Opacity Testing *

Damas P. Gruska

Institute of Informatics, Comenius University,
Mlynska dolina, 842 48 Bratislava, Slovakia,
gruska@fmph.uniba.sk.

Abstract. Opacity testing is formalized and studied. We specify opacity
testers as well as tested systems by (timed) process algebras. We model
various testers according to how sophisticated observations of tested sys-
tem they can make and which kind of conclusions they can obtain. We use
this technique to define several realistic security properties. The proper-
ties are studied and compared with other security concepts.

Keywords: opacity, process algebras, information flow, security

1 Introduction

Several formulations of system security can be found in the literature. Many
of them are based on non-interference (see [GM82]) which assumes an absence
of any information flow between private and public systems activities. More
precisely, systems are considered to be secure if from observations of their public
activities no information about private activities can be deduced. This approach
has found many reformulations for different formalisms, computational models
and nature or “quality” of observations.

One of the most general notion is opacity (see [BKR04,BKMRO6]) and many
security properties can be viewed as its special cases (see, for example, [Gru07]).
A predicate is opaque if for any trace of a system for which it holds there exists
another trace for which it does not hold and both traces are indistinguishable
for an observer. Opacity is widely studied also in process algebras framework.
Here, as well as later in this paper, we mention those ones which are close to
the the presented work. For example, in [Gru07,Grul2] opacity for very simple
observations is studied for timed process algebra. In [Gru09] a quantification
of opacity by means of the information theory is studied. In [Grul0,Grul2a]
we defined security properties which could be described by specific relations
on contexts. In general, opacity is an undecidable property even for very simple
observation functions or predicates. On the other side, opacity is based on traces
and hence inadequate for any finer ”attacker” who is capable not only observe
traces but also interact with systems.

The aim of this paper is twofold. On the one side, we weaken opacity by
modeling both predicate and observations by processes (particularly, finite state

* Work supported by the grant VEGA 1/1333/12.

170 D. P. Gruska

processes) and hence we obtain (polynomial time) decidable properties. On the
other side, we strength opacity by defining simulation opacity which is not re-
stricted to trace observations and which is stronger than opacity. While opacity
of predicate is defined for a given process (and an observation function), simula-
tion opacity requires (roygly speaking) that it is opaque also for every successor
of the process. Moreover, our formalism of timed process algebra, allows us to
express various types of timed attacks.

The paper is organized as follows. In Section 2 we describe the timed process
algebra TPA which will be used as a basic formalism. In Section 3 we present
opacity and in the next section simulation opacity is defined and studied.

2 Timed Process Algebra

In this section we define Timed Process Algebra, TPA for short. TPA is based on
Milner’s CCS but the special time action ¢ which expresses elapsing of (discrete)
time is added. The presented language is a slight simplification of Timed Security
Process Algebra introduced in [FGMO00]. We omit an explicit idling operator ¢
used in tSPA and instead of this we allow implicit idling of processes. Hence
processes can perform either ”enforced idling” by performing ¢ actions which are
explicitly expressed in their descriptions or ”voluntary idling”. But in the both
cases internal communications have priority to action ¢ in the case of the parallel
operator. Moreover we do not divide actions into private and public ones as it is
in tSPA. TPA differs also from the tCryptoSPA (see [GM04]). TPA does not use
value passing and strictly preserves time determinacy in case of choice operator
+ what is not the case of tCryptoSPA.

To define the language TPA, we first assume a set of atomic action symbols A
not containing symbols 7 and ¢, and such that for every a € A there existsa € A
and @ = a. We define Act = AU {1}, Actt = Act U {t}. We assume that a,b,. ..
range over A, u,v,... range over Act, and x,y... range over Actt. Assume the
signature X' = {J,,c(0,1,2} &n, Where

So = {Nil}

Yi={z. |z € AU{t}} U{[S] | S is a relabeling function}
UM | M C)

Yo =A{],+}

with the agreement to write unary action operators in prefix form, the unary
operators [S],\M in postfix form, and the rest of operators in infix form. Rela-
beling functions, S : Actt — Actt are such that S(a) = S(a) fora € A,S(r) =71
and S(t) = t.

