
A Multi-agent Approach to Unstructured Data
Analysis Based on Domain-specific Onthology ?

Natalia O. Garanina, Elena A. Sidorova, and Evgeny V. Bodin

A.P. Ershov Institute of Informatics Systems,
Lavrent’ev av., 6, Novosibirsk 630090, Russia,

{garanina,lena,bodin}@iis.nsk.su

Abstract. The paper presents a multi-agent algorithm implementing
semantic analysis of unstructured data based on ontology. In this multi-
agent model agents of two kinds interact: the instance agents correspond
to meaningful units of the information being retrieved, and the rule
agents implement rules of a given ontology. An original solution for the
termination detection of this multi-agent algorithm is suggested.

1 Introduction

At present most organizations deal with large quantity of documents, licenses,
manuals, emails, business letters, financial and technical reports etc. It is already
impossible to process all these documents by hand, without automatic assistance.
Ontological knowledge bases are a good solution for storing information from
these documents, and automatical completing the ontology is necessary.

The essence of an ontological approach to information retrieval is to use
knowledge represented by an ontology for extraction of data interpreted as the
ontology instances. For example, semantic-oriented approach to text analysis
without complete linguistic analysis can be used for ontological data generation.
The standard productional approach to semantic-oriented analysis is to sequen-
tially apply given rules of instance retrieval to data. This process takes a long
time and causes such specific problems as information duplication, variability of
results, etc. Using the multi-agent approach allows to create good alternatives
to the data analysis systems with the sequential architecture. The main feature
of the approach is that the system being developed is considered to be a set of
autonomous entities (the agents) where the agents have the abilities to interact
with the environment and with other agents. By means of this interaction the
system works. The traditional benefits of the multi-agent approach is that the
operations of the system are parallelized, due to independent agents and their
ability to interact with each other, so that some system tasks are solved locally
and therefore the result is obtained significantly faster. Besides, our multi-agent
approach handles some of the above difficulties of productional approaches.

? The research has been supported by Siberian Branch of Russian Academy of Science
(Integration Grant n.15/10 “Mathematical and Methodological Aspects of Intellec-
tual Information Systems”).

A Multi-agent Approach to Unstructured Data Analysis ... 123

The proposed approach is in the framework of modern investigations of auto-
matic processing and analyzing huge amount of unstructured data. Multi-agent
approach for information retrieval from heterogeneous data source for completing
ontology is widespread, in particular, it is used for natural language processing
[1, 2, 11, 6] and web processing [3–5]. Agents in these works have different behav-
ior. Usually in web processing, agents are high-level agents that manage rather
data flows, using standard algorithm for knowledge retrieval, than data itself.
In natural language processing, agents are either associated with conventional
linguistic levels (morphological, syntactic, semantic) or targeted to recognize
specific linguistic phenomena such as ellipsis, anaphora, parataxis, homonymy.
These agents do not use ontological knowledge substantially. Thus they are com-
puting processes which may speed up information retrieval due to their parallel
work but they do not affect the retrieval qualitatively.

Unlike all the above works, in our approach we use two kinds of agents, collec-
tively possessing complete information about both the data being investigated
and the domain-specific ontology. Agents of one kind can analyze ontological
(and linguistic) features. They do not use data directly, but they process infor-
mation provided by requesting agents of the other kind. The latter agents are
the most close to the ones from [10]. In cited paper every agent representing
some word from a text has to determine correspondence between its word and
an element of a given ontology. The authors do not use special agents for on-
tological (and linguistic) properties. Instead, they exploit statistical methods of
text clustering.

Our variant of ontology-based approach for processing unstructured data
contains the following stages. First, a proper domain ontology has to be selected.
We suppose that rules for completing the ontology are defined formally. Then
initial ontology instances (their classes and some attributes) have to be identified
by some preliminary algorithm. Then other instances’ attributes are evaluated
by the ontology rules using our algorithm.

