [MHz] can be rewritten respectively as:

Lysp = (10)

Lysp[dB] = —147.6 4+ 10alog r[m] + 201og f[H 2], (11)

Lysp|dB) = —27.56 + 10« log r[m] + 20log f[M H?z]. (12)

The « coefficient is rather unstable in time and very sensitive to the environment
e.g. it changes strongly in rooms.

The coverage in the 802.11n standard is determined by the minimal received
power (received signal sensitivity), which is necessary for obtaining required level
of throughput. The set of minimal received power in the case of a single spatial
transmission in 802.11n standard is presented in Table 1.

Table 1. Minimal received signal sensitivity for the station operating in SISO mode

MCS Index|Modulation/coding|Data Rate [Mbit/s] | Received signal
20MHz channel [sensitivity [dBm]
0 BPSK/1:2 6.5 -82
1 QPSK/1:2 13.0 -79
2 QPSK/3:4 19.5 =77
3 16QAM/1:2 26.0 -74
4 16QAM/3:4 39.0 -70
5 64QAM/2:3 52.0 -66
6 64QAM/3:4 58.5 -65
7 64QAM/5:6 65.0 -64

The minimal sensitivity is respectively -82 dBm for throughput of 6.5 Mbit /s
and -64 dBm for 65 Mbit/s. It is difficult to correlate these values with a specific
distance, because in practice this distance could vary in a broad range due to a
lot of factors.

5 The Analysis Assumptions

The authors tried to verify the assumption that the decreasing of transmission
power and reduction of coverage help to diminish the internal interferences in
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802.11n networks (see [7]). The analysis was reduced to a model with one spatial
stream in 802.11n standard. One spatial stream means the use of the SISO
(Single Input Single Output) antenna solution. The isotropic characteristic of
transmission power is also the assumption. The analysis was carried out for
three non overlapping channels 1, 6 and 11. The Tx and Rx configurations are
presented in Fig. 4.

S - station which is disturbed
S1, S2 - disturbing stations

A - the power transmitted by S
drops to -64 dBm

B - the power transmitted by
S drops to -82 dBm

Fig. 4. Station configurationw, where the S station is disturbed by S; or S or both
the stations at the same time. Source: own preparation.

The Table 2 includes the channel allocation, which is used in simulation.

Table 2. Channel number allocation for stations S, S1 and S2

Channel Number
S1(S S2
11|6 -
11({6 11
6|6 11
6|6 6
- |6 6
116 1

We assume that all stations are the transmitters. The localization of a station
within the cell (coverage area) could vary from the center of the area to its edge.
We analyze the 802.11n standard with 20 MHz channel bandwidth. The center
frequencies for channels 1, 6, 11 are shown in Table 3.

The interference power level was calculated as the sum of interferences from
stations S7 and Sy and white noise and the noise figure representing the noise
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Table 3. Center frequencies for channels 1, 6, 11

Channel number|Center frequency [GHz]
1 2.412
6 2.437
11 2.462

of electronic circuits (mainly electronic amplifiers).

2
Pint = Z Pintz + (Pwhite,noise + PNF) . (13)
x=1

White noise or thermal noise [3] within the channel bandwidth could be described
as:

Pwhite,noise(f) = kT [W/HZ] ) (14)

T denotes the environment temperature in K degree, while k is a Boltzman
constant. Threshold of white noise in 1 Hz bandwidth at 0 Kelvin degree is
-228.6 dBW. White noise in B bandwidth can be calculated as:

Pwhite,noise[dBm] =10 log(kTB) . (15)

The white noise in 20 MHz channel at 17 C degree could reach the following
level:

Pyhite_noise(T = 17°C, B =20M Hz) = —174 + 10logB = —131dBm .

The following formula was developed by the authors to calculate the received
power:

Preceived(r) = M(f — 2412 — 5<K - 1)) + Ptransmitted
—(—27,56 + 10 log r[m] 4+ 201og f[M Hz]) + Gsum.- (16)

We will denote Preceived and Prransmitted Dy Pre and Py, respectively. The M (f)
function represents the mask (filter) of the relevant channel. The signal outside
the mask is eliminated while the one below the mask characteristics passes. The
authors assume that the mask characteristic determines the maximal internal
level of interferences. Gy, is equivalent to the additional gain of the system
including the influence of the antennas of the receiver and the transmitter and
respectively the gain connected with modulation, coding and different types of
signal dispersions. Pj;, o and Ggu.m are the parameters of the simulation and
their values are presented in Table 4.

The parameters of m(f) function correspond to the mask of 802.11n standard.
We assume that the function (for f in MHz) is continuous, piecewise linear and
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Table 4. Simulation parameters values range

Transmitted| Alpha | Additional
power [dBm]|parameter| gain [dB]
-10 to 20 2to 8 0 to 15

is described by the following formula:

0 for f € (—o0, —30]
2f +60 for f € [~30,—20]
2
ngr ? for f € [-20, —11]
10f + 135 for fe[-11,-9]
m(f) = 45 for fe[-9,9 (17)
—10f +135for f €[9,11]
—gf—i— ? for f e [11,20]
S2f 160 for f e [20,30]
0 for f €[30,00)

The stations are placed on Cartesian plane. The S transmitter has the (z,y)
coordinates and Sy respectively (z1,y1). The distance d; between the above
stations is equal:

dy =/ (w —a1)2 + (y —)?- (18)

The practical formula for interference power level, which influences the S sta-
tion (operating on channel 6) in d; distance from the station S, producing
interferences while operating on channel 11, will be as follows:

P, (dy) = M(f —2462) + Py, — (—27.56 + 10alog di[m] + 201og 2462) + Gsym.-

(19)
The average interference power within the whole channel is the integral from
P, over f within the proper channel (6th in our case):

2.447

P, (dy)average = / P..df . (20)
2.427

The authors correlate the distance d; with the minimal received signal sensitivity
(see Table 3).

6 The Simulation Results

In the first simulation the station S, operating on channel 6, was disturbed by
S1 station, operating on channel 11. The transmitting power distribution was
firstly simulated. The figure 5 shows the distribution of points correlated with
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Fig. 5. Change of coverage in channel 6 versus P,,, @ and Ggyum. Source: own prepa-
ration.

respectively -64 dBm and -82 dBm of received power (upper and lower lines).
This analysis concerns the transmission in channel 6. We assume that the power
transmitted by the S station is equal to receiver sensitivity.

The points corresponding to the -64dBm received signal are within the range
from single meters to about 25 meters, while these corresponding with -82 dBm
are within the range from a few meters to more than 200 meters. The coverage
diminishes especially for the higher value of «. Figure 6 presents the character-
istics of the diminish of transmitted power with distance for different values of
P, a and Ggym. The critical parameter is the . The highest slope is for a = 8.

&
200 200 400 600 800 Tona 300
58
= -54chm
“B2rofm
1040 é

Pri [dBm]
I |
o
o o
Qg

L HH ‘-"""-.__

distance [m]

Fig. 6. The characteristics of received power in channel 6 versus Pz, o and Gsuym.
Source: own preparation.
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The characteristics of the interference power for the fixed distance beetwen
S and S; are presented in Fig. 7. The P;,; characteristics are versus the level
of the disturbances source power. The following assumptions are made: the S is
transmiiting in the channel nr 6, P, is 10 dBm, Gy, is 0 [dBm] and a = 3;
while the S station (disturbing) is transmitting in the channel nr 11, Gy, is 0
[dBm], « is 3 and the Py, change in the range from -10 to 20 dBm. The point of
the interference level calculation coresponds with the maximum coverage of the
S station, where the P, is -82dBm. This distance is 53,38 m while the distance
between stations is 106.76m. The results are shown in Fig. 7.

15 10 5 n:' LESE 15: =SS :!5
—— e S 025
s —
[ ,-n/ —_ A a=30
T T1h i = e
g FREEss--agsmEs
E .../‘/
-8 T | - ,

EEEE 13 [
I t

PtransHittedtavarage in bandwidth) [dBm]

Fig. 7. The characteristics of the interferences power level for d1=53.38 m versus Pj;.
Source: own preparation.

The interference power level diminishes, when the Py, of S; diminish, but
at the same time the coverage area is reduced, so the dead zone arises with no
possibility of transmission. The white noise could have higher level than interfer-
ence power for low P, of disturbing station and for non convenient transmission
conditions (high value of the « coefficient- eg. rooms, halls etc.).

The characteristics of interference level with another assumption is presented
in fig. 8. In this case together with the change of the P,, we change the point of
Sy localization (z1,y1) to reduce the dead zone. The point of the interference level
calculation (distance from S) is constant and its value is 53.38 m, but the distance
between S and S stations (d;) diminishes relatively to P, (S1) reduction. The
dead zone is minimized. The level of interference power is constant versus Py,
and « values (Fig. 8). The next simulation concern the situation when the Py,
power is increased for both S and S; and the interference power level is calculated
for maximum coverage points corresponds with received power equal -82 dBm
(Fig. 9). The results of the simulation are the same as previously. The inteference
power level is higher than the thermal noise, but if we take into account the the
electronic circuits noise figure, then the total noise could be above interference
power level.
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Fig. 8. The interferences level characteristics, where the distance from S is constant
(53.38 m) while Sy changes its position (). The r distance each time corresponds to
-82 dBm power level. Source: own preparation.
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Fig. 9. The interferences power level versus changes of Piz, Pint = f(Piransmitted) for
r [m] relative to Preceived =-82 [dBm], with the assumption that both the Pi, and the
distance between stations is reduced. Source: own preparation.

7 Conclusions

The model for interference power level simulations from one or two disturbing
sources (S /S2) was developed. The model includes the efects of the mask
and several other parameters such as antennas gain, modulation coding and
dispersion gain (Gsym coefficient). The following simulations based on this model
were carried out :

1. the characteristic of interference power level, when the P, of source of dis-
turbances is reduced, but the localisation remains the same (see Fig. 7) |
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the characteristic of interference power level, when the P, of source of dis-
turbances is reduced, but the localisation is changed to avoid the dead zone
(see Fig. 8),

. the characteristic of interference power level, when the P, of source of dis-

turbances is changed as well as the power of disturbed station S and the
localisation of both stations is also changed to avoid the dead zone (see
Fig. 9).

Taking into account the mentioned above simulations, we can conclude:

. for the 1st simulation: the power level of interferences decrease, but the

coverage diminishes at the same time,
for the 2nd simulation: the interference level is constatnt,
for the 3rd simulation: the interference level is constatnt.

The achieved results let us make a conclusion, that reduction of P, could re-
duce the interference power level, but at the same time cause the dead zone
to arise. This solution may be applied, if the station is close to AP, so we can
temporary (for one or more sessions) reduce transmission power, keeping reason-
able throughput. This solution requires communication between different APs
to establish the most efficient transmission power level. Such solutions are not
available nowadays.
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Abstract. The intention of this paper is to introduce a timed extension
of transition systems with independence, and to study its categorical
interrelations with other timed ”true-concurrent” models. In particular,
we show the existence of a chain of coreflections leading from a category
of the model of timed transition systems with independence to a category
of a specially defined model of marked Scott domains. As an intermediate
semantics we use a model of timed event structures, able to properly
capture causality, conflict, and concurrency among events which arise in
the presence of time delays of the events.

1 Introduction

The behaviour of concurrent systems is often specified in terms of states and
transitions between states, the labels on the transitions represent the observable
part of system’s behaviour. The simplest formal model of computation able to
express naturally this idea is that of labelled transition systems. However, they
are a representative of the interleaving approach to concurrency and hence do
not allow one to draw a natural distinction between interleaved and concurrent
executions of system’s actions. Two most popular ”true concurrent” extensions of
transition systems, aiming to overcome limitations of the interleaving approach,
are asynchronous transition systems, introduced independently by Bednarczyk
[1] and Shields [2], and transitions systems with independence, proposed by
Winskel and Nielsen [3].

Category theory [4] has been successfully exploited to structure the tangled
world of models for concurrency. Within this framework, objects of categories
represent processes and morphisms correspond to behavioural relations between
the processes, i.e. to simulations. The category-theoretic approach allows for
natural formalization of the fact that one model is more expressive than another
in terms of an "embedding”, most often taking the form of a coreflection, i.e. an
adjunction in which the unit is an isomorphism. For example, Hildenbrandt and

* The second author is supported in part by the RFBR (grant 12-01-00873-a), by the
President Program ” Leading Scientific Schools” (grant NSh-7256.2010.1), and by the
Federal Program ”Research and educational personnel for innovative Russia” (grant
8206).
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Sassone [5] have constructed a full subcategory of a category of asynchronous
transition systems and have shown the existence of a coreflection between the
subcategory and a category of transition systems with independence. In their
next paper [6], the authors have enriched the model of transition systems with
independence by adding multi-arcs and have yielded a precise characterization
of the model in terms of (event-maximal, diamond-extensional) labeled asyn-
chronous transition systems, by constructing functors between categories of the
models.

It is generally acknowledged that time plays an important role in many con-
current and distributed systems. This has motivated the lifting of the theory
of untimed systems to the real-time setting. Timed transition system like mod-
els have been studied thoroughly within the two last decades (see [7,8] among
others), while timed ”true concurrent” extensions have hitherto received scant
attention.

The aim of this paper is to introduce a timed extension of transition systems
with independence, and to study its categorical interrelations with other timed
”true-concurrent” models. In particular, we show the existence of a chain of
coreflections leading from a category of the model of timed transition systems
with independence to a category of a specially defined model of marked Scott
domains. As an intermediate semantics we use a model of timed event structures,
able to properly capture causality, concurrency, and conflict among events which
arise in the presence of time delays of the events.

The paper is organized as follows. In Section 2, the notions and notations
concerning the structure and behaviour of timed transition systems with in-
dependence are described. Also, an unfolding of timed transition systems with
independence is constructed, and it is shown that together with the inclusion
functor the unfolding functor defines a coreflection. Section 3 establishes the in-
terrelations in terms of the existence of a coreflection between timed occurrence
transition systems with independence and timed event structures. In Section 4,
using the equivalence of the categories of timed event structures and marked
Scott domains, stated in [9], functors between the categories of timed transition
systems with independence and marked Scott domains are constructed to consti-
tute a coreflection. Section 5 provides a direct translation from timed transition
systems with independence to marked Scott domains, established in the categor-
ical setting. In section 6, we conclude with a short summary of the discovered
relationships.

2 Timed Transition Systems with Independence

In this section, we first describe the basic notions and notations concerning the
structure and behaviour of timed transition systems with independence.

We start with untimed case. A transition system with independence is a
tuple TI = (S,s!, L, Tran, I), where S is a countable set of states, s' € S is the
initial state, L is a countable set of labels, Tran C S x L x S is the transition
relation, and I1C Tranx Tran is the irreflexive, symmetric independence relation,
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such that, using < to denote the following relation on transitions (s,a,s’) <
(s",a,u) < 3(s,b,5"),(s,b,u) € Tran s.t. (s,a,s") I (s,b,8") A (s,a,8") I
(s',b,u)A(s,b,8") I (s”,a,u), and ~ for the least equivalence relation containing
=<, we have:

1. (s,a,8') ~ (s,a,8") = s=45",

. (s,a,8) I (s,b,8") = 3(s',b,u),(s",a,u) € Tran ., (s,a,s") I (s',b,u) A
(s,b,8") I (s",a,u),

3. (s,a,8) I (s',b,u) = 3(s,b,8"),(s",a,u) € Tran , (s,a,s') I (s,b,8") A
(8,0, I (s",a,u),

4. (s,a,8") ~ (8" a,u) I (w,b,w') = (s,a,8) I (w,b,w).

Let Diamg (s, s’,s",u) <= 3(s,a,s),(s,0,8"),(s,b,u),(s",a,u) € Tran ,
(sya,s") I (s,b,8") N (s,a,8") I (s',b,u)A(s,b,8")1 (5", a,u). We say that the
transitions above form an independence diamond, and denote the ~-equivalence
class of a transition t € Tran as [t].