The set of TPA terms over the signature X' is defined by the following BNF
notation:

P =X | op(P,P,...P,) | uXP

Opacity Testing 171

where X € Var, Var is a set of process variables, P, Py, ... P, are TPA terms,
uX — is the binding construct, op € X.

The set of CCS terms consists of TPA terms without ¢ action. We will use
an usual definition of opened and closed terms where puX is the only binding
operator. Closed terms which are t-guarded (each occurrence of X is within
some subexpression ¢.A i.e. between any two t actions only finitely many non
timed actions can be performed) are called TPA processes. Note that Nil will
be often omitted from processes descriptions and hence, for example, instead of
a.b.Nil we will write just a.b.

We give a structural operational semantics of terms by means of labeled
transition systems. The set of terms represents a set of states, labels are actions
from Actt. The transition relation — is a subset of TPA x Actt x TPA. We write
P % P’ instead of (P,x, P') € — and P 2 if there is no P’ such that P =% P’.
The meaning of the expression P % P’ is that the term P can evolve to P’ by
performing action z, by P - we will denote that there exists a term P’ such
that P = P’. We define the transition relation as the least relation satisfying
the inference rules for CCS plus the following inference rules:

Nil — Nil uw.P = uP

P5P.Q5QPIQA , PHP.QHQ
PlQ5P | P+Q5P +Q

Here we mention the rules that are new with respect to CCS. Axioms Al, A2
allow arbitrary idling. Concurrent processes can idle only if there is no possibility
of an internal communication (Pa). A run of time is deterministic (5). In the
definition of the labeled transition system we have used negative premises (see
Pa). In general this may lead to problems, for example with consistency of the
defined system. We avoid these dangers by making derivations of 7 independent
of derivations of ¢. For an explanation and details see [Gro90]. Regarding behav-
ioral relations we will work with the timed version of weak trace equivalence.
Note that here we will use also a concept of observations which contain complete
information which includes also 7 actions and not just actions from A and ¢ ac-
tion as it is in [FGMOO]. For s = z1.xs. T, x; € Actt we write P = instead
of P B3 . I and we say that s is a trace of P. By ¢ we will denote the empty
sequence of actions, by Succ(P) we will denote the set of all successors of P. If
the set Succ(P) is finite we say that P is finite state.

Let s € Actt*. By |s| we will denote the length of s i.e. a number of ac-
tion contained in s. By s|p we will denote the sequence obtained from s by
removing all actions not belonging to B. For example, |s|{;| denote a number
of occurrences of ¢ in s, i.e. time length of s.

To express what an observer can see from system behaviour we will define
modified transitions =, which hide actions from M (as well as 7 action). For-
mally, we will write P =, P’ for M C A iff P 2353 P’ for 51,5, € (MU{7})*

172 D. P. Gruska

and P =, instead of P 2,22,/ ... =2,,. Instead of = we will write = and
instead of =(n} We will write =5,. We will write P =, if there exists P’ such

that P =5, P'. We will write P =), P’ instead of P =, P' if x € M.
‘We conclude this section with definitions of variants of weak simulation and
weak bisimulation.

Definition 1. Let (TOA, Actt,—) be a labelled transition system (LTS). A
relation ® C CCS x CCS is called a weak M-bisimulation if it is symmetric and
it satisfies the following condition: if (P,Q) € ® and P 5 P’,x € Actt then

o~

there exists a process Q' such that Q@ =), Q" and (P’,Q’) € R. Two processes
P, Q are M-bisimilar, abbreviated P =); @, if there exists a strong bisimulation
relating P and Q. If it is not required that relation R is symmetric we call it M-
simulation and we say that process P simulates process), abbreviated P <;; @,
if there exists a simulation relating P and Q.

We will write ~ and < instead of ~; and <y, respectively, if M = (.