The idea of multi-agent aspect of the our approach is that a set of different
data items is aggregated into an agent considered as an ontology instance. This
process is assisted by special support agents corresponding the ontology. First,
objects significant for the ontology are recognized preliminary in given data.
We call these objects instance agents. Belonging to an ontology, the instance
agents have attributes. The values of some of these attributes are evaluated as
the result of the preliminary analysis. Non-evaluated attributes can be specified
as a result of communication of instance agents and the support rule agents.
In the process of interaction, the agents establish a correspondence between the
ontology concepts and the instance units, and thus complete the ontology with
specific instances of concepts and relationships.

This paper presents a multi-agent algorithm for arbitrary unstructured data
processing. This algorithm improves and generalizes the algorithm for informa-
tion retrieval from natural language text suggested in [7]. We estimate the time
upper bound of the algorithm and prove the properties of termination and cor-
rectness of the termination controller agent.

124 N. O. Garanina, E. A. Sidorova, E. V. Bodin

The rest of the paper is organized as follows. The next section 2 describes the
main agents in our systems and gives a simple example. The following section
3 presents protocols for the instance, rule and controller agents and sketches
some properties of the systems. Finally, we conclude in the last section 4 with a
discussion of further research topics.

2 Agent Model

Outline of the approach and multi-agent system follows. There is an ontology, a
set of rules for completing it, and a finite set of data to extract the information for
the ontology. The preliminary phase partially assigns values to instance agents
attributes. The rule agents implementing the ontology rules (the rules depend
on the ontology only, but not on the data), according to data received from
various instance agents, generate new attribute values of the instances, send the
obtained result to all agents interested in it, or generate new instance agents.
Eventually, the instance agents assign values to all their attributes that can be
evaluated with the information from the data, and the system stops. A special
controller agent keeps track of system stopping.

Let the result of data pre-processing be the set IA of instance agents, where
each I ∈ IA is a tuple I = (id;Cl;RO0; a1(RI1;RO1), ..., ak(RIk;ROk)), where

– id is a unique agent identifier;
– Cl is an ontological class of the agent;
– RO0 is set of rule agents that use this instance agent as an argument;
– for each i ∈ [1..k], ai is the attribute of the agent, which value is determined

by some rule agent from RIi, every rule in set of rule agents ROi requires
the value of attribute ai to get the result; let us denote the set of rule agents
for incoming values as RI = ∪i=1..kRIi, the set of rule agents for outcoming
values as RO = ∪i=1..kROi.

The values of attributes of an instance agent are usually only partially deter-
mined before the algorithm starts. When the algorithm terminates, the initially
unvalued attributes should be provided values with help of rule agents.

Let us define the set of rule agents RA, where each R ∈ RA is a tuple
R = (id; arg1(Cl1), . . . , args(Cls);make res(args), ares), where

– id is a unique agent identifier;
– for each i ∈ [1..s]: argi is a set of argument values determined by the corre-

sponding instance agent from ontological class Cli; let us denote the set of
vectors of argument values as args, where each value is provided with the
identifier of the defining instance agent, the set of these agents is args.Ag;
let us consider the argument values vector non-empty, if all its values are
non-empty;

– make res(args) is a function for computing the result from argument vector
args;

– ares is the result of function make res(args) which can be

A Multi-agent Approach to Unstructured Data Analysis ... 125

• null, if the argument vector is inconsistent;
• a new value of some attribute1 for instance agents;
• a new instance agent (there should not be an agent with the same at-

tribute values in the system).