A transition system with independence functions by executing transitions
from one state to another. A possibly infinite sequence ™ = tg t1 ... with t; =
(8iyai,8i+1) € Tran (i > 0) is called a path. The starting state of 7 is denoted
as dom(), and the ending state as cod(w) if 7 is a finite path. A computation is
a path 7 such that dom(w) = s’. Let Comp(7T'I) (Comp®(T'I)) be the set of all
(finite) computations of T'1. A transition ¢ is said to be reachable, if there exists a
computation 7 € Comp® (T'I) such that t appears in 7. From now on, we consider
only those transition systems with independence in which all transitions are
reachable. Let ~C Comp(TT) x Comp(TI) be the least equivalence relation such
that m4(s,a,s)(s',b,u)m, ~ m4(s,b,s")(s",a,u)m, <= Diamgy(s,s’,s”,u),
and let [r] stand for the ~-equivalence class of a computation 7.

We now incorporate time into the model of transition systems with indepen-
dence. By analogy with the paper [8], we assume a global, fictitious clock, whose
actions advance time by nonuniform amounts and whose value is set to zero at
the beginning of system’s functioning. All transitions are associated with timing
constraints represented as minimal and maximal time delays, and happen ”in-
stantaneously”, while timing constraints restrict the times at which transitions
may be executed. Unlike the paper [8], in our timed model the time domain is
changed to the integers, and the maximal delays associated with transitions are
always equal to co, therefore they are not specified explicitly.

Let N be the set of non-negative integers.

Definition 1. A timed transition system with independence is a tuple TTI =
(8,8, L, Tran,I,5), where [TTI] = (S, s, L, Tran,I) is the underlying transi-
tion system with independence, and 6 : Tran — N is the delay function such
that 6(t) = 6(t') for any t,t' € Tran such that t ~t'.

A timed computation of a timed transition system with independence TT1I =
(S,s!, L, Tran,1,d) is a pair II = (m,7) € (Comp((S,s’, L, Tran,I)) x (NU
{o0})) with 7 > §(7) = sup{o(t) | t € w}. Define dom(II) = dom(w) and
cod(IT) = cod(m). We denote the set of all (finite) timed computations of TTT as
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TComp(TTI) (TComp®(TTI)), and write IT ~, IT" iff 7 ~ 7’ and 7 = 7/. Tt is
easy to see that ~ is an equivalence relation; the ~ -equivalence class of a timed
computation IT is denoted as [/T],. Let TComp. (TTI) (TCompgT (TTI)) be
the sets of ~,-equivalence classes of all (finite) timed computations of T7TI.

For timed transition systems with independence TT1 = (S, s’, L, Tran, I,?)
and TTI' = (S, 81, L', Tran',I',8"), a morphism h : TTI — TTI' is a pair of
mappings h = (0 : S — S, \: L —* L')3 such that:

1. o(s!) =1,
2. (s,a,8') € Tran = (o(s),ala),o(s’) € Tran’ if a € dom A, and o(s) =
o(s'), otherwise,

1. ((o(s), ala),o(s"))) < 6((5,a,5").

Timed transition systems with independence and morphisms between them
form a category T'TSI with unit morphisms 1777 = (1s,1r) : TT1 — TT1I for
any TTI = (S, s', L,Tran,I,5), and with composition defined in a component-
wise manner.

We next aim at unfolding of timed transition systems with independence. To
that end, we first define a subclass of timed transition systems with indepen-
dence that serves as a target of unfolding. After that, we construct an unfolding
mapping and show that together with the inclusion functor the unfolding functor
defines a coreflection.

Definition 2. A timed occurrence transition system with independenceToT I =
(S, s0, L, Tran,1,9) is an acyclic timed transition system with independence such
that (s”,a,u) # (s',b,u) € Tran = Is € S s.t. Diam, (s, s, s",u), for all
(s",a,u), (s, b,u) € Tran.

Let ToT'SI be the full subcategory of the category TTSI.

Define an unfolding mapping ttsi.totsi : TTSI — ToTSI as follows. For a
timed transition system with independence TTI = (S, s!, L, Tran, I,9), specify
ttsi.totsi(TTI) as (S~,,[(s!,0)],, L, Tran~_, d~, ), where

>~y _7—7

= S~ ={[I = (m,0(m))]- eTComeT(TTI)},
— (I = (7, 6(m)]r,a, [ = (7',6(7"))]7) € Tran~, < Ftpqn = (s,a,8) €
Tran , II' ~; (T&'tmﬂ ,max{?( ), 0(7")}),

- ([]+,a, [H}T)sz([ﬂ}‘rab» (T'];) <= traltzz,

= 0~ (7, a, [IT']7) = 6(tr x ).

Lemma 1. Given a timed transition system with independence TTI,
ttsi.totsi(TTI) is a timed occurrence transition system with independence.

3 A partial mapping from a set A into a set B is denoted as f : A —* B. Let
dom f = {a € A| f(a) is defined}. For a subset A’ C A, define fA' = {f(a’) | a’ €
A"Ndom f}.
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In order to demonstrate that the mapping ttsi.totsi is adjoint to the inclusion
functor ToTSI — TTSI, we define a mapping and prove that it is the unit of
this adjunction. For a transition system with independence TT'I, let epp;r =
(0e,11) : ttsi.totsi(TTI) — TTI, where o.([II];) = cod(II) for all [II], € S~..
It is easy to see that ey is a morphism of TTSI.

Lemma 2 (epr; is couniversal). For any object TTI of TTSI, any object
ToT'I of ToTSI and any morphism h : ToTI — TTI of TTSI, there exists a
unique morphism h' : ToT1 — ttsi.totsi(TTI) of ToTSI such that h = epproh’.

The next theorem presents a categorical characterization of the unfolding.

Theorem 1 (— ttsi.totsi). The unfolding mapping ttsi.totsi extends to a
functor from TTSI — ToTSI which is right adjoint to the functor —: ToTSI —
TTSI. Moreover, this adjunction is a coreflection.

3 Timed Event Structures

In this section we relate timed occurrence transition systems with independence
and timed event structures, establishing the close relationships between cate-
gories of the models.

We start with the definition of an untimed variant of event structures. An
event structure is a triple £ = (E, <,#), where FE is a countable set of events;
<C FE x F is a partial order (the causality relation) such that e = {¢’ € E |
e/ < e} is a finite set for each e € E, #C E x FE is the symmetric irreflexive
conflict relation such that e # € < e” = e # ¢”. A set of events C C E is
said to be a configuration of an event structure £ if Ve € C', e C C, and
Ve,e! € C, =(e # €'). We say that events e,e’ € E are concurrent and write
e—eif a(e<e' Ve <e' Ve # ¢). Introduce the concept of a reflexive conflict
as follows: e W e/ <= e# ' Ve=¢.

We now recall the definition of timed event structures from [9]. Similarly to
the model of timed transition systems with independence, there is a global non-
negative integer-valued clock. Each event in the structure is associated with a
time delay with respect to the initial time moment; i.e., if an event e is associated
with a time delay ¢, then e may not occur earlier than all the predecessors of
the event occur and the clock shows time t. In this case, the event itself occurs
instantaneously.

Definition 3. A timed event structure is a tuple TE = (E,<,#,A), where
(E,<,#) is an event structure and A : E — N is the delay function such that
e <e= A() < Ale).

A timed configuration of TE is a pair (C, 1), where C' is a configuration of
(E,<,#) and 7 € NU {co} such that 7 > A(C) = sup{A(e) | e € C}. The
set of all (finite) timed configurations of a timed event structure 7¢& is denoted
as TConf(TE) (TConf’(TE)). We define a transition relation — on the set
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TConf(TE) as follows: (C,t) — (C’',¢') if C C C’" and ¢t < t'. Clearly, the
relation — specifies a partial order on the set TConf(TE).

Let TE = (E,<,#,A) and TE' = (E', <", #', A") be timed event structures.
A partial mapping 6 : E —* E’ is a morphism if [0(e) C 6 le; 0(e) W 0(e') =
e W €, for all e,e’ € dom@; A'(6(e)) < A(e), for all e € dom#@. Timed event
structures with their morphisms define a category TES with unit morphisms
17s = 1 : TS — TS for all TS = (E,<,#,A) and the composition being a
usual composition of partial functions.

We now establish the relationships between the categories of timed event
structures and timed occurrence transition systems with independence. For this
purpose, we first define a mapping tpes.totsi : TPES — ToTSI extending the
mapping pes.otsi from [3] to the timed case. For a timed event structure 7€ =
(B, <. #,A), let tpes.totsi(TE) be (Ste,she, Lre, Trante, ITe, 07¢), where

— Sre ={(C, A(C)) € TConf"(TE)};

B 3%’5 = (@70);

= L7e = E;

— ((C, A(C)), e, (C", A(C")) € Trangs —= C'\C = {e
- ((C’ A(C))’ ¢, (0/7 A(C/)))ITS ((Ca A(C))? €, C/7 A(Cl))
o7e((C, A(C)), €, (", A(C))) = Ale).

It is easy to see that the above definition is correct, i.e. tpes.totsi maps timed
event structures to timed occurrence transition systems with independence.

Next, we construct a mapping totsi.tpes : ToTSI — TPES. For a timed
occurrence transition system with independence ToTI = (S,s!, L, Tran,I,6),
let totsi.tpes(ToTI) be (Tran.,<,#,A), where

— Tran. = {[t] | t € Tran},
- <[] ==
Y(rt',7) € TComp® (ToTI) ,# ~t = (Ftem t~1); <=< U=,
- # ] = . 3 ) )
Y(r,7) € TComp’(ToTI),Vt € [t], VT € [t'| . t€nm =1 ¢,
— A([t]) = max{5(#') | [t'] < []}.

On morphisms h = (o, \) : ToTI — ToT1' in ToTSI, the mapping totsi.tpes
acts as follows: totsi.tpes(h) = 6, where 6([(s,a,s’)]) = [(o(s), A(a),o(s)], if
a € dom A, and 0([(s, a, s")]) is undefined, otherwise.

Proposition 1. totsi.tpes : ToTSI — TPES is a functor.

Finally, we define the unit of the adjunction. For a timed event structure
Tg7 let nre : Ere — Etotsi.tpesotpes.totsi('TE) be a ma’pping such that nre (6) =
[(C, A(C)),e, (CU{e}, A(CU{e}))]. It is straightforward to show that nr¢ is an
isomorphism in TPES. In order to demonstrate the existence of the adjunction,
we need to check that n7¢ is indeed a unit, i.e. it is universal.

Lemma 3 (77¢ is universal).

For any object TE of TPES, any object ToTI of ToTSI, and any mor-
phism 0 : TE — totsi.tpes(ToTI) in TPES, there exists a unique morphism
h : tpes.totsi(TE) — ToTI in ToTSI such that 6 = totsi.tpes(h) o nre.
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The next theorem establishes the existence of a coreflection between the
categories of timed event structures and timed occurrence transition systems
with independence.

Theorem 2 (tpes.totsi - totsi.tpes). The map tpes.totsi can be extended to
a functor tpes.totsi : TPES — ToTSI, which is left adjoint to the functor
totsi.tpes. Moreover, this adjunction is a coreflection.

4 Marked Scott Domains

In this section, we extend the established chain of coreflections to marked Scott
domains. To that end, we first recall related notions and notations.
Let (D,C) be a partial order, d € D and X C D. Then,

— td={d € D|dLC d} isan upper cone of element d, |d ={d' € D | d' C d}
is a lower cone of element d,

— X is downward (upward) closed if {d C X (1d C X) for every d € X,

— X is a compatible set (denoted as X7), if the following assertion is true:
dd € DVx € X , x C d, i.e.,, X has an upper bound. If X = {z,y}, we write
x T y instead of {z,y}1. The least upper bound of the set X is denoted
as | | X (if it exists), and the greatest lower bound is denoted as [ X (if it
exists). The least upper bound of two elements x and y is denoted as = L y,
and the greatest lower bound, as x My.

— X is a finitely compatible set if any finite subset of it X’ C X is compatible.

— X is a (upper) directed set if any finite subset of it X’ C X has an upper
bound belonging to the set X (thus, X is a finitely compatible and nonempty
set).

— (D, ) is a directed-complete partial order (dcpo for short) if every directed

subset X C D has | | X.

d is a finite (compact) element of a depo (D, ) if, for any directed subset

X C D, the following assertion is true: d C | | X = 3z € X , d C z. The set

of finite elements is denoted as C(D).

A depo (D, E) is said to be algebraic if, for any d € D, d =|{eEd | e €

C(D)}. It is said to be w-algebraic if C'(D) is countable.

(D, ) is a consistently complete partial order (ccpo) if any finitely compat-

ible subset X C D has | | X. Clearly, a ccpo has the least element 1 = | |0,

and is also a dcpo.

An w-algebraic ccpo is called a Scott domain. A Scott domain (D, C) is said

to be finitary if |d is finite for every d € C(D).

Describe some properties of Scott domains. An element p of a Scott domain
(D, C) is said to be prime if, for any compatible subset X C D, pC| | X = Jz €
X . p C z. The set of the prime elements is denoted as P(D). A Scott domain
(D, ) is called prime algebraic if, for any d € D, d=| |[{p T d | p € P(D)} and
coherent if all subsets X C D satisfying the condition Vd',d”’ € X , d’' 1 d’ have

L] X.
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Let (D,C) be a Scott domain and < = = \ =2 be a covering relation. For
elements d,d’ € D such that d < d’, the pair [d, d'] is called a prime interval. The
set of all prime intervals is denoted as I(D). We write [¢, ] < [d, d'] if and only
if c=cdNdvd = Ud. The relation ~ is defined to be a transitive symmetric
closure of the relation <. Note that ~-equivalent prime intervals model one and
the same action. Let [d, d’].. denote the ~-equivalence class of the prime interval
[d,d'].

Now we are ready to present the definition of marked Scott domains. Infor-
mally, a marked Scott domain is meant to be a prime algebraic, finitary, and
coherent Scott domain with the prime intervals modeling two — instantaneous
and delayed — types of system actions. The former actions do not require time
and are marked by zero, and the latter take one unit of time and are marked by
one. It is natural to require that the ~-equivalent prime intervals corresponding
to one and the same system action are marked identically.

Definition 4. A marked domain is a triple (D,C,m), where (D,C) is a prime
algebraic, finitary, and coherent Scott domain and m : I(D) — {0,1} is a
marking such that [c, '] ~ [d,d] = m([e,]) = m([d,d']).

Introduce auxiliary notions and notations. For d,d’ € D and i € {0,1}, we
write d <* d', if d < d' Am([d,d]) =i, and d ' ', ifd <* d'vVd = d;
Ci= (=xH)* lid = {d' | d ¢ d}, and 1d = {d’' | d C d'}; PY(D) = {p €
P(D) | 3d € D , m([d,p]) = i}. For a finite element d € D and a covering
chain ¢ having the form L = dy <% dy -+ dp_1 <P d, = d (the chain is
finite as (D, C) is finitary), define the norm of d along o by ||d|, = > ki.
Since (D, C) is a prime algebraic Scott domain and m respects ~, the value of
ld||» does not depend on o. Therefore, we shall use ||d|| to denote the norm of a
finite element d. For a non-finite element d € D, its norm is defined as follows:
Il = sup{||d’|| | d € }dN C(D)}. A marked domain (D,C,m) is said to be
linear if for any d € D such that ||d|| < oo, (11d, C!) = (N, <); regular if for any
d,d" € D,d 1 d = Vd, € t'd, vd}, € 11d’ . (dy 1 d}).

It is not difficult to see that linear regular marked domains, together with the
additive stable mappings [10] preserving <" and <!, form the category MDom.

As shown in [9], marked Scott domains are related with timed event struc-
tures via a pair of functors tpes.mdom : TPES — MDom and mdom.tpes :
MDom — TPES defined as follows?.

For a timed event structure T7& = (E,<,#,A), let tpes.mdom(TE) be
(TConf(TE), —,mrse), where

;L 0,if C’\C={e} AT =T,
(7). (E", 7)) = {1,if C’\=C/\{r’}=r+1.

For a marked Scott domain MD = (D,C,m) € MDom, define
mdom.tpes(M D) to be (E,<,#,A), where E = P°(D), p <p <= pLC p,
p#p = p¥p, and A(p) = [|p||.

4 We do not specify how tpes.mdom and mdom.tpes act on morphisms since it is not
essential to this paper.
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Theorem 3. [9]. The functors tpes.mdom and mdom.tpes constitute an equiv-
alence between the categories TPES and MDom.