3 Opacity

To formalize an information flow we do not divide actions into public and private
ones at the system description level, as it is done for example in [GM04,BG04],
but we use a more general concept of observation and opacity. This concept was
exploited in [BKR04] and [BKMRO6] in a framework of Petri Nets and transition
systems, respectively.

First we define observation function on sequences from Actt*.

Definition 2 (Observation). Let © be a set of elements called observables.
Any function O : Actt* — O* is an observation function. It is called static
Jdynamic /orwellian / m-orwellian (m > 1) if the following conditions hold
respectively (below we assume w =1 ...2,):

— static if there is a mapping O’ : Actt — OU{e} such that for every w € Actt*
it holds O(w) = O'(z1) ... 0 (zn),

— dynamic if there is a mapping O’ : Actt* — O U {e} such that for every
w € Actt* it holds O(w) = O (x1).0'(x1.22) ... O (z1 ... Tp),

— orwellian if there is a mapping O : Actt x Actt* — O U {e} such that for
every w € Actt* it holds O(w) = O'(x1,w). 0 (z2,w) ... O (xn, w),

— m-orwellian if there is a mapping O : Actt x Actt* — O U {e} such that for
every w € Actt* it holds O(w) = O (x1,w1).0' (22, ws) ... O (xy, wy) where

Wi = Tmax{l,i-m+1} -Tmax{l,i—-m+1}+1 - - Tmin{n,i+m—1}-

In the case of the static observation function each action is observed inde-
pendently from its context. In the case of the dynamic observation function
an observation of an action depends on the previous ones, in the case of the
orwellian and m-orwellian observation function an observation of an action de-
pends on the all and on m previous actions in the sequence, respectively. The

Opacity Testing 173

static observation function is the special case of m-orwellian one for m = 1. Note
that from the practical point of view the m-orwellian observation functions are
the most interesting ones. An observation expresses what an observer - eaves-
dropper can see from a system behavior and we will alternatively use both the
terms (observation - observer) with the same meaning.

Now suppose that we have some security property. This might be an execution
of one or more classified actions, an execution of actions in a particular classified
order which should be kept hidden, etc. Suppose that this property is expressed
by predicate ¢ over process traces. We would like to know whether an observer
can deduce the validity of the property ¢ just by observing sequences of actions
from Actt* performed by given process.

The observer cannot deduce the validity of ¢ if there are two traces w,w’ €
Actt* such that ¢(w), ~¢(w’) and the traces cannot be distinguished by the
observer i.e. O(w) = O(w’). We formalize this concept by opacity.

Definition 3 (Opacity). Given process P, a predicate ¢ over Actt* is opaque
w.r.t. the observation function O if for every sequence w, w € Tr(P) such that
d(w) holds and O(w) # €, there exists a sequence w',w’ € Tr(P) such that
—g(w’) holds and O(w) = O(w'). The set of processes for which the predicate ¢

s opaque with respect to O will be denoted by Op??).

The definition of opacity (see Definition 3) of predicate ¢ is asymmetric in
the sense that if ¢(w) does not hold than it is not required that there exists
another trace for which it holds (in general Op‘é # Opgb). This means that
opacity says something to an intruder which tries to detect only validity of ¢
(if it is opaque, than validity cannot be detected) but not its non-validity i.e. it
says nothing about predicate —¢. Hence we define strong variant of opacity.

Definition 4 (Strong Opacity). Given process P, a predicate ¢ over Actt* is
strongly opaque w.r.t. the observation function O if for every sequence w, w €
Tr(P) such that ¢(w) holds and O(w) # €, there exists a sequence w',w’ € Tr(P)
such that —¢(w'") holds and O(w) = O(w'). Moreover, for for every sequence
w, w € Tr(P) such that ~¢(w) holds and O(w) # e, there exists a sequence
w',w' € Tr(P) such that ¢(w’) holds and O(w) = O(w"). The set of processes

. @
for which the predicate ¢ is opaque with respect to O will be denoted by sOpg, .