As a simple example let us consider the following multi-agent system for
natural language text processing. Let the given ontology includes classes Person,
Organization, and relation Employee. The corresponding instance agents have
the following form:

• A1 = (id;Person; {CWork,CPersonDeg, . . .};
surname({CPerson,CPersonIni}; ∅), first name({CPerson}; ∅),

degree({CPersonDeg}; ∅), ...;Employee({CWork,CWorkPos}).
Person has the following attributes: surname, first name, (academic) deg-
ree which can be used and evaluated by the corresponding rule agents
CPerson, CPersonIni, CPersonDeg.
• A2 = (id;Organization; {CWork,CPersonDeg, . . .};

name(COrg; ∅), type(COrg,COrgType;CWork), . . . ;
Employee(CWork,CWorkPos);

Organization has attributes name and type, and the corresponding input-
output rule agents COrg and COrgType.
• A3 = (id, Employee; {CWork,CWorkPos};

arg1(CWork; ∅), arg2(CWork; ∅), pos(CWorkPos; ∅)).
Relation Employee can be evaluated by rule agent CWork directly connect-
ing Person and Organization, or by rule agent CWorkPos which connects
them using a position.

As an example of an ontology rule agent let us consider agent CWork:
CWork = (id, arg1(A1), arg2(A2);

{Sentence({arg1, arg2}), BracketSegment({arg2}),
P reposition(arg1, arg2), Contact(arg1, arg2)};

Employee.arg1 = CWork.arg1, Employee.arg2 = CWork.arg2;
A3 = newEmployee()).

This agent recognizes sentences where an organization is enclosed in brackets
after a person. For example:

Academician Genrikh Aleksandrovich Tolstikov (Novosibirsk Institute
of Organic Chemistry) is a prominent chemist, recognized authority in
synthetic organic chemistry.

The following evaluation of attributes of the above agents is the result of analysis
of the given text fragment:
A1 = Person(id = 1, surname = Tolstikov, first name = Genrikh,

degree = Academician);
A2 = Organization(id = 2, name = Institute of Organic Chemistry,

1 This attribute is defined a priory.

126 N. O. Garanina, E. A. Sidorova, E. V. Bodin

type = Institute);
A3 = Employee(id = 3, arg1 = A1, arg2 = A2, pos = ∅).

In the next section, the algorithms of the instance, rule and controller agents
are described in pseudocode.

3 Multi-agent Algorithm for Data Analysis

Let IA = {I1, . . . , In, . . .} be an instance agents set, and RA = {R1, . . . , Rm}, be
a rule agents set. The result of executing of the following algorithm is data anal-
ysis, when the instance agents determine the possible values of their attributes.
Let Ii be a protocol of actions of instance agent Ii, and Rj, be the protocol of
actions of rule agent Rj , C be the protocol of actions of an agent-controller C.
Then the multi-agent data analysis algorithm MDA can be presented in pseu-
docode as follows:
MDA::

begin

parallel {I1} ...{In} ...{R1} ...{Rm} {C}
end.

Here we assume that the parallel operator means that all execution flows
(threads) in the set of braces are working in parallel. That is, all agents act
in parallel until either all attributes of the instance agents are evaluated or it
happens that none of the rule agent can proceed. These events are determined
by the controller agent. The system is dynamic because rule agents can create
new instance agents. Let N be the maximal number of instance agents that can
be obtained from a given data.

The agents are connected by duplex channels. The controller agent is con-
nected with all agents, and every instance agent is connected with several rule
agents (and vise versa). Messages are transmitted asynchronously and stored
in FIFO channels until being read. The messages are transmitted in a fast and
reliable medium.

We consider an agent active iff it does not complete its work (is not at the
label “end” of the algorithms below) and either it processes some message or its
queue of input messages is not empty. Otherwise, the agent is passive. We say
that a multi-agent system terminates iff every system agent (possibly) except
the agent-controller is passive.

In the agent protocols below the function get head(queue) removes the first
element from the queue and returns that element.

3.1 Protocol of Instance Agents

Let us comment a notation of the instance agent protocol. A message for an
instance agent has two fields: name of sender (name ∈ [1..m] ∪ C)2 and ai with
value of attribute i. The pseudocode of the protocol follows.