Theorems 1, 2 and 3 yield the following corollary.

Theorem 4. The functor — otpes.totsi o mdom.tpes : MDom — TTSI is
left adjoint to the functor tpes.mdom o totsi.tpes o ttsi.totsi : TTSI — MDom.
Moreover, this adjunction is a coreflection.

5 Direct Characterization

In this section, we establish some relationships between timed transition systems
with independence and marked Scott domains in a direct way.

We start with introducing auxiliary notations. For a transition system with
independence TI = (S, s', L, Tran, I) and computations 7, 7’ € Comp®(T'I), we
write m < 7’ iff there exists a path 7" such that wn'' ~ 7’:

For possibly infinite computations 7,7’ € Comp(TI), let 7 < 7’ iff for every
finite prefix @ of 7 there exists a finite prefix @ of 7’ such that # < 7. It
is straightforward to check that < is a partial order on Comp(T'I). Specify a
partial order on timed computations as follows: IT = (mw,7) <, II' = (7', 7') iff
7 <7’ A7 < 7'. Define a partial order C on the ~ -equivalence classes of timed
computations as follows: [II], C [II'], iff [T <, IT'.

Lemma 4. (TComp. (TTI),E) is a finitary w-algebraic dcpo. Moreover,
C((TComp.,_(TTI),C)) = TComp2 (TTI).

In order to directly relate timed transition systems with independence and
marked Scott domains, we construct a mapping ttsi.mdom’ : TTSI — MDom.
Before doing so, consider a prime interval [[II = (m,7)], [[I' = (7/,7)];] in
(TComp,._(TTI),C). It is not difficult to check that either 7’ ~ 7AT' = 7+1 or
n' ~ 7wt A" = 7 for some transition ¢. Define a map mqryr : I((TComp. (TTI),
C)) — {0,1} as follows:

0,if 7 =171,
1, otherwise.

([, [T),]) = {

Let ttsi.mdom/(TTI) = (TComp. (TTI),C, myry), for any timed transition
system with independence T7T1.
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Proposition 2. ttsi.mdom’ can be extended to a functor ttsi.mdom’ : TTSI —
MDom isomorphic to ttsi.mdom = tpes.mdom o ottsi.tpes o ttsi.ottsi.

At last, we are ready to state the fact which is the last main result of this
paper and that provides a direct characterisation.

Theorem 5. ttsi.mdom’ is right adjoint to mdom.ttsi = tpes.mdomo ottsi.tpeso
ttsi.ottsi. Moreover, this adjunction is a coreflection.

6 Conclusion

We have defined and studied a timed extension of a well-known ”true concurrent”
model of transition systems with independence and have shown that there exists
a chain of coreflections between a category of the model and a category of marked
Scott domains as well as a direct translation. The diagram below summarises
the established relationships:

ttsi.totst totsi.tpes

TTSI _ T > ToTSI T TPES

tpes.totsi
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Appendix A: Elements of Category Theory

Here we briefly recall notions from category theory [4] important to this paper.
Let G : B — A be a functor between categories A and B, and let, for each object
A of A, there exist an object F'(A) of B and a morphism n4 : A - Go F(A) in
A that is universal in the following sense: for any morphism h : A — G(B) in
A, where B is an object of B, there exists a unique morphism »’ : F(4) — B
in B such that G(h') ona = h; i.e., the following diagram commutes.

A F(A) A—" L GoF(A)
Vh\L H!h’l/ h\L //(h/)
G(B) B G(B)

In this case, we say that there exists an adjunction from A to B, and the family
of morphisms {n4 | A € A} is said to be a unit of this adjunction. Then, F can
be extended to a functor by assuming that, for any morphism h: A —+ A’ in A,
F(h) : F(A) — F(A’) is a unique morphism in B such that GoF'(h)ona = nasoh.
In this case, F is said to be left adjoint to G (denoted as F' - G), and G right
adjoint to F (denoted as G - F). In addition, if 54 is an isomorphism for
each A, then the adjunction is called a coreflection. Categories A and B are
equivalent if F' is adjoint to G and both the unit and counit of the adjunction
are isomorphisms.
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Abstract. The paper presents a multi-agent algorithm implementing
semantic analysis of unstructured data based on ontology. In this multi-
agent model agents of two kinds interact: the instance agents correspond
to meaningful units of the information being retrieved, and the rule
agents implement rules of a given ontology. An original solution for the
termination detection of this multi-agent algorithm is suggested.

1 Introduction

At present most organizations deal with large quantity of documents, licenses,
manuals, emails, business letters, financial and technical reports etc. It is already
impossible to process all these documents by hand, without automatic assistance.
Ontological knowledge bases are a good solution for storing information from
these documents, and automatical completing the ontology is necessary.

The essence of an ontological approach to information retrieval is to use
knowledge represented by an ontology for extraction of data interpreted as the
ontology instances. For example, semantic-oriented approach to text analysis
without complete linguistic analysis can be used for ontological data generation.
The standard productional approach to semantic-oriented analysis is to sequen-
tially apply given rules of instance retrieval to data. This process takes a long
time and causes such specific problems as information duplication, variability of
results, etc. Using the multi-agent approach allows to create good alternatives
to the data analysis systems with the sequential architecture. The main feature
of the approach is that the system being developed is considered to be a set of
autonomous entities (the agents) where the agents have the abilities to interact
with the environment and with other agents. By means of this interaction the
system works. The traditional benefits of the multi-agent approach is that the
operations of the system are parallelized, due to independent agents and their
ability to interact with each other, so that some system tasks are solved locally
and therefore the result is obtained significantly faster. Besides, our multi-agent
approach handles some of the above difficulties of productional approaches.

* The research has been supported by Siberian Branch of Russian Academy of Science
(Integration Grant n.15/10 “Mathematical and Methodological Aspects of Intellec-
tual Information Systems”).
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The proposed approach is in the framework of modern investigations of auto-
matic processing and analyzing huge amount of unstructured data. Multi-agent
approach for information retrieval from heterogeneous data source for completing
ontology is widespread, in particular, it is used for natural language processing
[1,2,11,6] and web processing [3-5]. Agents in these works have different behav-
ior. Usually in web processing, agents are high-level agents that manage rather
data flows, using standard algorithm for knowledge retrieval, than data itself.
In natural language processing, agents are either associated with conventional
linguistic levels (morphological, syntactic, semantic) or targeted to recognize
specific linguistic phenomena such as ellipsis, anaphora, parataxis, homonymy.
These agents do not use ontological knowledge substantially. Thus they are com-
puting processes which may speed up information retrieval due to their parallel
work but they do not affect the retrieval qualitatively.

Unlike all the above works, in our approach we use two kinds of agents, collec-
tively possessing complete information about both the data being investigated
and the domain-specific ontology. Agents of one kind can analyze ontological
(and linguistic) features. They do not use data directly, but they process infor-
mation provided by requesting agents of the other kind. The latter agents are
the most close to the ones from [10]. In cited paper every agent representing
some word from a text has to determine correspondence between its word and
an element of a given ontology. The authors do not use special agents for on-
tological (and linguistic) properties. Instead, they exploit statistical methods of
text clustering.

Our variant of ontology-based approach for processing unstructured data
contains the following stages. First, a proper domain ontology has to be selected.
We suppose that rules for completing the ontology are defined formally. Then
initial ontology instances (their classes and some attributes) have to be identified
by some preliminary algorithm. Then other instances’ attributes are evaluated
by the ontology rules using our algorithm.

The idea of multi-agent aspect of the our approach is that a set of different
data items is aggregated into an agent considered as an ontology instance. This
process is assisted by special support agents corresponding the ontology. First,
objects significant for the ontology are recognized preliminary in given data.
We call these objects instance agents. Belonging to an ontology, the instance
agents have attributes. The values of some of these attributes are evaluated as
the result of the preliminary analysis. Non-evaluated attributes can be specified
as a result of communication of instance agents and the support rule agents.
In the process of interaction, the agents establish a correspondence between the
ontology concepts and the instance units, and thus complete the ontology with
specific instances of concepts and relationships.

This paper presents a multi-agent algorithm for arbitrary unstructured data
processing. This algorithm improves and generalizes the algorithm for informa-
tion retrieval from natural language text suggested in [7]. We estimate the time
upper bound of the algorithm and prove the properties of termination and cor-
rectness of the termination controller agent.
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The rest of the paper is organized as follows. The next section 2 describes the
main agents in our systems and gives a simple example. The following section
3 presents protocols for the instance, rule and controller agents and sketches
some properties of the systems. Finally, we conclude in the last section 4 with a
discussion of further research topics.

2 Agent Model

Outline of the approach and multi-agent system follows. There is an ontology, a
set of rules for completing it, and a finite set of data to extract the information for
the ontology. The preliminary phase partially assigns values to instance agents
attributes. The rule agents implementing the ontology rules (the rules depend
on the ontology only, but not on the data), according to data received from
various instance agents, generate new attribute values of the instances, send the
obtained result to all agents interested in it, or generate new instance agents.
Eventually, the instance agents assign values to all their attributes that can be
evaluated with the information from the data, and the system stops. A special
controller agent keeps track of system stopping.

Let the result of data pre-processing be the set I A of instance agents, where
each I € T A is a tuple I = (id; Cl; ROg; a1 (RIy; ROy), ..., ax(RI; ROy)), where

— id is a unique agent identifier;

Cl is an ontological class of the agent;

— ROy is set of rule agents that use this instance agent as an argument;

for each i € [1..k], a; is the attribute of the agent, which value is determined
by some rule agent from RI;, every rule in set of rule agents RO; requires
the value of attribute a; to get the result; let us denote the set of rule agents
for incoming values as RI = U;—1. ;RI;, the set of rule agents for outcoming
values as RO = U;—1 1 RO;.

The values of attributes of an instance agent are usually only partially deter-
mined before the algorithm starts. When the algorithm terminates, the initially
unvalued attributes should be provided values with help of rule agents.

Let us define the set of rule agents RA, where each R € RA is a tuple
R = (id; arg1(Cly), . ..,args(Cls); make_res(args), ares), where

— id is a unique agent identifier;

— for each i € [1..5]: arg; is a set of argument values determined by the corre-
sponding instance agent from ontological class Cl;; let us denote the set of
vectors of argument values as args, where each value is provided with the
identifier of the defining instance agent, the set of these agents is args.Ag;
let us consider the argument values vector non-empty, if all its values are
non-empty;

— make_res(args) is a function for computing the result from argument vector
args;

— Qpes 18 the result of function make_res(args) which can be
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e null, if the argument vector is inconsistent;

e a new value of some attribute! for instance agents;

e a new instance agent (there should not be an agent with the same at-
tribute values in the system).

As a simple example let us consider the following multi-agent system for
natural language text processing. Let the given ontology includes classes Person,
Organization, and relation Employee. The corresponding instance agents have
the following form:

e Ay = (id; Person; {CWork,CPersonDeg, .. .};
surname({C Person, C PersonIni};0), first_.name({C Person}; ),
degree({C PersonDeg}; (), ...; Employee({CWork, CWorkPos}).
Person has the following attributes: surname, first name, (academic) deg-
ree which can be used and evaluated by the corresponding rule agents
CPerson, CPersonlni, CPersonDeg.
o Ay = (id; Organization; {CWork, C PersonDeg, . ..};
name(COrg; D), type(COrg, COrgType; CWork), .. .;
Employee(CWork, CWorkPos);
Organization has attributes name and type, and the corresponding input-
output rule agents COrg and COrgType.
o Az = (id, Employee; {CWork, CWorkPos};
arg1(CWork; 0), arge(CWork; 0), pos(CWorkPos; 0)).
Relation Employee can be evaluated by rule agent CWork directly connect-
ing Person and Organization, or by rule agent CWorkPos which connects
them using a position.

As an example of an ontology rule agent let us consider agent CWork:
CWork = (id, argi (A1), arga(Az);
{Sentence({argi, args}), BracketSegment({args}),
Preposition(argy, args), Contact(argy, argsz)};
Employee.argy = CWork.argy, Employee.args = CWork.args;
A3 = newEmployee()).
This agent recognizes sentences where an organization is enclosed in brackets
after a person. For example:

Academician Genrikh Aleksandrovich Tolstikov (Novosibirsk Institute
of Organic Chemistry) is a prominent chemist, recognized authority in
synthetic organic chemistry.

The following evaluation of attributes of the above agents is the result of analysis
of the given text fragment:
A1 = Person(id = 1, surname = Tolstikov, first_-name = Genrikh,

degree = Academician);
As = Organization(id = 2, name = Institute of Organic Chemistry,

! This attribute is defined a priory.
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type = Institute);
Az = Employee(id = 3,argy = A1, args = As, pos = ().
In the next section, the algorithms of the instance, rule and controller agents
are described in pseudocode.

3 Multi-agent Algorithm for Data Analysis

Let TA={I,...,I,,...} be an instance agents set, and RA = {Ry,..., R}, be
a rule agents set. The result of executing of the following algorithm is data anal-
ysis, when the instance agents determine the possible values of their attributes.
Let Ii be a protocol of actions of instance agent I;, and Rj, be the protocol of
actions of rule agent R;, C be the protocol of actions of an agent-controller C.
Then the multi-agent data analysis algorithm M DA can be presented in pseu-
docode as follows:
MDA::

begin

parallel {I1} ...{In} ...{R1} ...{Rm} {C}

end.

Here we assume that the parallel operator means that all execution flows
(threads) in the set of braces are working in parallel. That is, all agents act
in parallel until either all attributes of the instance agents are evaluated or it
happens that none of the rule agent can proceed. These events are determined
by the controller agent. The system is dynamic because rule agents can create
new instance agents. Let N be the maximal number of instance agents that can
be obtained from a given data.

The agents are connected by duplex channels. The controller agent is con-
nected with all agents, and every instance agent is connected with several rule
agents (and vise versa). Messages are transmitted asynchronously and stored
in FIFO channels until being read. The messages are transmitted in a fast and
reliable medium.

We consider an agent active iff it does not complete its work (is not at the
label “end” of the algorithms below) and either it processes some message or its
queue of input messages is not empty. Otherwise, the agent is passive. We say
that a multi-agent system terminates iff every system agent (possibly) except
the agent-controller is passive.

In the agent protocols below the function get_head (queue) removes the first
element from the queue and returns that element.

3.1 Protocol of Instance Agents

Let us comment a notation of the instance agent protocol. A message for an
instance agent has two fields: name of sender (name € [1..m] U C)? and a; with
value of attribute i. The pseudocode of the protocol follows.

2 The agent receives messages only from the controller agent and from the rule agents.
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Protocol of instance agents.
I::
C': Controller Agent;
R,R;;: Rule Agent;
RI, RO: set of Rule Agents;
data wait: set of Rule Agents = {);
a;: Attribute;
mess: message;
In: queue of incoming messages;
begin

1. send |[RIURO|+1 to C;

2. forall Re€ RIURO send evaluated_data to R;

3. forall a; € Atr forall R;; € RI; {

4. send request(a;) to R;;; add (ij) to data_wait;}
5. send —1 to C;

6. while (true){

7. if In#( then {

8. mess = get_head(In);

9. if mess.name = (C then break;

10. if mess.name € RI; then {

11. if a; =0 then {

12. upd(a;) ;

13. forall R;; € RI; {

14. send cancel(a;) to R;j; remove (ij) from data wait;}
15. forall Rij € RO;

16. send data(a;) to R;j;;

17. send |RO;|—1 to C;}

18. if a; # 0 then send —1 to C;} }

19. if data wait = () then break;}

end.

Let us informally describe the protocol of an instance agent. First, the agent
(1) notifies the controller agent that it started working and the number of rule
agents that will process its data (line 1), (2) sends the available data (line 2),
(3) sends the requests for evaluating and adds the corresponding rule agents to
its waiting list (lines 3-4), and then (4) tells the controller agents that it is now
passive. From the beginning of the work of the agent, its channel is open for
incoming messages. As soon as a message arrives, it begins processing it (line
8). If it is from the controller agent, the agent terminates (line 9). If it is from
a rule agent (line 10) then if the corresponding attribute is empty (line 11) the
agent evaluates it with the obtained data (line 12) and notifies other rule agents
related to this attribute that a value of this attribute is no more required from
them, and then the instance agent deletes these agents from its waiting list (lines
13-14). Then the obtained attribute value is sent to those agents that require
it (lines 15-16), and the controller agents is notified about the agent finishing
its work and about the number of rule agents that will process sent attribute
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value (line 17). If the message contains the value of an attribute that is already
evaluated, the agent does not handle it and notifies the controller agent about
it (line 18). If it turns out that all attributes are evaluated, the agent finishes its
work (line 19).