Lemma 1. sOp?9 - Op‘é for every ¢ and O. Moreover, there exist ¢ and O
such that sOp% - Op%.

Proof. Main idea. Let P € sOp%. Then for every trace of P for which ¢ holds
there exists a trace indistinguishable by observation function O for which ¢ does
not hold and hence P € Op%. Let us consider process P = h.0.Nil+I1.Nil+1'.Nil
and let ¢ holds for tracecs which contain action h and observation function O
which hide h action. Then we have P € Op% but P ¢ sOp% and hence the

inclusion is proper, i.e sOp?) C Opg for such ¢ and O.

174 D. P. Gruska
4 Simulation Opacity

We start with a motivation example. Let us consider process P = L.h.l'.Nil +
I.(h.I'.Nil + I".Nil), an observation function which does not see action h and
a predicate which holds for sequences containing h action. It is easy to check
that this predicate is opaque in this setting. That means than an attacker which
can observe traces of P cannot deduce whether action h has occurred or nor.
On the other side for a ”simulation attacker” i.e. the attacker which can not
only observe traces but can interact with systems, the predicate is not ”opaque”
anymore. This is a natural consequence of simulation being more powerful then
just a trace inclusion. Now we will extend the notion of opacity to reflect more
powerful attackers than those ones which just observe traces or alternatively,
predicate should be opaque not only for a given process P but also for every its
SUCCessOr.

Definition 5 (Simulation Opacity). Given a set of processes R, predicate
¢ over Actt* is simulation opaque for R w.r.t. the observation function O if
for every P € R if P -2 P’ for such s that ¢(s) holds and o(s) # € then

there exists s' such that =¢(s') holds, O(s) = O(s') and P = and moreover
P’ € R. Predicate ¢ is simulation opaque for process P with respect to O (denoted
P e SOp%) if P € R for some simulation opaque R with respect to ¢ and O.

Now let us return to process P and the predicate and the observation function
from the beginning of this section. Now we can check that P is not simulation
opaque in this setting. This is also the proof that an inclusion from the next
proposition is proper.

Proposition 1. SOp?9 C Op?g for every ¢ and O. Moreover, there exist ¢ and
O such that SOp‘é C Op%.

Proof. The main idea. Let P € SOp‘é. Then we have that for every trace s of
P for which ¢ holds there exists another trace s’ for which ¢ does not hold and
both traces cannot be distinguished by O. Hence P € Op%. The example from
of this section we see that the inclusion can be proper.

The simulation opacity is defined for arbitrary predicates and observation
functions. Now we we will reformulate it for those ones which can be expressed
by process algebras. Now we will model simulation opacity in a process algebra
setting. Suppose that Actt N @ = {t} and hence we extend the set of actions
A by ©. We combine a process which checks validity of ¢ with a process which
computes observation function O into two process Oy and O-4. Now we define
process Og.

Definition 6. Process Oy is called process definition of predicate ¢ and obser-
vation function O over sequences of actions if for every P it holds (P|O4)\ A =
(P'|Oy) \ A iff P =5 P’ such that ¢(s) and O(s) = o.

Opacity Testing 175

Note that we expect that process Oy makes some computation resulting on
observable o and then it returns to the initial state (actually, to be more precise,
we should write to the process bisimilar with it). Now we will define simulation
opacity with respect to Oy and O (see Fig. 1). Its definition is a reformulation
of Definition 5 in process algebra setting.

P |5] O P |5| O

Fig. 1. Testing scenario

Definition 7. We say that process P is simulation opaque with respect to Oy
and O-4 (denoted P € SO(Og,0-y) iff (P|Og) \ A < (P|O-g) \ A.

In fact, from the following proposition we see that both types of simulation
opacity coincide for those predicated and observation functions which can be
expressed by processes.

Proposition 2. Let Oy and O-4 are process definitions of observation function
O and predicates ¢ and —¢, respectively. Then SOp‘é = 50(0y,0-4).