2 The agent receives messages only from the controller agent and from the rule agents.

A Multi-agent Approach to Unstructured Data Analysis ... 127

Protocol of instance agents.
I::

C: Controller Agent;

R,Rij: Rule Agent;

RI, RO: set of Rule Agents;

data wait: set of Rule Agents = ∅;
ai: Attribute;

mess: message;

In: queue of incoming messages;

begin

1. send |RI ∪RO|+ 1 to C;

2. forall R ∈ RI ∪RO send evaluated data to R;
3. forall ai ∈ Atr forall Rij ∈ RIi {
4. send request(ai) to Rij; add (ij) to data wait;}
5. send −1 to C;

6. while (true){
7. if In 6= ∅ then {
8. mess = get head(In);
9. if mess.name = C then break;

10. if mess.name ∈ RIi then {
11. if ai = ∅ then {
12. upd(ai);
13. forall Rij ∈ RIi {
14. send cancel(ai) to Rij; remove (ij) from data wait;}
15. forall Rij ∈ ROi

16. send data(ai) to Rij;

17. send |ROi| − 1 to C;}
18. if ai 6= ∅ then send −1 to C;} }
19. if data wait = ∅ then break;}
end.

Let us informally describe the protocol of an instance agent. First, the agent
(1) notifies the controller agent that it started working and the number of rule
agents that will process its data (line 1), (2) sends the available data (line 2),
(3) sends the requests for evaluating and adds the corresponding rule agents to
its waiting list (lines 3-4), and then (4) tells the controller agents that it is now
passive. From the beginning of the work of the agent, its channel is open for
incoming messages. As soon as a message arrives, it begins processing it (line
8). If it is from the controller agent, the agent terminates (line 9). If it is from
a rule agent (line 10) then if the corresponding attribute is empty (line 11) the
agent evaluates it with the obtained data (line 12) and notifies other rule agents
related to this attribute that a value of this attribute is no more required from
them, and then the instance agent deletes these agents from its waiting list (lines
13-14). Then the obtained attribute value is sent to those agents that require
it (lines 15-16), and the controller agents is notified about the agent finishing
its work and about the number of rule agents that will process sent attribute

128 N. O. Garanina, E. A. Sidorova, E. V. Bodin

value (line 17). If the message contains the value of an attribute that is already
evaluated, the agent does not handle it and notifies the controller agent about
it (line 18). If it turns out that all attributes are evaluated, the agent finishes its
work (line 19).

Let us estimate the time upper bound of the instance agent protocol. In
the first phase of its activities (line 2) the instance agent sends the evaluated
data to all rules agents interested in this data. The complexity of this phase
CIA

1 = O(|RI| + |RO|) = O(m). Sending the activation messages to rule agent
from RI (lines 3-4) is estimated as CIA

2 = O(k×m) and the size of the queue of
incoming messages In is the same. The agent processes the received data (lines
8-19). It takes time CIA

4 = O(|In| × (|RI| + |RO|)) = O(k × m2). Thus, the
upper bound of the protocol actions of each instance agent is CIA = O(k×m2).

3.2 Protocol of Rule Agents

In the algorithm of the rule agent’s actions protocol, the following functions and
notation are used. The rule agents receive messages only from instance agents
and from the controller agent. The messages have (1) the name of the sender,
(2) the type ∈ {data, request, cancel} that means that it has received an
attribute, a request for a result, or a cancelation request, respectively, and (3) the
value of the attribute. The function make arg(a, I) creates vectors of arguments
with received values of attributes at the positions corresponding to ontology
classes. The function make res(args) creates the output result: (1) the values
of attributes that have sent a request to the rule agent, (2) a new instance agent
which starts working immediately, or (3) the null result in a case of inconsistency
of the argument vector. The pseudocode of the protocol follows.
Protocol of rule agents.
R::

C: Controller Agent;