Let us estimate the time upper bound of the instance agent protocol. In
the first phase of its activities (line 2) the instance agent sends the evaluated
data to all rules agents interested in this data. The complexity of this phase
C{4 = O(|RI| + |RO|) = O(m). Sending the activation messages to rule agent
from RI (lines 3-4) is estimated as C{4 = O(k x m) and the size of the queue of
incoming messages In is the same. The agent processes the received data (lines
8-19). Tt takes time CI4 = O(|In| x (|RI| + |RO|)) = O(k x m?). Thus, the
upper bound of the protocol actions of each instance agent is CT4 = O(k x m?).

3.2 Protocol of Rule Agents

In the algorithm of the rule agent’s actions protocol, the following functions and
notation are used. The rule agents receive messages only from instance agents
and from the controller agent. The messages have (1) the name of the sender,
(2) the type € {data, request, cancel} that means that it has received an
attribute, a request for a result, or a cancelation request, respectively, and (3) the
value of the attribute. The function make_arg(a, I) creates vectors of arguments
with received values of attributes at the positions corresponding to ontology
classes. The function make_res(args) creates the output result: (1) the values
of attributes that have sent a request to the rule agent, (2) a new instance agent
which starts working immediately, or (3) the null result in a case of inconsistency
of the argument vector. The pseudocode of the protocol follows.
Protocol of rule agents.
R::

C': Controller Agent;

I: Instance Agent;

a: Attribute;

args: vector of Argument = (J;

Arg: queue of vector of Argument = (); // set of tuples

res_send: set of Instance Agents = ();

In: queue of incoming messages;
begin
1. parallel
2. { while (true) {
3 if In# 0 then {
4, mess = get_head(In);
5. if mess.name=C' then goto end;
6 if mess.name=] then {
7 if mess.type=request then add I to res_send;
8 if mess.type=cancel then remove I from res_send;
9. if mess.type=data then {
10. a = mess.val; Arg = Arg U make_arg(a,l);
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11. send —1 to C; }}}}}

12. { while (true) {

13. if Arg # 0 then {

14. send 1 to C;

15. args = get_head(Arg);

16. ares = make res(args);

17. if apes.type = attr then {

18. forall [ € args.Ag Nres_send{

19. send a,.s to I; remove I from res_send;}
20. send |args.AgNres_send|—1 to C;}

21. if Qpes.type = new_agent then send a,.s.val to a,.s.name;
22. if Ges.type = null then send —1 to C;} } }

end.

Let us informally describe the protocol of a rule agent. The agent can perform
in parallel both processing of incoming messages(lines 2-10) and the generating
of the outcome (lines 12-21). If it has received a message from the controller
agent, it finishes the work (line 5). If the agent receives a request from the agent
I for a result (line 7), it adds I to the recipients list; and it removes I from this
list if it was the cancelation request (line 8). If it receives a value of the attribute
a from the agent I, then using the procedure make_arg it tries to create a
vector of arguments (set of vectors) (line 10). In such vectors the received value
of the attribute is one of the elements and other elements are values of attributes
received earlier. Then the agent tells the controller agent about becoming passive
(line 11). If the vector (or the set of vectors) is formed, the agent immediately
begins to process it/them (line 13). The result of processing is obtained using
the function make_res. It may be (1) an attribute which is later sent to those
agents that have requested it (lines 16-18), then the controller agent is informed
about the number of the agents to process the data and about this agent has
completed processing the vector of arguments, (2) a new instance agent, that
starts working immediately as soon as it gets the attribute values from the rule
agent, (3) no result, due to the vector of arguments is not consistent, and the
controller agent is notified that the argument vector processing is finished.

Let us estimate the time upper bound of the rule agent’s protocol. The
time complexity depends on the time bounds of the parallel actions of the
rule agents. Let Ag be the set of agents have sent attributes and Arg be the
set of arguments of the rule agent. The complexity of requests and cancels is
CEA = O(]Ag|) = O(N) (lines 7-8). Retrieving and storing data from the in-
stance agents (lines 9-11) is a very time-consuming process with the estimate
CHA = O(|Ag|lA79!) = O(N*®), since the obtained data generate a set of vectors
of the argument values. The complexity of parallel data processing (lines 13-22)
is CFA = O(CFA x (||make_res||+|Ag|) = O(N® x (s+ N)), where |[make_res||
is the time complexity of the function, which is linear with respect to the size
of the argument. Thus, the overall time upper bound of the actions of each rule
agent is Of4 = O(CEA) = O(N® x (s + N)).
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3.3 Protocol of the Controller Agent

A special agent-controller handles the Distributed Termination Detection prob-
lem [8]. We suggest an algorithm for the problem which fits to our multi-agent
system more than known termination detection algorithms, the credit/recovery
algorithms in particular [9,12]. The main feature of this agent-controller is to
sequentially calculate other agents’ activities by using variable Act. Instance and
rule agents send information about their activities to the agent-controller. After
system termination the agent informs others about this fact.
Protocol of agent-controller C.
C ::

Act, num: integer;

messages: queue of integer;

1 Act = 0;

2. while(true){

3. if messages # () then { num =get_head(messages); Act=Act+num;}
4 if messages = () and Act = O then break; }

5 send STOP to all;

end.

Let us estimate the time upper bound of the controller agent’s protocol. The
size of the queue of incoming messages for the controller agent C¢4 is less then
N+ e kil + 22 e m) (N + N), where k; is the number of attributes of
instance agent ¢ and s; is the number of attributes of instance agent j.

3.4 MDA Protocol Properties

The time complexity of the multi-agent analysis algorithm M DA follows from
the above estimations: CMP4 = O(maz{C{4,...,CIA, CEA, ... CEA CCAY),
where Cf 4 and CJRA are the complexities of the protocols of the instance and
rule agents, respectively, for all ¢ € [1..N], j € [1..m].

Correctness (completeness and soundness)® of information retrieval algo-
rithms is rather a notion of data analysis theory than the theory of multi-agent
algorithms, thus it is out of the scope of this paper. But this multi-agent algo-
rithm has some properties to be proved.

Proposition 1. Multi-agent system MDA terminates and the agent-controller
determines the termination moment correctly.

Sketch of the proof. First, an analyzed data contains a finite number of infor-
mation objects for a given ontology. Hence the number of corresponding agents
and their attributes is finite. Hence (1) every instance agent determines values
of all its attributes and goes to a passive state or (2) some attributes can not
be evaluated because there is no appropriate information in the data and after

3 Completeness means that all relevant information has been retrieved from data.
Soundness mans that this information has been retrieved correctly.
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determining evaluable attributes an instance agents goes to a passive state also.
Every rule agent (1) gets enough information from instance agents to process
received data and goes to a passive state after that or (2) goes to a passive state
after receiving messages and never processes data. After processing data, the
generation of new instance agents does not duplicate agents. Hence, there is no
infinite loop because the number of information objects in the data is finite.
Second statement of the proposition follows from the fact that the value of
variable Act becomes 0 no earlier than the termination moment. Let active(t)
be the number of active agents. For every time moment ¢ the following holds:
D i<|mess(ty Mess(i,t) + Act = active(t), because agents influence (1) increase
of Act when after their local termination they send to the controller the number
of meaningful messages sent to instance/rule agents (lines 1,17/20), and (2)
decrease of Act when they informs about their passive state (lines 5,18/11,22).1

4 Conclusion

The proposed approach aims at taking advantage of the agent-based approach to
knowledge representation and processing. Thus, using the agent-based technol-
ogy allows to avoid unnecessary information retrieval, since at any given time,
only information required for an agent is being searched for. Furthermore, due
to the agents working in parallel, the speed of data processing significantly in-
creases.

Note that this paper presents only a basic formal model of agents’ interaction
that implements a simplified model of data analysis, which does not yet take into
account specific problems related to ambiguity of input data. For example, let
us consider a case of data ambiguity when the different ontology instance agents
correspond to the same data (“toast” as “fried bread” and as “a tribute or
proposal of health”). In order to handle such ambiguities competitive instance
agents acquire points which characterize their connections with other instance
agents. These connections are defined by agents’ attributes that could be the
linked agents themselves or their attributes. The more links some agent has and
the more points its linked agents have, it becomes more probable that this agent
is the most accurate data based instance of a given ontology.

These problems can be solved by increasing the expressive power of the pro-
posed agent-based models by giving the agent the ability to work cooperatively,
to compete (as above), to keep the history of its creation and development, etc.

Acknowledgments. We would like to thank Dr. I.S. Anureev for discus-
sions.
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Abstract In a totally ordered set the notion of sorting a finite sequence is de-
fined through the existence of a suitable permutation of the sequence’s indices. A
drawback of this definition is that it only implicitly expresses how the elements
of a sequence are related to those of its sorted counterpart. To alleviate this situa-
tion we prove a simple formula that explicitly describes how the kth element of a
sorted sequence can be computed from the elements of the original sequence. As
this formula relies only on the minimum and maximum operations we use it to
define the notion of sorting for lattices. A major difference of sorting in lattices
is that it does nor guarantee that sequence elements are only rearranged. To the
contrary, sorting in general lattices may introduce new values into a sequence or
completely remove values from it. We can show, however, that other fundamental
properties that are associated with sorting are preserved. Furthermore, we address
the problem that the direct application of our explicit formula for sorting leads to
an algorithm with exponential complexity. We present therefore for distributive
lattices a recursive formulation to compute the sort of a sequence. This alterna-
tive formulation, which is inspired by the identity (Z) = (’;Zi) + (";1) that underlies
Pascal’s triangle, allows for sorting in lattices with quadratic complexity and is in
fact a generalization of insertion sort for lattices.

1 Introduction

In this paper we present the results of two preprints [1,2] where we outline basic prin-
ciples of a theory of sorting in lattices.

Sorting a sequence in a total order (X, <) is typically defined through the existence
of a suitable permutation (cf. [3, p. 4]). There exists for each sequence x of length 7 in
a totally ordered set a permutation ¢ of [1,n] = {1, ...,n} such that x o ¢ is a increasing
sequence. If x is injective, then ¢ is uniquely determined, and vice versa. However,
regardless whether there is exactly one permutation, the rearrangement x' = x o ¢ is
uniquely determined and we thus refer to it as the increasing sort of x.

Sorting defines a map x — x! from X" to the subset of increasing sequences. This
map has several interesting properties. First of all, it is idempotent

( xT)T = (D
and thus a projection. Secondly, for each permutation y of [1, n] we have

(xoy)l =x' 2)
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The definition of sorting through the existence of a suitable permutation only pro-
vides an implicit relationship between the elements of x and x'. However, sometimes
we prefer explicit relationships.

If, for example, someone asked whether there is for the numbers a and b and the
exponent n a general relationship between the value (a + b)" and the powers a" and b",
then the (obvious) answer is that this relationship is captured by the Binomial Theorem

n
(@+by =y (Z) a" 3)
k=0

which also shows that other powers of a and b are involved.

When looking for an explicit relationship between the elements of x and the ele-
ments of its increasingly sorted counterpart x' = (x{, ces xf,), one can provide an easy
answer for the first and last elements of x'. In fact, we know that x{ is the least element
of {x1,...,x,}

n
x{:xl/\.../\xn:/\xk, “4)
k=1

whereas x, is the greatest element of x

n

x,Tl:xlv...Vxn:\/xk. ®))
k=1
In Section 2 we prove Identity (7) that explicitly states how the elements xI, X

are related to xi, . .., x,. This formula only uses the minimum and maximum operations
on finite sets. Based on this observation, we define in Section 3 the notion of sorting of
sequences in a lattice through simply replacing the minimum/maximum operations by
the infimum/supremum operations, respectively. We also show that sorting in lattices in
general not just reorders the elements of a sequence but really changes them. However,
we are able to prove that our definition satisfies various properties that are associated
with sorting.

The direct application of Identity (7) leads to an algorithm with exponential com-
plexity (cf. Section 4). In order to address this problem, we prove the recursive Iden-
tity (19) for the case of bounded distributive lattices. This identity is closely related to
the well-known fact that the binomial coefficient

n\ n!
(k Tkl (n- k)

can be efficiently computed through the recursion

n\ (n-1 N n—1
k) \k-1 k
which underlies Pascal’s triangle.
Furthermore, we prove that a lattice, in which the recursive Identity (19) holds, is
necessarily distributive. The main advantage of our recursive identity is that it allows

for an algorithm for sorting in lattices with quadratic complexity. In fact, this algorithm
is a generalization of insertion sort for lattices (cf. Section 5).
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2 A formula for sorting

Let (X, <) be a totally ordered set, then each nonempty finite subset A of X contains a
least and a greatest element [4, R. 6.5]. We also speak of the minimum and maximum
of A and refer to these special elements as A A and \/ A, respectively. The following

inequalities hold for all a € A
/\ A<ac< v A (6)

For A = {x, y} we use the notation x A y and x V y to denote the minimum and maximum
of x and y, respectively.
The main results of this paper depend on a particular family of finite sets.

Definition 1. For k € [1,n] we denote with N(Z) = {A c [1,n] | Al = k} the set of

subsets of [1,n] that contain exactly k elements. The set N(Z) consists of (Z) elements.

Proposition 1. Let (x1,..., x,) be a sequence in a totally ordered set, then the following

identity holds for the elements of the sequence (xI, ceeh x,Tl)

x,I = /\ \/xi. @)
1en () i€l

Before we prove Proposition 1 we introduce an abbreviation for the right hand side
of Identity (7). For a sequence x of length n we define for 1 <k <n

xp = A \/ Xj. 8)
1eN(}) i€l
With this notation Proposition 1 reads

X=X 9

We remark that because (X, <) is a total order, we know that each element of x* is also
an element of x. When applying Identity (8) it is sometimes convenient to use a slightly
more explicit way to write the elements of x*.

X = /\ X V.. Vg (10)

1<i<..<ix<n

We see then that xf is the least element of x and thus equals xT (cf. Identity (4)), whereas

x5 is the greatest element of x and thus equals x,Tl (cf. Identity (5)). This means that

Identity (7) is satisfied for k = 1 and k = n.

Lemma 1. If x is a sequence of length n in a totally ordered set (X, <), then x* is a
increasing sequence.
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Proof. Let 1 <k < n and I be an arbitrary subset of [1,n] with k + 1 elements. If J is a
subset of I with k elements, then we have by Inequality (6) and J C I

A
= A\ VusVuzV
LgN(Z) leL JjeJ i€l
Since [ is an arbitrary set of k + 1 elements we obtain from here
A — A
1eN(,},) eI
which shows that x* is increasing. O

Note that in the proof of Lemma 1 we have only used the fact that the minimum of a set
is a lower bound for all elements of that set (cf. Inequality (6)).
Proof (Proposition 1). We will show that for each k with 1 < k < n both x; < x,t and

x,[ < x; hold. Let ¢ be a permutation of [1, n] with

xl=xo ) (11)
and let J C [1, n] be the subset for which
J = ([1,k]) (12)

holds. From the fact that J contains exactly k elements we conclude

xg = /\ \/ X < \/ xj by Inequality (6)

IeN(}) €l jeJ
- \/ A (¢7'()) by Identity (11)
jeJ
=\/ « by Identity (12)
i€[1,k]
= x,I by monotonicity of x'.

This finishes the first part of the proof.
Conversely, we conclude from the fact that (X, <) is a total order and Identity (11) that
there exists a subset B of [1, n] with exactly k elements such that

g= \ Va=Vu=Vd(0)= \ 5

IEN(Z) i€l i€eB i€eB jep~(B)

holds. Since x' is increasing we have \/ x} =x! where m = \/((p‘l(B)) is the

m

jep™\(B)
greatest element of (p‘l(B). We have, thus,
xp =X (13)

However, since \/(cp’l(B)) is a subset of [1, n] that contains exactly k elements we ob-
tain k < m. Since x' is increasing we conclude x,[ < x},. This inequality and Identity (13)

imply x,t < x;, which completes the proof. O
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3 Sorting in lattices

Let (X, <) be a partially ordered set that is also a lattice (X, A, V), then for each x,y € X
there exists the infimum x A y and the supremum x V y (cf. [5, Chapter 3]). These
operations are commutative and associative and they satisfy for all x,y € X the so-
called absorption properties x V (x Ay) = x and x A (x Vy) = x. If (X, <) is a total order,
then A and V are the minimum and maximum operations of Section 2.

In a lattice, the infimum and supremum exist for every finite subset A and are de-
noted by A\ A and \/ A, respectively (cf. [5, p. 49]). We therefore know that for a se-

quence x of length n the value
X = /\ \/ X;

ren(ry i€l
from Identity (8) is well-defined in a lattice. This motivates the following definition.

Definition 2. If x is a sequence of length n in a lattice (X, A, V), then we refer to x* as
defined by Identity (8) as the increasing sort of x with respect to the lattice (X, A, V).

Before we start to investigate which properties that are traditionally associated with
sorting are maintained by our definition we want to point out a major difference: In a
lattice the value x,f might be different from the original values xi, ..., x,. The reason
for this is the following: While in a lattice the inequalities x Ay < x,y < x V y generally
hold, there might be also the case that the set {x Ay, x V y} is different from the set {x, y}.
In a total order these two sets are always equal.

Examples of sorting in lattices As a first example we consider the finite set X =
{x,y,z}. Figure 1 shows the lattice of all subsets of X. Let x be the sequence a =
({x}, {y}, {z}), then a® = (0,0, X). Thus, a* is a increasing sequence that consists of
elements that are completely different from those of a.

2 - —
ey ey
(1,2) (1,2)
(1,2,3) (1,1,6)
(1,2,3,4) (1,1,2,12)
(1,2,3,4,5) (1,1,1,2,60)
(1,2,3,4,5.6) | (1.1,1,2,6,60)
(1,2,3,4,5,6,7) | (1,1,1,1,2,6,420)
(1,2,3,4,5.6,7.8)[(1,1,1,1,2,2, 12, 840)

Figure 1. The lattice of {x, y, z} Table 1. Sorting in the lattice (N, ged, lcm)

As a second example we consider the lattice (N, gcd,lcm) where ged(x,y) and
lem(x, y) denote the greatest common divisor and least common multiple of x and y,
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respectively. The associated partial order of this lattices is defined by divisibility of
natural numbers. Table 1 shows some examples of our definition of sorting for differ-
ent sequences in (N, gcd, lem). Again we see that sorting in a lattice may change the
elements in a sequence.

Elementary properties of sorting in lattices The following lemma states that x* is in-
deed a increasing sequence with respect to the partial order (X, <) of the lattice (X, A, V).

Lemma 2. If x is a finite sequence in a lattice (X, A, V) with associated partial order
(X, <), then Identity (8) defines a increasing sequence x*.

Proof. In order to prove this lemma we can proceed exactly as in the proof of Lemma 1
where (X, <) is a total order. As remarked on Page 2, we have used only the fact that
/\ A is a lower bound of A which by definition also holds for lattices. O

A simple consequence of Lemma 2 is the following Lemma 3 which states that sorting
in lattices respects lower and upper bounds of the original sequence.

Lemma 3. Let x be a sequence of length n in a lattice (X, A, V) with associated partial
order (X,<). Iffor | <i<nholdsa < x; <b, thena < xiA < b holds as well.

Proof. From ldentity (10) follows that x is the supremum of the elements xi, ..., x,.
Thus, we have x; < b. Lemma 2 ensures that x; is the largest element of x*. Thus we
have x* < b for 1 < i < n. The case for the lower bound a is treated analogously. O

The following lemma restates the idempotence of sorting for the case of lattices (cf. Iden-
tity (1)).
Lemma 4. [f x is a finite sequence in a lattice (X, A, V), then (x*)* = x*.

Proof. We know from Lemma 2 that x* is a increasing sequence in the partial order
(X, <). Thus, the relation < is a fotal order on the set {xf, e, xﬁ} C X. In other words
we can sort x* in the classical sense. From this follows by Identity (7)

XA = (XA)T — (xA)A'
O

We can also show the invariance of sorting in lattices under permutations (cf. Iden-
tity (2)).

Lemma 5. If x is a sequence of length n in a lattice and  a permutation of [1, n], then
(x o Y)* = x* holds.

Proof. Wehavefor1 <k<n

woup= N\ Vaowi= A\ x= A

AeN(y) €A AeN(}) Jew(A) Bey(N(})) j€B

Because ¢ is a permutation of [1, n] we find that (N(Z)) = N(Z) and conclude

o= N\ \/x() =t

BeN(") jeB
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4 Recursive sorting in lattices

The definition of x* through Identity (8) is nice and succinct, but it is also quite imprac-
tical to use in computations. Table 2 shows simple performance measurements (con-
ducted on a notebook computer) for computing (1,...,n)* in (N, gcd, lcm). The reason
for this dramatic slowdown is of course the exponential complexity inherent in Iden-
tity (8): In order to compute x* from x it is necessary to consider all 2" — 1 nonempty
subsets of [1, n].

sequence length|20|21(22(23| 24 | 25 | 26
time in s 0.6]1.3|2.7|5.8|11.8|25.5|51.6

Table 2. Wall-clock time for computing (1,...,n)* according to Identity (8)

For the remainder of this paper we assume that (X, A,V, L, T) is a bounded lattice.
Here L is the least element of X and the neutral element of join, that is,

XxX=1Vx=xV.Ll VxeX (14)
whereas T is the greatest element of X and the neutral element of meet, that is,
X=TAX=xAT VxeX. (15)

We now introduce a notation that allows us to concisely refer to individual elements
of both (x1,...,x,)* and (x1,..., x,_1)*. Here again, it is convenient to employ the no-
tation for the binomial coefficient (Z) in the context of sorting in lattices. For a sequence
x of length n we define for0 <m < n

1 k=0
xt (’Z) =(xg, .., X)) (k) ke[l,m] (16)
T k=m+1

We know from Identity (8) that (xi,. .., x,)" (k) = /\ \/ x; holds for 1 < k < m.
1eN(y) i€l

(W) = /\ \/x,-. (17)

1eN(y) i€l

We therefore have

In particular, the following identity holds for 1 < k <n

x(7) = xp. (18)
The main result of this section is Proposition 2, which states in Identity (19), how
the kth element of (x1,..., x,)* can be computed from (xy,..., x,—1)* and x, by simply

applying one join and one meet. The proof of Proposition 2 relies on the fact that the
lattice under consideration is both bounded and distributive.
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Proposition 2. If (X, A, V, L, T) is a bounded distributive lattice and if x is a sequence
of length n, then for 1 < k < n holds

(1) = (7 A (e (1) v ) (19)

Proof. For k = 1, we have

x (1) = A x; by Identity (17)

by associativity

1l
—
I 3
=
— — N—
>
§<

1
— (nI A x, by Identity (17)
— (n;l A (J_ v xn) by Identity (14)
— )CA (nIl) A (XA (nal) Vi -xn) by Identity (16)

We deal similarly with the case k = n (cf. [2, p. 5]). In the general case of 1 < k < n,
we first remark that if A is a subset of [1, n], which consists of k elements, then there
are two cases possible:

1. If n does not belong to A, then A is a subset of N(”;I).
2. If nis an element of A, then the set B := A \ {n} belongs to N(Z:i)

In other words, N(Z) can be represented as the following (disjoint) union
N() =N u{BUint| BeN(Z))) (20)

We obtain therefore

x* (Z) = /\ \/ X; by Identity (17)

1eN(y) i€l

= /\ \VET \/ x; by Identity (20)
IEN(MZI) iel ]EN(Z::) ielU{n}

= (7 A v xX; by Identity (17)

IEN(L’:D ieluin}

= x* (”;1) A /\ [\/ x; V xn] by associativity

1eN(oy) e
= x ("Zl) A /\ \/ Xi |V Xn by distributivity
IeN(i)) el
= (HZI) A ()CA (Z:i) v Xn) by Identity (17)

which completes the proof. |
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The following Proposition 3 states that the converse of Proposition 2 also holds.

Proposition 3. Ler (X, A, V, L, T) be a bounded lattice which is not distributive. Then
there exists a sequence x = (x1, X2, x3) in X such that Identity (19) is not satisfied.

Proof. According to a standard result on distributive lattices [5, Theorem 4.7], a lattice
is not distributive, if and only if it contains a sublattice which is isomorphic to either Ns
or M3 (cf. Figure 2).

Figure 2. The non-distributive lattices N5 and M3

From Identity (10) follows for the elements of x* = (xf, x5, x§)

X =X Ax2 A X3 (21a)
X5 =(x1 V) A(xg Vaxs) A(x Vx3) (21b)
X5 =x VXV, (21¢)

If X contains the sublattice N5, then we consider the sequence x = (c,d, b) and its
subsequence (c, d). From Identity (21) then follows

(c.d,b)* = (a,d, e) and (c.d)" = (a,e).
Thus, we have
“()=d “)=e ) =a
However, applying Identity (19) we obtain
()= () A (x () v )
—enaVb)=eAb=b

instead of d.
If X contains the sublattice M3, then we consider the sequence x = (b, ¢, d) and its
subsequence (b, ¢). From Identity (21) then follows

(b,c,d)" =(a,e,e) and (b,0)* =(a,e).
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We therefore have

x* (;) =e x* (;) =e x* (%) =a.

Again, applying Identity (19) we obtain

5 (5) = Q) a () v )

eNlavd)y=end=d

instead of e. O

Using Identity (19), we can prove the following Lemma 6, which generalizes a
known fact known from sorting in a total order: If one knows that x,, is greater or equal
that the preceding elements xi,..., x,—; then sorting the sequence (x,...,X,) can be
accomplished by sorting (xi, ..., x,-1) and simply appending x,,.

Lemma 6. Let (X, A, V, L, T) be a bounded distributive lattice and x be a sequence of
length n. If the condition x; < x, holds for 1 <i < n — 1, then the identities

)= ()

hold.

Proof. The first equation follows directly from the fact that x2 is the supremum of the
values xi, ..., x,. Regarding the second equation, we know from Lemma 2 that if for
1 <i < n—1 the inequality x; < x, holds, then

x* (”:1) < x,.

This inequality is also valid for i = 0 because x* ("61) = 1 holds by Identity (16). From
general properties of meet and join then follows that

x* (”;1) V X, = X,
X (n;l) A X, = XA (nf'l)

l

holds for 0 < i < n — 1. We can therefore simplify Identity (19) as follows

()= () (e () v )
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1
€ 2
L H -

T2

Figure 3. Graphical representation of Identity (19)

5 Insertion sort in lattices

Figure 3 graphically represents Identity (19) in a form that emphasizes its close rela-
tionship to Pascal’s triangle. Whenever an arrow \, and and arrow , meet, the values
are combined by a meet. In the case of an arrow \, however, first the value at the origin
of the arrow is combined with the sequence value x, through a join.

Formula (22) outlines an algorithm that is based on Identity (19). The algorithm
starts from x; = (x;)* and successively computes

Xy Xim)® 0 P (X, Xy, X)) (22)

From Identity (19) follows that in step i exactly 7 joins and i meets must be performed.
Thus, altogether there are

Z2*i:n(n+1)—2
=2

applications of join and meet. In other words, such an implementation has quadratic
complexity. This algorithm can be considered as insertion sort [3, § 5.2.1] for lattices
because one element at a time is added to an already “sorted” sequence. Table 3 shows
some performance measurements for this algorithm in the bounded and distributive
lattice (N, ged, lem, 1, 0).

sequence length|100{1000{10000{100000
time in s 0] 0 | 34 | 420

Table 3. Wall-clock time for computing (1, ..., n)* according to Identity (19)

These results show that sorting in lattices can now be applied to much larger se-
quences than those shown in Table 2 before the limitations of an algorithm with quadratic
complexity become noticeable.
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6 Conclusions

Proposition 1 states through Identity (7) a simple explicit relationship between the ele-
ments of a finite sequence in a totally ordered sets to its sorted counterpart.

A sorting algorithm that directly uses Identity (7) would have exponential complex-
ity. Thus, Identity (7) appears not relevant for implementing computationally efficient
algorithms. The reader should bear in mind, however, that this is also true for the Bi-
nomial Theorem. In fact, directly computing (x + y)" is normally more efficient than
computing the expansion

1 n

nn-1) ,.,
— x"

A more interesting aspect of Identity (7) is therefore that it allows to generalize the
notion of sorting finite sequences to lattices. Compared to sorting in a totally ordered
set, sorting in lattices is a more invasive procedure because it may change sequence
elements. While this may be considered as a major drawback one should bear in mind
that generalizations often lead to surprising properties. The real criterion for accepting
a generalization is whether it provides new insights or has useful applications. With
respect to sorting in lattices, the latter question has not been addressed in this paper and
remains a topic of future research.

We are able to show that our definition of sorting in lattices maintains many proper-
ties that are associated with sorting. Another important results of this paper are Propo-
sition 2, which proves Identity (19) for bounded distributive lattices, and Proposition 3,
which shows that the distributivity is necessary for Identity (19) to hold. The remarkable
points of Identity (19) are that it

X'+nx"y+ V4. oty

— exhibits a strong analogy between sorting and Pascal’s triangle,
— allows to sort in lattices with quadratic complexity, and that it
— isin fact a generalization of insertion sort for lattices.

I would like to thank the reviewers for their comments. I am also very grateful for
the many corrections and valuable suggestions of my colleagues Jochen Burghardt and
Hans Werner Pohl: Jochen Burghardt’s suggestion to investigate whether the distributiv-
ity in Proposition 2 is really necessary led to Proposition 3. Hans Werner Pohl pointed
out the analogy of the algorithm in Equation 22 to insertion sort.
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Abstract. Rough inclusion functions are mappings considered in the
rough set theory with which one can measure the degree of inclusion of a
set in a set (and in particular, the degree of inclusion of an information
granule in an information granule) in line with rough mereology. On the
other hand, similarity indices are mappings in cluster analysis with which
one can compare clusterings, and clustering methods with respect to
similarity. In this article we investigate the relationships between rough
inclusion functions and similarity indices.

Keywords: rough inclusion function, rough mereology, similarity index,
cluster analysis, granular computing.

1 Introduction

In 1994, L. Polkowski and A. Skowron introduced the formal notion of a rough
inclusion, making it a fundamental concept of rough mereology (see, e.g. [1-4]).3
Rough inclusion may be interpreted as a ternary relation with which one can
express the fact that a set of objects is to some degree included in the same or an-
other set of objects. Rough mereology is a theory extending the Le$niewski mere-
ology [6, 7] from a theory of being-a-part to a theory of being-a-part-to-degree.
Rough inclusion functions (RIFs) are mappings with which one can measure the
degree of inclusion of sets in sets and which comply with the axioms of rough
inclusion. Since according to L. A. Zadeh’s definition [8], an information granule
is a clump of objects drawn together on the basis of indistinguishability, simi-
larity or functionality, RIF's can be used in particular to measure the degree of
inclusion of information granules in information granules. Hence, the concept of
a RIF is fundamental not only for the rough set theory [5,9] but also for the
foundations and the development of granular computing [10, 11].

* Many thanks to the anonymous referees for interesting comments on the paper. All
errors left are our sole responsibility.

3 Tt is worthy to note that some ideas on rough inclusion were presented by Z. Pawlak
in [5].
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RIFs can be useful in the rough set theory and, more generally, in granular
computing in many ways. First, they can be applied to compare sets (and infor-
mation granules) with respect to inclusion. Secondly, they can be used to define
rough membership functions [12] and various approximation operators as those
in the Skowron — Stepaniuk approach (see, e.g. [13,14] and other papers by the
same authors), in the Ziarko variable-precision rough set model (see, e.g. [15, 16]
and more recent papers), or in the decision-theoretic rough set model [17,18].
RIFs can also be used to estimate the confidence (known as accuracy as well)
and the coverage of decision rules and association rules (see, e.g. [19]). Another
application of RIF's is graded semantics of formulas (see, e.g. [20]). An important
application of RIFs is obviously their usage to compute the degree of similarity
(nearness, closeness) between sets of objects and, in particular, between infor-
mation granules. Some steps into this direction have already been made (see,
e.g. [21,4,14]).