I: Instance Agent;

a: Attribute;

args: vector of Argument = ∅;
Arg: queue of vector of Argument = ∅; // set of tuples

res send: set of Instance Agents = ∅;
In: queue of incoming messages;

begin

1. parallel

2. { while (true) {
3. if In 6= ∅ then {
4. mess = get head(In);
5. if mess.name=C then goto end;

6. if mess.name=I then {
7. if mess.type=request then add I to res send;

8. if mess.type=cancel then remove I from res send;

9. if mess.type=data then {
10. a = mess.val; Arg = Arg ∪ make arg(a, I);

A Multi-agent Approach to Unstructured Data Analysis ... 129

11. send −1 to C; }}}}}
12. { while (true) {
13. if Arg 6= ∅ then {
14. send 1 to C;

15. args = get head(Arg);
16. ares = make res(args);
17. if ares.type = attr then {
18. forall I ∈ args.Ag ∩ res send{
19. send ares to I; remove I from res send;}
20. send |args.Ag ∩ res send| − 1 to C;}
21. if ares.type = new agent then send ares.val to ares.name;
22. if ares.type = null then send −1 to C;} } }
end.

Let us informally describe the protocol of a rule agent. The agent can perform
in parallel both processing of incoming messages(lines 2-10) and the generating
of the outcome (lines 12-21). If it has received a message from the controller
agent, it finishes the work (line 5). If the agent receives a request from the agent
I for a result (line 7), it adds I to the recipients list; and it removes I from this
list if it was the cancelation request (line 8). If it receives a value of the attribute
a from the agent I, then using the procedure make arg it tries to create a
vector of arguments (set of vectors) (line 10). In such vectors the received value
of the attribute is one of the elements and other elements are values of attributes
received earlier. Then the agent tells the controller agent about becoming passive
(line 11). If the vector (or the set of vectors) is formed, the agent immediately
begins to process it/them (line 13). The result of processing is obtained using
the function make res. It may be (1) an attribute which is later sent to those
agents that have requested it (lines 16-18), then the controller agent is informed
about the number of the agents to process the data and about this agent has
completed processing the vector of arguments, (2) a new instance agent, that
starts working immediately as soon as it gets the attribute values from the rule
agent, (3) no result, due to the vector of arguments is not consistent, and the
controller agent is notified that the argument vector processing is finished.

Let us estimate the time upper bound of the rule agent’s protocol. The
time complexity depends on the time bounds of the parallel actions of the
rule agents. Let Ag be the set of agents have sent attributes and Arg be the
set of arguments of the rule agent. The complexity of requests and cancels is
CRA

2 = O(|Ag|) = O(N) (lines 7-8). Retrieving and storing data from the in-
stance agents (lines 9-11) is a very time-consuming process with the estimate
CRA

1 = O(|Ag||Arg|) = O(Ns), since the obtained data generate a set of vectors
of the argument values. The complexity of parallel data processing (lines 13-22)
is CRA

3 = O(CRA
1 × (||make res||+ |Ag|) = O(Ns× (s+N)), where ||make res||

is the time complexity of the function, which is linear with respect to the size
of the argument. Thus, the overall time upper bound of the actions of each rule
agent is CRA = O(CRA

3) = O(Ns × (s + N)).

130 N. O. Garanina, E. A. Sidorova, E. V. Bodin

3.3 Protocol of the Controller Agent

A special agent-controller handles the Distributed Termination Detection prob-
lem [8]. We suggest an algorithm for the problem which fits to our multi-agent
system more than known termination detection algorithms, the credit/recovery
algorithms in particular [9, 12]. The main feature of this agent-controller is to
sequentially calculate other agents’ activities by using variable Act. Instance and
rule agents send information about their activities to the agent-controller. After
system termination the agent informs others about this fact.
Protocol of agent-controller C.
C ::

Act, num: integer;

messages: queue of integer;

begin

1. Act = 0;

2. while(true){
3. if messages 6= ∅ then { num =get head(messages); Act=Act+num;}
4. if messages = ∅ and Act = 0 then break; }
5. send STOP to all;

end.