The similarity indices we are going to speak about are used in cluster analy-
sis [22-24] to compare clusterings, and clustering methods with respect to how
they are similar to (or dissimilar from) one another. Many of these similarity
indices were originally designed to compare species with respect to their mutual
similarity, given information about presence and/or absence of some features.
A. N. Albatineh, M. Niewiadomska-Bugaj, and D. Michalko thoroughly exam-
ined 28 similarity indices known from the literature on classification and cluster
analysis, from which 22 turned out to be different.* The results of their re-
search on correction for chance agreement for similarity indices can be found,
e.g. in [25]. In the present article we continue our earlier works [26, 27], where
among other things, three similarity indices out of those 22 were derived from
RIFs. Our actual goal is to show that all 22 similarity indices investigated in [25]
can be obtained starting with the RIFs x%, k1, and kg only. This reveals one
more connection between the rough set theory and cluster analysis.

The rest of the paper is organized as follows. In Sect. 2 we recall the notion
of a rough inclusion function and the three particular RIFs mentioned above.
In Sect. 3 we present the 22 similarity indices known from the literature and
discussed in [25], and we characterize them one by one by means of the standard
RIF % or two other RIFs, viz. 1 and k4. The last section contains final remarks.

2 Rough Inclusion Functions

Rough inclusion functions (RIFs for short) are supposed to be mappings to
measure the degree of inclusion of sets in sets and to comply with the axioms of
rough inclusion. In detail, a rough inclusion function upon a non-empty set of
objects U (in short, a RIF upon U or simply, a RIF) is a mapping « : pU x pU
[0, 1], assigning to any pair of sets (X,Y") of elements of U, a number x(X,Y)
from the unit interval [0, 1] interpreted as the degree to which X is included in

4 Some similarity indices were introduced more than once, under different names.
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Y, and such that the conditions rify(x) and rif5(x) are satisfied, where

rif 1 (k) E VXY CUGK(X,Y) =1 & X CY),

rif (k) C VXY, Z CUG(Y,Z2) =1 = w(X,Y) < k(X, Z)).
Condition rif; (k) expresses the fact that the set-theoretical inclusion of sets is
the most perfect case of rough inclusion. When rif; () holds, condition rif5 (k)
will be equivalent with condition rify (k) below:

rify (k) € VXY, ZCU(Y € Z = w(X,Y) < k(X,Z))

expressing monotonicity of x in the second variable. In the literature, weaker
versions of RIFs are considered as well, where rif; () is replaced by “a half of
it”. Then, rif5(x) and rify(x) will define different classes of inclusion mappings
(see, e.g. [28]).

In summary, any RIF & upon U should satisfy rif; (k) and rif5 (k) or, equiv-
alently, rif; (k) and rifs(x). Among RIFs, various subclasses of mappings can
be distinguished by adding new postulates to be satisfied. These can be, for
instance,

(k) & V0 #£ X CUk(X,0) =0,
(k) EVX,Y CU.(R(X,Y)=0 = XNY =10),

rif , '(k) SV # X CUVY CUXNY =0 = &(X,Y)=0),
(k) EV0#£X CUVY CU((X,Y)=0 & XNY =0),
(k) EVD# X CUVY CURX,Y) +r(X,Y%) =1,
(k) EVX,Y,ZCU(ZCY CX = k(X,Z) <r(Y,Z)),

where Y¢ denotes the set-theoretical complement of Y.> Obviously, rifs () if and
only if rif4(x) and rif; ! (k). Apart from that

rif ;1 (k) = rifs(k),
rif1 (k) & rifg(k) = rif5(k). (1)

The standard RIF, denoted by x% here, is the most famous and frequently
used by the rough set community. The idea underlying this notion is closely
related to the conditional probability. In logic, J. Lukasiewicz was the first who
employed this idea when calculating the probability of truth associated with
implicative formulas [31,32]. Let us recall that x* is only defined for a finite U
by putting

(2)

#(XnY) .
W (X, Y) ax i Xf@,
1 otherwise,

5 The last condition was mentioned in [29, 30]. There, rough inclusion is understood
in a different way than in our paper.
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where X, Y are any subsets of U and #X denotes the number of elements of
X. In words, the standard RIF measures the fraction of the elements having
the property described by the second argument (Y) among the elements with
the property described by the first argument (X ). Apart from being a true RIF,
k% has a number of interesting properties recalled, e.g. in [27]. For instance, it
satisfies rif; (k) (i = 3,...,7) and rif; *(k).

Examples of other RIFs are mappings «; and kg such that for any X, Y C U,

#Y s
i (X, v 4ot { oy i XUY £,
1 otherwise,
def #(XC U Y)

X)Y)= ———. 3
ra(X.Y) & 3)
Also in this case, U has to be finite. While x; was introduced in [26], ko had
already been mentioned in [33]. The both RIFs were investigated in detail in [27].
The RIFs k%, k1, and kg are different from one another. Below we recall a few

other properties of these mappings.

Proposition 1. For any X, Y C U, we have:

(i) X#0 = (m(X,Y)=0 & Y =0),

(i) k(X Y)=0 & X =U &Y =0,

(i) rifs (k1) & rifs(ke),

(iv) K5 (X,Y) < k1 (X,Y) < Ka(X,Y),

(W) k(X,Y)=rE(XUY,Y) & 5(X,Y) =k (X, X NY),
(vi) ke(X,Y) = w5 (U, X°UY).

Let us also note that due to (i), rif3(x1) holds. The same cannot be however said
about ko (compare (ii)).

3 Similarity Indices in Terms of RIF's

In this section we reformulate the similarity indices studied in [25] in terms of
the RIFs k%, K1, or ka. The proofs that the indices can really be expressed in
this way will be given in the full version of this paper.

Consider a set Uy of m > 0 data points to be grouped by some clustering
methods A; and Ag. Let U (our universe) be the set of all unordered pairs
of data points {z,y} C Up to be compared in order to obtain clusterings, i.e.
partitions of Uy generated by A; and by As, and denoted by C7 and Cy here.
Thus, #U = M = (}) = m(m — 1)/2. The similarity between the clusterings
Cy and Cy (and the clustering methods A; and Asy) is usually assessed on the
basis of the number of pairs of data points that are put into the same cluster or
are put into different clusters by each of the grouping methods considered. For
1=1,2, let us define

X ={{z,y} € U | z,y are clustered by A;}. (4)
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Additionally, let

= #(XT N X3). ()

In words, a is the number of pairs of data points {z,y} such that x and y are
placed in the same cluster according to both A; and As; b (respectively, c¢) is
the number of pairs of data points {x,y} such that « and y are placed in the
same cluster by A; (resp., As), but they are placed in different clusters by As
(resp., A;); finally, d is the number of pairs of data points {z,y} such that z
and y are placed in different clusters according to both A; and As. We also have
#X1 = a+b, #Xo = a+c, #X{ = c+d, #X§ = b+d, and #U = a+b+c+d = M.
For simplicity assume that a,b,c,d > 0. Then, we will have that

a
KE(X1, Xo) = Pt
a—+c
k1 (X1, X2) = axbre
at+c+d
KQ(Xl,XQ) = T (6)

In what follows we will present similarity indices one by one and their new
formulation in terms of kK%, k1, or Ke.

Wallace (1983). The similarity indices Wi, Wy with range [0,1] were intro-
duced by D. L. Wallace:

a
a+b’
a

Wi (Cy,Co) of

W5 (C1,Cs) o

a+tc

It is easy to see that
W1 (C1, C) = k% (X1, X2),
WQ(Cl,CQ) = I€£(X2,X1). (8)

Kulczynski (1927). The similarity index K with range [0, 1] was proposed by
S. Kulczynski in 1927:

def 1 a a
K(Cy,Cy) = B <a+b+ a+c> 9)

K can be rewritten to the following form:
1
K(C1,Co) = 5 (K% (X1, X2) + £* (X2, X1)) (10)

In words, K (Cy, Cy) is the arithmetical mean of k% (X1, X3) and % (Xo, X7).



150 A. Gomoliniska, M. Wolski

McConnaughey (1964). The similarity index MC with range [—1,1] goes
back to B. H. McConnaughey:

2
def  a” —bc
MC(Cy,C) = ———F—— 11
(C1,C2) @1 bt (11)
This index can be expressed by the following equation:
MC(Cy,Cy) = k% (X1, Xo) 4+ k¥ (X, X1) — 1 (12)

Peirce (1884). The similarity index PE with range [—1,1] is attributed to
C. S. Peirce:
ad — bc

def
PE(Cy,C2) = CEICET))

(13)
The index PE can be characterized as follows:

PE(01702) = (H£(X2aX1) + H£(X§7ch) - ‘%‘E(X%ch) - H£(X§7X1))

(14)

N | =

The Gamma index. The similarity index I" with range [—1,1] is given by

I(Cy, O def ad — be .
( ) \/(a+b)(a+c)(b+d)(c+d)

(15)

In this case, the following characterization can be obtained:

1
I'(Cy,Cs) = \/2 (kt(Xo, X1) + kL (XS, X§) — 64(Xo, X§) — k4(XS, X1))

R (X1, Xo) — K (XE, Xo) (16)

Ochiai (1957), Fowlkes and Mallows (1983). The similarity index OF M
ranges over [0, 1]. It was introduced by A. Ochiai in 1957 and again by E. B. Fowlkes
and C. L. Mallows in 1983:

def a
OFM(Cy,0y) & —— = 17
(O, C2) @+b)ato) a7)
After rewriting we get
OFM(Cy,Ca) = \/n% (X1, Xa)i (Xa, X1). (18)

That is, OF M (Cy, C3) is the geometrical mean of k% (X, Xo) and k% (X2, X1).
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The Pearson index. The similarity index P named after C. Pearson ranges
over [—1,1]. It is given by

ad — be
(a+b)(a+c)b+d)(c+d)

P(Cy,Cy) & (19)

The index P can be expressed in the following ways:

-1

ab 'FQ(CMCQ)

cd
= (KF (X1, Xo) — £E(X], X2))r“ (X, {u})s“ (X5, {u'})  (20)

P(Cy,Cs) =

for arbitrary u € X5 and v’ ¢ Xs.

Sokal and Sneath (1963). The similarity indices SS7, 552,553 with range
[0, 1] were introduced by R. R. Sokal and P. H. Sneath in 1963. The third index
is also attributed to A. Ochiai (1957):

ol d d
551(01,02)“:f(aa 2 4 + )

4 +b a+c b+d c+d
def a
S§85(C1,Ca) = at2010)
e d
S85(Cr, ) - (21)

Via+b)(a+e)b+d)ctd)

One can prove the following:

1 .
551(01702) = Z (KL(XMX?) + K‘£(X27X1) + R£(X167X§) + K’£(X§7X16)) )

r1(X1, Xo) + r1(Xo, X7) — 11

552(01’02> = 3 — (Kl(X17X2) + /"31()(27)(1))7

S553(Cy,Cs) = \/H’E(XhX2)/‘€‘£(X2’Xl)’f’c(vaXé:)’i’E(XS’ X§). (22)

Thus, SS1(Cq,Cs) (resp., SS3(C1,Cs)) is the arithmetical (geometrical) mean
of k¥ (X1, Xo), k% (X2, X1), k¥ (XE, X§), and k% (XS, X).

Jaccard (1908). The similarity index J with range [0, 1] goes back to P. Jac-

card:
a

def
R

(23)
It can be shown that

J(Cl,CQ):Hl(Xl,X2)+/€1(X27X1)71. (24)
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Sokal and Michener (1958), Rand (1971). The similarity index R with
range [0, 1] was introduced by R. R. Sokal and C. D. Michener, and later inde-

pendently by W. Rand:
det @ +d

R(C1,Ca) = — (25)
The index R can be rewritten to
R(C1,CQ) :K/Q(X17X2)+K/2(X27X1)—1. (26)

Hamann (1961), Hubert (1977). The similarity index H, ranging over
[—1,1], was proposed by U. Hamann and independently by L. J. Hubert:

H(Cl,CQ) def (a—i—d)]\} (b+c) (27)

By certain transformations we obtain
H(Cl702) :2(/€2(X1,X2)+/€2(X2,X1)) - 3. (28)

Czekanowski (1932), Dice (1945), Gower and Legendre (1986). The
similarity index CZ ranges over [0,1]. It was proposed by J. Czekanowski in
1932, L. R. Dice in 1945, and by J. C. Gower and P. Legendre in 1986:

def 2a
Z = — 2
CZ(Ch, C) 20 +b+c (29)
On can prove the following:
2 X, X X0, X7)—1
CZ(Cy, ) = Xy Xo) £ (X, Xy) = 1) (30)

k1(X71, X2) + k1(X2, X1)

Russel and Rao (1940). The similarity index RR ranges over [0,1] and is
attributed to P. F. Russel and T. R. Rao:

RR(Cy,Cp) % (31)

In this case we obtain that
RR(Ch,C2) = k*(U, X1 N X3) = ko (U, X1 N X2). (32)
Fager and McGowan (1963). The similarity index FM G with range [—1/2,1)
goes back to E. W. Fager and J. A. McGowan :
def a 1
FMG(C,Cy) = - 33
(G ) @tbate 2/ath (33)

The above formula can be expressed in the following way:

FMG(Cy, Co) =\ (X1, Xa)w (X, Xi) — 5wt (X, {uh) (39

for an arbitrary u € X;.
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Sokal and Sneath (1963), Gower and Legendre (1986). The similarity
index GL with range [0, 1] was introduced by R. R. Sokal and P. H. Sneath in
1963, and again by J. C. Gower and P. Legendre in 1986:

def a+d
GL(C4,Cs) = ———— 35
(C1, C2) a+lb+e)+d (35)
A characterization of GL in terms of k9 is the following:
2 X1, X X9, X1)—1
GL(Cy,Cy) = (K2(X1, X2) + Ka(X2, X1) — 1) (36)

ko (X1, Xo) + ka(X2, X1)

Rogers and Tanimoto (1960). The similarity index RT with range [0,1] is
attributed to D. J. Rogers and T. T. Tanimoto:

def a+d
RT(C4,C) = ——————— 37
(G, C2) a+2b+c)+d (37)
This index can be rewritten to the following form:
X1, X X9, X1) -1
RT(C1,Ca) = ka(X1, Xo) + ka(Xo, X1) (38)

3 — (k2(X1, X2) + K2 (X2, X1))

Yule (1927), Goodman and Kruskal (1954). The similarity index GK
ranges over [—1,1]. It was proposed by G. U. Yule in 1927, and again by
L. A. Goodman and W. H. Kruskal in 1954:

def ad — bc
GK(C1,Cy) = 39
(€1, C2) ad + be (39)
This index can be expressed in terms of the standard RIF as follows:
"£XX £XCX(:_£XXC£X(:X
GK(01702):K ( 25 1)'% ( 29 1) K ( 25 I)K‘ ( 2 1) (40)

wE (X, X1)KE (XS, X§) + v (X, X{)rE (XS, X1)

Baulieu (1989). The similarity indices By and Bs range over [0, 1] and [—1/4,1/4],
respectively. They were introduced by F. B. Baulieu in 1989:
def M2 —M(b+c)+(b—c)?

B1(C1,C2) = 2 )

def ad — bc

By(C1,C2) = Ve (41)

As in all previous cases, a RIF (precisely, xo here) underlies the definitions of
these similarity indices, viz.,
Bi1(C1, Ca) = ko (X1, X2) + k2 (Xa, X1) — 1+ (k2(U, X1) — k2(U, X2))?,
By(C1,Cs) = (1 = ka(X1, X3))k2(U, XT) — (1 — ke(XT, X5))k2(U, X1). (42)
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4 Final Remarks

The main goal realized in this paper was to show that a pretty vast number
of various similarity indices known from the literature can be formulated in
terms of some rough inclusion functions. Rough inclusion functions (RIFs) are
mappings, inspired by the notion of a rough inclusion introduced by L. Polkowski
and A. Skowron as a basic concept of rough mereology, by means of which
one can measure the degree of inclusion of a set of objects in a set of objects.
Since information granules can be viewed as particular sets of objects, RIFs are
important not only for the rough set theory but also for granular computing.

Starting with the standard RIF % and two other RIFs of a similar origin,
denoted by k1 and ks, we have obtained all 22 similarity indices discussed in [25].
In the paper just mentioned it is proved that the indices K and MC are equivalent
after some correction known as the correction for agreement due to chance,
and the same holds for R, H, and CZ. We have not referred to this question
because we are interested in other aspects concerning similarity indices. For
example, we think about a usage of similarity indices in granular computing to
calculate the degree of similarity between compound information granules such
as indistinguishability relations and tolerance relations on a set of elementary
objects considered. Let us note that similarity indices can also be used in granular
computing in a more general setting, viz. to compute the degree of similarity
between arbitrary sets of objects.

In the full version of this article we will give an illustrating example and proofs
of the formulas characterizing the similarity indices considered. In the future
research we will generalize our results, viz. we will propose general schemata
for generation of similarity indices from an arbitrary RIF. Another question,
also suggested by the referee, is the discovery of relationships among RIFs and
quality measures for clusters.
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Abstract. Theory exploration is a term describing the development of
a formal (i.e. with the help of an automated proof-assistant) approach
to selected topic, usually within mathematics or computer science. This
activity however usually doesn’t reflect the view of science considered as a
whole, not as separated islands of knowledge. Merging theories essentially
has its primary aim of bridging these gaps between specific disciplines.
As we provided formal apparatus for basic notions within rough set the-
ory (as e.g. approximation operators and membership functions), we try
to reuse the knowledge which is already contained in available repos-
itories of computer-checked mathematical knowledge, or which can be
obtained in a relatively easy way. We can point out at least three top-
ics here: topological aspects of rough sets — as approximation operators
have properties of the topological interior and closure; lattice-theoretic
approach giving the algebraic viewpoint (e.g. Stone algebras); possible
connections with formal concept analysis.

In such a way we can give the formal characterization of rough sets in
terms of topologies or orders. Although fully formal, still the approach
can be revised to keep the uniformity all the time.

Keywords: rough sets, knowledge management, formal mathematics.

1 Introduction

The era of extensive use of computers brought also an evolution of the mathe-
maticians’ work. Among new possibilities offered by computers we can point out
the better transfer of knowledge between researchers via repositories of knowl-
edge. Such computer algebra tools as Mathematica or MathCAD are very pop-
ular nowadays; researchers can also develop their own specialized software for
computing relatively easier than before. The possibility of enhancing human work
using automated proof assistants should be also underlined. We try to disscuss
some issues concerned with the latter activity, concentrating on formalizing not
only selected fields; but viewing specific disciplines from a wider perspective.
As we provided formal apparatus for basic notions within rough set theory
(as e.g. approximation operators and membership functions), we try to reuse
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the knowledge which is already contained in available repositories of computer-
checked mathematical knowledge, or which can be obtained in a relatively easy
way. We can point out at least three topics here: topological aspects of rough
sets — as approximation operators have properties of the topological interior
and closure; possible connections with formal concept analysis; lattice-theoretic
approach giving the algebraic viewpoint (e.g. Stone algebras).

Our main aim is to develop (i.e. to describe in the formal computer language
to be used within the repository of the existing mathematical knowledge) con-
crete examples of such formal knowledge reuse on the area of rough set theory.
We also discuss some issues concerned with our implementation, but as we offer
more than purely theoretical considerations (actual implementation is given),
hence the word ‘efficient’ in the paper’s title.

The structure of the paper is as follows: in the next section we present the
overall methodological background for our work while in the third we focus on
the activity of putting formal things together, called merging theories. Then
we describe briefly the formal approach to rough sets we developed and some
examples of successful, although not yet fully reused, bridging between various
fields of formal mathematics.

2 Mathematical Knowledge Management

“Computer certification” is a relatively new term describing the process of the
formalization via rewriting the text in a specific manner, usually in a rigorous
language. Now this idea, although rather old (taking Peano, Whitehead and
Russell as protagonists), gradually obtains a new life. As the tools evolved, the
new paradigm was established: computers can potentially serve as a kind of
oracle to check if the text is really correct. And then, the formalization is not
lart pour l’art, but it extends perspectives of knowledge reusing. The problem
with computer-driven formalization is that it draws the attention of researchers
somewhere at the intersection of mathematics and computer science, and if the
complexity of the tools will be too high, only software engineers will be attracted
and all the usefulness for an ordinary mathematician will be lost. But here, at
this border, where there are the origins of MKM — Mathematical Knowledge
Management, the place of fuzzy sets can be also. To give more or less formal
definition, according to Wiedijk [26], the formalization can be seen presently as
“the translation into a formal (i.e. rigorous) language so computers check this
for correctness.”

In this era of digital information anyone is free to choose his own way; to
quote Vladimir Voevodsky, Fields Medal winner’s words: “Eventually I became
convinced that the most interesting and important directions in current mathe-
matics are the ones related to the transition into a new era which will be char-
acterized by the widespread use of automated tools for proof construction and
verification”. However he is focused as of now on the constructive Martin-Lof
type theory many ordinary mathematicians aren’t really familiar with. On the
other hand, if we take into account famous Four Colour Theorem, automated
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tools can really enable making some significant part of proofs, so hard to discuss
with this opinion.

Among many available systems which serve as a proof-assistant we have cho-
sen Mizar. The Mizar system [11] consists of three parts — the formal language,
the software, and the database. The latter, called Mizar Mathematical Library
(MML for short) established in 1989 is considered one of the largest repositories
of computer checked mathematical knowledge. The basic item in the MML is
called a Mizar article. It reflects roughly a structure of an ordinary paper, being
considered at two main layers — the declarative one, where definitions and theo-
rems are stated and the other one — proofs. Naturally, although the latter is the
larger, the earlier needs some additional care.

As lattice theory (steered by Trybulec, Bialystok, Poland) and functional
analysis (led by Shidama, Nagano, Japan) are the most developed disciplines
within the MML, further codification of rough sets, especially including their
lattice-theoretic flavour, looks very promising. As a by-product, apart of read-
ability of the Mizar language, we obtain also the presentation of the source
accessible to ordinary mathematicians: pure HTML form with clickable links to
corresponding notions and theorems.

3 Merging Theories

Theory exploration is a term describing the development of a formal (i.e. with
the help of an automated proof-assistant) approach to selected topic, usually
within mathematics or computer science. This activity however usually doesn’t
reflect the view of science considered as a whole, not as separated islands of
knowledge. Merging theories essentially has its primary aim of bridging these
gaps between specific disciplines. Of course, even digging deep in the area of
selected discipline, eventually one have to use the apparatus from another field
(usually category theory sheds some light), but this touches the informal layer,
where interpretations can be somehat flexible.

In our CS&P 2012 paper [9] we have shown our translation of Zhu’s paper
about connections between ordinary properties of binary relations and underly-
ing properties of rough approximation operators which proves some usefulness
of proof assistants within a single area of research (essentially just the field of
binary relations), but it is known that e.g., category theory gives nice inter-
pretations for various questions; the same goes for modal logics. From another
viewpoint, lattices can deliver similarly useful interpretations. Many fields can
be reused depending on the author’s preferred selected approach. Even in rough
approach one can prefer either P-sets or I-sets (equivalence classes or just pairs)
reflecting in the chosen language — either of ordinary sets (partitions) or subsets
of Cartesian product.

We can consider merging on two levels:

Structures — when we inherit the overall signature of the object (as we can
tell that groups are predecessors of rings or fields);
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Fig. 1. The net of structures for chosen theories

Adjectives — when the hierarchy of axioms is described; here the example is
that all Boolean algebras are Stone algebras.

Although from the informal point of view both given examples seem to be just
the correspondence between axiom sets, formally this issue should be considered
more deeply.

First of all, there are automatic theorem provers operating on the form of
an equational characterization (collection of identities) of the theory. Hence the
formula binding distinct items from a given signature gives more possibilities
than the axiom postulating the existence of an object (even if we don’t take into
account Birkhoff variety theorem; equationally definable classes of mathematical
structures are hereditary, admit homomorphic images and admit products —
they form a variety). Good illustrative example here is the treatment of Boolean
rings and Boolean algebras; we can see them as subvarieties of each other but
formallywe should cope somehow with different signatures both are defined on.
The same problem apears in the case of lattices viewed on the one hand as
structures with join and meet operations or posets, otherwise. One can freely
define lattices as posets with the existence of binary joins and meets; hence we
obtain the algebraic interpretation of a lattice used, e.g. in universal algebra.
Obviously both definitions are equivalent, buth they are definitely not the same
as the order-theoretic one uses the signature

(L,<)

while the algebraic one takes
(L,u,m)
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with binary operations: join LI and meet M.

Taking into account the aforementioned two stages of merging — on the level
of structures both have really little in common as only the carrier L can be
identical (we can call it a kind of syntactical point of view). But the latter
viewpoint (of universal algebra) can give a path to semilattices (L, ) and (L, M)
and here the second level of merging (semantical) really makes sense. Namely,
on the signature of lower semilattice we can give an axiom of M-commutativity
or M-associativity which can be then used on all its descendants. Both identities
can be expressed as adjectives binded with appropriate structures.

The extensive use of identities in the form of attributes is really close to
standard manipulation of axioms, so the example of the connection between
Boolean and Stone lattices is really illlustrative here: as we work on the common
signature (L, LI,M,",0, 1), there is no need to extend the corresponding structures
and the work really depends on the deductive power of proof assistant (and
computers do some computations which is quite natural).

Of course, the term ‘formal’ or ‘formally’ is used in this paper in two threads:
on the one hand, ‘formal’ means the strict description of the rules governing the
theory — in common use, it is ‘rigorous’ method. But hence all mathematics
should be called formal in this sense, and this adjective should not then be
used at all. There is also another interpretation of this attribute, which stems
from Hilbert’s formalism. In the latter view, computer assistance is the recent
emerging trend which can be really controversial from the pen-and-paper math-
ematician viewpoint as the mathematics developed without machines for ages.
Many computer scientists and mathematical intuitionists really advocate this
approach, as Voevodsky who was quoted before.!

4 Rough Sets

Originally, we dealt with the more often used and methodologically simpler ap-
proach, i.e. equivalence relations-based rough sets. One of the key issues was also
the possibility of further reusing, but soon this was automatically generalized.
The concept of an information system can be also formalized as the descendant of
the approximation space in a natural way. At the first sight, the underlying Mizar
structure is RelStr, which has two fields: the carrier and the InternalRel,
that is a binary relation of the carrier. The theory of relational structures has
been developed and improved mainly during formalization of the Compendium
of Continuous Lattices (which is described in [1] in detail). While in this context
RelStr was used with attributes reflexive transitive and antisymmetric
to establish posets, we decided to reuse it in our own way. First, we defined
two new attributes: with_equivalence and with_tolerance which state that
the InternalRel of the underlying RelStr is an equivalence resp. a tolerance
relation (where a tolerance relation is a total reflexive symmetric relation, see
[20]). With such defined notions, the basic definitions are as follows:

! Thanks go the anonymous referee for pointing out this inconsequence.
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definition
mode Approximation_Space is with_equivalence non empty RelStr;
mode Tolerance_Space is with_tolerance non empty RelStr;

end;

Formalized theories can be treated as objects (axioms, definitions, theorems)
clustered by certain relations based on information flow. The more atomic the
notions are, the more is their usefulness. Driven by this idea we tried to drop
selected properties of the equivalence relations. Our first choice was transitivity
— therefore the use of tolerance spaces — as it seemed to be less substantial than
the other two. The generalization work went rather smoothly. As we discovered
soon, similar investigations, but without any machine-motivations, were done by
Jérvinen [14].

5 Formal Concept Analysis

Formal context analysis (FCA for short) has been introduced by Wille [27] as
a formal tool for the representation and analysis of data. The main idea is to
consider not only data objects, but to take into account properties (attributes)
of the objects also. This leads to the notion of a concept which is a pair of a
set of objects and a set of properties. In a concept all objects possess all the
properties of the concept and vice versa. Thus the building blocks in FCA are
given by both objects and their properties following the idea that we distinguish
sets of objects by a common set of properties.

In the framework of FCA the set of all concepts (for given sets of objects and
properties) constitutes a complete lattice. Thus based on the lattice structure
the given data — that is its concepts and concept hierarchies — can be computed,
visualized, and analyzed. In the area of software engineering FCA has been
successfully used to build intelligent search tools as well as to analyze and reor-
ganize the structure of software modules and software libraries. In the literature
a number of extensions of the original approach can be found. So, for example,
multi-valued concept analysis where the value of features is not restricted to
two values (true and false). Also more involved models have been proposed tak-
ing into account additional aspects of knowledge representation such as different
sources of data or the inclusion of rule-based knowledge in the form of ontologies.

Being basically an application of lattice theory FCA is a well-suited topic
for machine-oriented formalization. On the one hand it allows to investigate the
possibilities of reusing an already formalized lattice theory. On the other hand
it can be the starting point for the formalization of the extensions mentioned
above. In the following we briefly present the Mizar formalization of the basic
FCA notions. The starting point is a formal context giving the objects and
attributes of concern. Formally such a context consists of two sets of objects
O and attributes A, respectively. Objects and attributes are connected by an
incidence relation I C O x A. The intension is that object o € O has property
a € A if and only if (0,a) € I. In Mizar [23] this has been modelled by the
following structure definitions.
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definition
struct 2-sorted (# Objects, Attributes -> set #);
end;

definition
struct (2-sorted) ContextStr
(# Objects, Attributes -> set,
Information -> Relation of the Objects,the Attributes #);
end;

Now a formal context is a non-empty ContextStr. To define formal concepts in
a given formal context C two derivation operators ObjectDerivation(C) and
AttributeDerivation(C) are used. For a set O of objects (A of attributes) the
derived set consists of all attributes a (objects o) such that (0,a) € I for all
0 € O (for all a € A). The Mizar definition of these operators is straightforward
and omitted here.

A formal concept FC' is a pair (O, A) where O and A respect the derivation
operators: the derivation of O contains exactly the attributes of A, and vice
versa. O is called the extent of F'C, A the intent of F'C. In Mizar this gives
rise to a structure introducing the extent and the intent and an attribute
concept-like.

definition let C be 2-sorted;
struct ConceptStr over C
(# Extent -> Subset of the Objects of C,
Intent -> Subset of the Attributes of C #);
end;

definition let C be FormalContext;
let CP be ConceptStr over C;
attr CP is concept-like means :: CONLAT_1:def 13
(ObjectDerivation(C)) . (the Extent of CP) = the Intent of CP &
(AttributeDerivation(C)).(the Intent of CP) = the Extent of CP;
end;

definition let C be FormalContext;
mode FormalConcept of C is concept-like non empty ConceptStr over C;
end;

Formal concepts over a given formal context can be easily ordered: a formal
concept F'C; is more specialized (and less general) than a formal concept F'Cs
iff the extent of F'Cy is included in the extent of FCy (or equivalently iff the
intent of F'Cs is included in the intent of FC7). With respect to this order the
set of all concepts over a given formal context C forms a complete lattice, the
concept lattice of C.

theorem
for C being FormalContext holds ConceptLattice(C) is complete Lattice;
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This theorem, among others, has been proven in [23]. The formalization of FCA
in Mizar went rather smoothly, the main reason being that lattice theory has
already been well developed. Given objects, attributes and an incidence relation
between them, this data can now be analyzed by inspecting the structure of the
(concept) lattice; see [27,7] for more details and techniques of formal concept
analysis.

6 Rough Concept Analysis

In this section we present issues concerning the merging of concrete theories
in the Mizar system. We will illustrate them by living examples from Rough
Concept Analysis done in Mizar and skipping most technical details (this part
is an extension of [12]). For details of used type system, see [11,2]. We like
to mention that in the course of FCA formalization the formal apparatus yet
existing in the Mizar Mathematical Library also had to be improved and cleaned
up.