Let us estimate the time upper bound of the controller agent’s protocol. The
size of the queue of incoming messages for the controller agent CCA is less then
N +

∑
i∈[1..N] |ki|+

∑
j∈[1..m](N + Ns

j), where ki is the number of attributes of
instance agent i and sj is the number of attributes of instance agent j.

3.4 MDA Protocol Properties

The time complexity of the multi-agent analysis algorithm MDA follows from
the above estimations: CMDA = O(max{CIA

1 , ..., CIA
N , CRA

1 , ..., CRA
m , CCA}),

where CIA
i and CRA

j are the complexities of the protocols of the instance and
rule agents, respectively, for all i ∈ [1..N], j ∈ [1..m].

Correctness (completeness and soundness)3 of information retrieval algo-
rithms is rather a notion of data analysis theory than the theory of multi-agent
algorithms, thus it is out of the scope of this paper. But this multi-agent algo-
rithm has some properties to be proved.

Proposition 1. Multi-agent system MDA terminates and the agent-controller
determines the termination moment correctly.

Sketch of the proof. First, an analyzed data contains a finite number of infor-
mation objects for a given ontology. Hence the number of corresponding agents
and their attributes is finite. Hence (1) every instance agent determines values
of all its attributes and goes to a passive state or (2) some attributes can not
be evaluated because there is no appropriate information in the data and after

3 Completeness means that all relevant information has been retrieved from data.
Soundness mans that this information has been retrieved correctly.

A Multi-agent Approach to Unstructured Data Analysis ... 131

determining evaluable attributes an instance agents goes to a passive state also.
Every rule agent (1) gets enough information from instance agents to process
received data and goes to a passive state after that or (2) goes to a passive state
after receiving messages and never processes data. After processing data, the
generation of new instance agents does not duplicate agents. Hence, there is no
infinite loop because the number of information objects in the data is finite.

Second statement of the proposition follows from the fact that the value of
variable Act becomes 0 no earlier than the termination moment. Let active(t)
be the number of active agents. For every time moment t the following holds:∑

i≤|mess(t)|mess(i, t) + Act = active(t), because agents influence (1) increase
of Act when after their local termination they send to the controller the number
of meaningful messages sent to instance/rule agents (lines 1,17/20), and (2)
decrease of Act when they informs about their passive state (lines 5,18/11,22).�

4 Conclusion

The proposed approach aims at taking advantage of the agent-based approach to
knowledge representation and processing. Thus, using the agent-based technol-
ogy allows to avoid unnecessary information retrieval, since at any given time,
only information required for an agent is being searched for. Furthermore, due
to the agents working in parallel, the speed of data processing significantly in-
creases.

Note that this paper presents only a basic formal model of agents’ interaction
that implements a simplified model of data analysis, which does not yet take into
account specific problems related to ambiguity of input data. For example, let
us consider a case of data ambiguity when the different ontology instance agents
correspond to the same data (“toast” as “fried bread” and as “a tribute or
proposal of health”). In order to handle such ambiguities competitive instance
agents acquire points which characterize their connections with other instance
agents. These connections are defined by agents’ attributes that could be the
linked agents themselves or their attributes. The more links some agent has and
the more points its linked agents have, it becomes more probable that this agent
is the most accurate data based instance of a given ontology.

These problems can be solved by increasing the expressive power of the pro-
posed agent-based models by giving the agent the ability to work cooperatively,
to compete (as above), to keep the history of its creation and development, etc.

Acknowledgments. We would like to thank Dr. I.S. Anureev for discus-
sions.