A Dbasic structure for the merged theory should inherit fields from its an-
cestors, which would be hard to implement if structures were implemented as
ordered tuples (multiple copies of the same selector, inadequate ordering of fields
in the result). The more feasible realization is by partial functions rather, and
that is the way Mizar structures work.

definition
struct (ContextStr, RelStr) RoughContextStr
(# carrier, carrier2 -> set,
Information -> Relation of the carrier, the carrier2,
InternalRel -> Relation of the carrier #);
end;

As it often happens, an extension of the theory to another need not be
unique. There are at least three different methods of adding roughness to formal
concepts [15,22]. The question which approach to choose depends on the author.
The notion of a free structure in a class of descendant type conservative with
respect to the original object is very useful.

definition let C be ContextStr;
mode RoughExtension of C -> RoughContextStr means
the ContextStr of it = the ContextStr of C;
end;

Now, if C' is a given context, we can introduce roughness in many different
ways by adjectives.

Up to now, we described only mechanisms of independent inheritance of no-
tions. Within the merged theory it is necessary to define connections between its
source ingredients. Here the attributes describing mutual interferences between
selectors from originally disjoint theories proved their enormous value. They may
determine the set of properties of a free extension.
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definition let C be RoughFormalContext;
attr C is naturally_ordered means
for x, y being Element of C holds
[x,y] in the InternalRel of C iff
(ObjectDerivation C).{x} = (ObjectDerivation C).{y};
end;

Since the relation from the definiens above is an equivalence relation on the
objects of C and hence determines a partition of the set of objects of C' into the
so-called elementary sets, it is a constructor of an approximation space induced
by given formal context.

Theory merging makes no sense, if proving the same theorem would be nec-
essary within both source and target theory. Since a new Mizar type called
RoughFormalContext is defined analogously to the notion of FormalContext,
as non quasi-empty RoughContextStr, the following Fundamental Theorem
of RCA is justified only by the Fundamental Theorem of FCA. Even more, clus-
ters providing automatic acceptance of the original theorems do it analogously
within target theory. That is also a workplace for clusters rough and exact from
the core rough set theory.

for C being RoughFormalContext holds
ConceptLattice(C) is complete Lattice by CONLAT_1:48;

7 'Topological Spaces and Partitions

Of course, there are cases we shouldn’t even change the language when switch-
ing between various fields of mathematics. An illustrative example here is again
the notion of rough sets in its primal setting. When we see at the approxima-
tion space given by an equivalence relation, it is quite natural to consider just
classes of abstractions forgetting about original relation. Hence, the lattice of
such objects can be defined:

definition
let X be set;
func EqRellatt X -> strict Lattice means
:: MSUALG_5:def 2
the carrier of it = { x where x is Relation of X,X :
x is Equivalence_Relation of X } &
for x,y being Equivalence_Relation of X holds
(the L_meet of it).(x,y) = x /\ y &
(the L_join of it).(x,y) =x "\/" y;
end;

Among many interesting properties which were proven about this structure
we can quote its completeness, for example:
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registration

let A be set;

cluster EqRelLATT A -> complete;
end;

The natural definition of the topological space is that we have a family of
open sets called the topology, 7. Then a topological space can be considered as
a pair consisting of the universe X and the topology 7 defined on the subsets
of X if 7 satisfies the axioms of topology. As they are widely known, informally,
we quote below only a formal counterpart of it:

definition
struct (1-sorted) TopStruct
(# carrier -> set,
topology —> Subset-Family of the carrier
#);
end;

reflecting the bare (X, 7) tuple and

definition
let IT be TopStruct;
attr IT is TopSpace-like means
:: PRE_TOPC:def 1
the carrier of IT in the topology of IT &
(for a being Subset-Family of IT st a c= the topology of IT holds
union a in the topology of IT) &
for a,b being Subset of IT st
a in the topology of IT & b in the topology of IT holds
a /\ b in the topology of IT;
end;

as axiomatic description of 7.

Then a topological space is just the structure TopStruct to which the ad-
jective TopSpace-like can be added. As usual, with every such object we can
associate the closure and the interior operators, with axioms in Kuratowski style
and then the existing apparatus of topological spaces (C1 and Int for the closure
and interior, respectively) can be reused.

8 Conclusions

Even if we are aware that this paper is really an emerging work and most tech-
nicalities were really skipped (but they can of course tracked in corresponding
Mizar source files freely available from the project homepage), there are some its
clear advantages — considering the repository of formalized mathematical knowl-
edge as a whole extends our knowledge. Some of the ideas contained in this paper
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are dated back to 2004 and our paper [12] presented at the International Con-
ference in Mathematical Knowledge Management where some of the problems
were only identified, but until now many new tools were developed and many
interesting new topics were formalized.

Quoting Pawlak’s own words about the role of computers (or mathematical
machines as they were called):

“One can formulate a risky opinion that almost all contemporary math-
ematical theories in their current state cannot be automatically treated.
Reformulating them is not an easy task. So, the question arises, to which
extent the amount of work done can be justified by the importance of ob-
tained results. (...) Automated discovery of new important results seems
to us rather unlikely.”

Even if Pawlak’s doubts about finding new theorems were clearly expressed,
he was convinced that computers can help in a bit different way:

“(...) the view for theories which are already known, but from another
viewpoint can shed some new light for the structure of mathematical the-
ories and improve human creativity.”

([18], p. 142, translation ours).

We try to argue that the formalization (still having in mind the discussion on
the (over)use of the word ‘formal’ from the end of the third section) of knowledge
in the way accessible by computers is not the question of the sense; it is the
question of time. Real efficiency of this activity will be shown by much more
examples, much more work, and definitely by much more automation many
proof assistants offer. We implemented in Mizar already three paths of rough set
theory merging: with topology, formal concepts and lattices (including interval
sets, which is formalized in [10]). Hence preliminary steps were already done and
as this work makes no sense in the island of isolated knowledge, anyone is invited
to contribute.
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Abstract. Opacity testing is formalized and studied. We specify opacity
testers as well as tested systems by (timed) process algebras. We model
various testers according to how sophisticated observations of tested sys-
tem they can make and which kind of conclusions they can obtain. We use
this technique to define several realistic security properties. The proper-
ties are studied and compared with other security concepts.

Keywords: opacity, process algebras, information flow, security

1 Introduction

Several formulations of system security can be found in the literature. Many
of them are based on non-interference (see [GM82]) which assumes an absence
of any information flow between private and public systems activities. More
precisely, systems are considered to be secure if from observations of their public
activities no information about private activities can be deduced. This approach
has found many reformulations for different formalisms, computational models
and nature or “quality” of observations.

One of the most general notion is opacity (see [BKR04,BKMRO6]) and many
security properties can be viewed as its special cases (see, for example, [Gru07]).
A predicate is opaque if for any trace of a system for which it holds there exists
another trace for which it does not hold and both traces are indistinguishable
for an observer. Opacity is widely studied also in process algebras framework.
Here, as well as later in this paper, we mention those ones which are close to
the the presented work. For example, in [Gru07,Grul2] opacity for very simple
observations is studied for timed process algebra. In [Gru09] a quantification
of opacity by means of the information theory is studied. In [Grul0,Grul2a]
we defined security properties which could be described by specific relations
on contexts. In general, opacity is an undecidable property even for very simple
observation functions or predicates. On the other side, opacity is based on traces
and hence inadequate for any finer ”attacker” who is capable not only observe
traces but also interact with systems.

The aim of this paper is twofold. On the one side, we weaken opacity by
modeling both predicate and observations by processes (particularly, finite state

* Work supported by the grant VEGA 1/1333/12.
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processes) and hence we obtain (polynomial time) decidable properties. On the
other side, we strength opacity by defining simulation opacity which is not re-
stricted to trace observations and which is stronger than opacity. While opacity
of predicate is defined for a given process (and an observation function), simula-
tion opacity requires (roygly speaking) that it is opaque also for every successor
of the process. Moreover, our formalism of timed process algebra, allows us to
express various types of timed attacks.

The paper is organized as follows. In Section 2 we describe the timed process
algebra TPA which will be used as a basic formalism. In Section 3 we present
opacity and in the next section simulation opacity is defined and studied.

2 Timed Process Algebra

In this section we define Timed Process Algebra, TPA for short. TPA is based on
Milner’s CCS but the special time action ¢ which expresses elapsing of (discrete)
time is added. The presented language is a slight simplification of Timed Security
Process Algebra introduced in [FGMO00]. We omit an explicit idling operator ¢
used in tSPA and instead of this we allow implicit idling of processes. Hence
processes can perform either ”enforced idling” by performing ¢ actions which are
explicitly expressed in their descriptions or ”voluntary idling”. But in the both
cases internal communications have priority to action ¢ in the case of the parallel
operator. Moreover we do not divide actions into private and public ones as it is
in tSPA. TPA differs also from the tCryptoSPA (see [GM04]). TPA does not use
value passing and strictly preserves time determinacy in case of choice operator
+ what is not the case of tCryptoSPA.

To define the language TPA, we first assume a set of atomic action symbols A
not containing symbols 7 and ¢, and such that for every a € A there existsa € A
and @ = a. We define Act = AU {1}, Actt = Act U {t}. We assume that a,b,. ..
range over A, u,v,... range over Act, and x,y... range over Actt. Assume the
signature X' = {J,,c(0,1,2} &n, Where

So = {Nil}

Yi={z. |z € AU{t}} U{[S] | S is a relabeling function}
UM | M C )

Yo =A{],+}

with the agreement to write unary action operators in prefix form, the unary
operators [S],\M in postfix form, and the rest of operators in infix form. Rela-
beling functions, S : Actt — Actt are such that S(a) = S(a) fora € A,S(r) =71
and S(t) = t.

The set of TPA terms over the signature X' is defined by the following BNF
notation:

P =X | op(P,P,...P,) | uXP
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where X € Var, Var is a set of process variables, P, Py, ... P, are TPA terms,
uX — is the binding construct, op € X.

The set of CCS terms consists of TPA terms without ¢ action. We will use
an usual definition of opened and closed terms where puX is the only binding
operator. Closed terms which are t-guarded (each occurrence of X is within
some subexpression ¢.A i.e. between any two t actions only finitely many non
timed actions can be performed) are called TPA processes. Note that Nil will
be often omitted from processes descriptions and hence, for example, instead of
a.b.Nil we will write just a.b.

We give a structural operational semantics of terms by means of labeled
transition systems. The set of terms represents a set of states, labels are actions
from Actt. The transition relation — is a subset of TPA x Actt x TPA. We write
P % P’ instead of (P,x, P') € — and P 2 if there is no P’ such that P =% P’.
The meaning of the expression P % P’ is that the term P can evolve to P’ by
performing action z, by P - we will denote that there exists a term P’ such
that P = P’. We define the transition relation as the least relation satisfying
the inference rules for CCS plus the following inference rules:

Nil — Nil uw.P = uP

P5P.Q5QPIQA , PHP.QHQ
PlQ5P | P+Q5P +Q

Here we mention the rules that are new with respect to CCS. Axioms Al, A2
allow arbitrary idling. Concurrent processes can idle only if there is no possibility
of an internal communication (Pa). A run of time is deterministic (5). In the
definition of the labeled transition system we have used negative premises (see
Pa). In general this may lead to problems, for example with consistency of the
defined system. We avoid these dangers by making derivations of 7 independent
of derivations of ¢. For an explanation and details see [Gro90]. Regarding behav-
ioral relations we will work with the timed version of weak trace equivalence.
Note that here we will use also a concept of observations which contain complete
information which includes also 7 actions and not just actions from A and ¢ ac-
tion as it is in [FGMOO]. For s = z1.xs. . ... T, x; € Actt we write P = instead
of P B3 . I and we say that s is a trace of P. By ¢ we will denote the empty
sequence of actions, by Succ(P) we will denote the set of all successors of P. If
the set Succ(P) is finite we say that P is finite state.

Let s € Actt*. By |s| we will denote the length of s i.e. a number of ac-
tion contained in s. By s|p we will denote the sequence obtained from s by
removing all actions not belonging to B. For example, |s|{;| denote a number
of occurrences of ¢ in s, i.e. time length of s.

To express what an observer can see from system behaviour we will define
modified transitions =, which hide actions from M (as well as 7 action). For-
mally, we will write P =, P’ for M C A iff P 2353 P’ for 51,5, € (MU{7})*
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and P =, instead of P 2,22,/ ... =2,,. Instead of = we will write = and
instead of =(n} We will write =5,. We will write P =, if there exists P’ such

that P =5, P'. We will write P =), P’ instead of P =, P' if x € M.
‘We conclude this section with definitions of variants of weak simulation and
weak bisimulation.

Definition 1. Let ( TOA, Actt,—) be a labelled transition system (LTS). A
relation ® C CCS x CCS is called a weak M-bisimulation if it is symmetric and
it satisfies the following condition: if (P,Q) € ® and P 5 P’,x € Actt then

o~

there exists a process Q' such that Q@ =), Q" and (P’,Q’) € R. Two processes
P, Q are M-bisimilar, abbreviated P =); @, if there exists a strong bisimulation
relating P and Q. If it is not required that relation R is symmetric we call it M-
simulation and we say that process P simulates process ), abbreviated P <;; @,
if there exists a simulation relating P and Q.

We will write ~ and < instead of ~; and <y, respectively, if M = (.

3 Opacity

To formalize an information flow we do not divide actions into public and private
ones at the system description level, as it is done for example in [GM04,BG04],
but we use a more general concept of observation and opacity. This concept was
exploited in [BKR04] and [BKMRO6] in a framework of Petri Nets and transition
systems, respectively.

First we define observation function on sequences from Actt*.

Definition 2 (Observation). Let © be a set of elements called observables.
Any function O : Actt* — O* is an observation function. It is called static
Jdynamic /orwellian / m-orwellian (m > 1) if the following conditions hold
respectively (below we assume w =1 ...2,):

— static if there is a mapping O’ : Actt — OU{e} such that for every w € Actt*
it holds O(w) = O'(z1) ... 0 (zn),

— dynamic if there is a mapping O’ : Actt* — O U {e} such that for every
w € Actt* it holds O(w) = O (x1).0'(x1.22) ... O (z1 ... Tp),

— orwellian if there is a mapping O : Actt x Actt* — O U {e} such that for
every w € Actt* it holds O(w) = O'(x1,w). 0 (z2,w) ... O (xn, w),

— m-orwellian if there is a mapping O : Actt x Actt* — O U {e} such that for
every w € Actt* it holds O(w) = O (x1,w1).0' (22, ws) ... O (xy, wy) where

Wi = Tmax{l,i-m+1} -Tmax{l,i—-m+1}+1 - - Tmin{n,i+m—1}-

In the case of the static observation function each action is observed inde-
pendently from its context. In the case of the dynamic observation function
an observation of an action depends on the previous ones, in the case of the
orwellian and m-orwellian observation function an observation of an action de-
pends on the all and on m previous actions in the sequence, respectively. The
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static observation function is the special case of m-orwellian one for m = 1. Note
that from the practical point of view the m-orwellian observation functions are
the most interesting ones. An observation expresses what an observer - eaves-
dropper can see from a system behavior and we will alternatively use both the
terms (observation - observer) with the same meaning.

Now suppose that we have some security property. This might be an execution
of one or more classified actions, an execution of actions in a particular classified
order which should be kept hidden, etc. Suppose that this property is expressed
by predicate ¢ over process traces. We would like to know whether an observer
can deduce the validity of the property ¢ just by observing sequences of actions
from Actt* performed by given process.

The observer cannot deduce the validity of ¢ if there are two traces w,w’ €
Actt* such that ¢(w), ~¢(w’) and the traces cannot be distinguished by the
observer i.e. O(w) = O(w’). We formalize this concept by opacity.

Definition 3 (Opacity). Given process P, a predicate ¢ over Actt* is opaque
w.r.t. the observation function O if for every sequence w, w € Tr(P) such that
d(w) holds and O(w) # €, there exists a sequence w',w’ € Tr(P) such that
—g(w’) holds and O(w) = O(w'). The set of processes for which the predicate ¢

s opaque with respect to O will be denoted by Op??).

The definition of opacity (see Definition 3) of predicate ¢ is asymmetric in
the sense that if ¢(w) does not hold than it is not required that there exists
another trace for which it holds (in general Op‘é # Opgb). This means that
opacity says something to an intruder which tries to detect only validity of ¢
(if it is opaque, than validity cannot be detected) but not its non-validity i.e. it
says nothing about predicate —¢. Hence we define strong variant of opacity.

Definition 4 (Strong Opacity). Given process