References

1. Aref, M.M. A Multi-Agent System for Natural Language Understanding Inter-
national Conference on Integration of Knowledge Intensive Multi-Agent Systems,
2003, 36

132 N. O. Garanina, E. A. Sidorova, E. V. Bodin

2. Ariadne Maria B.R. Carvalho, Daniel S. de Paiva, Jaime S. Sichman,
João Lúıs T. da Silva, Raul S. Wazlawick & Vera Lúcia S. de Lima Multi-
Agent Systems for Natural Language Processing In Francisco J. Garijo & Cristian
Lemaitre (eds.), Multi Agent Systems Models Architecture and Appications, Pro-
ceedings of the II Iberoamerican Workshop on D.A.I. and M.A.S(Toledo, Spain,
October 1-2 1998), pp. 61-69.

3. Banares-Alcantara R., Jimenez R., Aldea L. Multi-agent systems for
ontology-based information retrieval // European Symposium on Computer-Aided
Chemical Engineering-15 (ESCAPE-15),2005, Barcelona, Espaa

4. Cheng X., Xie Y., Yang T. Study of Multi-Agent Information Retrieval Model
in Semantic Web // In Proc. of the 2008 International Workshop on Education
Technology and Training and 2008 International Workshop on Geoscience and
Remote Sensing (ETTANDGRS’08), 2008, Vol. 02, P. 636-639.

5. Clark K.L., Lazarou V.S. A Multi-Agent System for Distributed Information
Retrieval on the World Wide Web // In Proc. of the 6th Workshop on Enabling
Technologies on Infrastructure for Collaborative Enterprises (WET-ICE ’97), 1997,
P. 87-93.

6. Danilo Fum, Giovanni Guida, Carlo Tasso A Distributed Multi-Agent Ar-
chitecture for Natural Language Processing // In Proc. of the 12th conference on
Computational linguistics (COLING ’88), 1988, Vol. 2, P. 812-814.

7. Garanina N., Sidorova E., Zagorulko Yu. Multi-agent algorithm of text anal-
ysis based on domain-specific onthology. // Proc. of The 13th Russian Conference
on Artificial Intelligence (CAI-2012), October 16-20, 2012, Belgorod, Vol.1, P. 219-
226. (In Russian)

8. Matocha J., Camp T. A taxonomy of distributed termination detection algo-
rithms // The Journal of Systems and Software, 1998, Vol. 43, P. 207-221

9. Mattern, F. Global quiescence detection based on credit distribution and recovery
// Inform. Process. Lett. 30 (4), 1989, P. 195-200.

10. Minakov I., Rzevski G., Skobelev P., Volman S. Creating Contract Templates
for Car Insurance Using Multi-agent Based Text Understanding and Clustering//
In Proc. Holonic and Multi-Agent Systems for Manufacturing, Third International
Conference on Industrial Applications of Holonic and Multi-Agent Systems, Holo-
MAS 2007, Regensburg, Germany, September 3-5, 2007. Springer, Lecture Notes
in Computer Science, 2007, Vol. 4659, P. 361-370.

11. Cássia Trojhan dos Santos, Paulo Quaresma, Irene Rodrigues, Renata
Vieira A Multi-Agent Approach to Question Answering // In Renata Vieira, Paulo
Quaresma, Maria da Graça Volpes Nunes, Nuno J. Mamede, Cláudia Oliveira &
Maria Carmelita Dias (eds.), Computational Processing of the Portuguese Lan-
guage: 7th International Workshop, PROPOR 2006. Itatiaia, Brazil, May 2006
(PROPOR’2006) LNAI 3960, 13-17 de Maio de 2006, Berlin/Heidelberg: Springer
Verlag, pp. 131-139.

12. Rokusawa, K., Iciyoshi, N., Chikayama, T., Nakashima, H. An ecient termi-
nation detection and abortion algorithm for distributed processing systems // In:
Proceedings of the International Conference on Parallel Processing, pp. 18-22.

13. Zagorulko Yu.A., Sidorova E.A. Document analysis technology in informa-
tion systems for supporting research and commercial activities // Optoelectronics,
Instrumentation and Data Processing, 2009. Volume 45, Number 6. -pp. 520-525.