Proof. The main idea. Process definition Oy and O-, mimic both observations
and predicates validity (see Definition 7). Moreover, the simulation < reflects
the fact that after each ”step” the resulting process is again opaque and hence
similation opaque.

Many trace based security properties can be viewed as special cases of opacity
(see for example [Gru07]) but not those ones which are based on more powerful
equivalences. Now we show how we can express by simulation opacity a stronger
security property. We define an absence-of-information-flow property - Bisimula-
tion Strong Nondeterministic Non-Interference (BSNNI, for short, see [FGMO00]).
Suppose that all actions are divided in two groups, namely public (low level) ac-
tions L and private. Process P has BSNNI property (we will write P € BSNNT)
if P\ H behaves like P for which all high level actions are hidden for an observer.
To express this hiding we introduce hiding operator P/M, M C A, for which it
holds if P % P’ then P/M % P'/M whenever a ¢ M UM and P/M = P'/M
whenever a € M U M. Formal definition of BSNNI follows.

Definition 8. Let P € TPA. We say that P has BSNNI property, and we write
P e BSNNI iff P\ H =~ P/H.

Ezample 1. Let ¢(s) holds iff s contains actions from H and let § = {o,|z € L,
O(s) = o such that o = oy, ... 0y, where s|;, =11.ls...1,.

n

Then the following process

176 D. P. Gruska

Oy = uX.(Z z.05.X + Z x.,uY.(Z x.05.Y + Z z.Y))

zeL rzeH zeL zeH

is the process definition of predicate ¢ and observation function O.

Moreover process
O-p = uX.(Z 2.05.X)
zel

is the process definition of predicate —¢ and observation function O.

Proposition 3. P € BSNNI iff P € SO(Ogy,0-4) for Oy, O-4 defined in the
previous example.

Proof. Sketch. Process Oy outputs o, for every low level action which can be
performed by P and switches to ”accepting” state after the first high level ac-
tion occurs. Similarly for O-4. In definition of BSNNI the weak bisimulation
is exploited but clearly, everything which can be performed by P\ H can be
performed by P/H and hence no more then simulation is needed.

Now we can return to the strong opacity. First we define its simulation ver-
sion.

Definition 9 (Strong Simulation Opacity). Given a set of processes R,
predicate ¢ over Actt* is strongly simulation opaque for R w.r.t. the observa-
tion function O if for every P € R if P —= P’ for such s that ¢(s) holds and
o(s) # € then there exists s’ such that —¢(s') holds , O(s) = O(s') and P =,
and P' € R and, moreover, P~ P" for such s that =¢(s) holds and o(s) # ¢
then there exists s' such that ¢(s') holds , O(s) = O(s') and P >, and P" € R.
Predicate ¢ is strongly simulation opaque for process P with respect to O (de-

noted P € sSOp%) if P € R for some strongly simulation opaque R with respect
to ¢ and O.

Similarly to the opacity, its stronger version is really different as it is stated
by the following proposition.

Proposition 4. sSOp‘é C SOp% for every ¢ and O. Moreover, there exist ¢
and O such that sSOpg C SOp‘é.

Proof. The proof is just a variation of the proof of Proposition 1.

Definition 10. We say that process P is strongly simulation opaque with respect
to Oy and O-4 (denoted P € sSO(Og,0-4) iff (P|Oy) \ A = (P|O-¢) \ A.

Proposition 5. Let Oy and O-4 are process definitions of observation function
O and predicates ¢ and —¢, respectively. Then sSOp% =550(04,0-4).

Proof. Again, the proof is similar as the proof of Proposition 2.

Opacity Testing 177

Op?g

sOp‘é S Opg

sSOpg
Fig. 2.

To complete a relationship between proposed opacity concepts we have the
following proposition.

Proposition 6. The relation between proposed opacities is depicted on Fig. 2.

Proof. First we prove that sSOp% C sOp%. Let P € sSOp%. Since for every
sequence for which ¢ holds there exists observationally equal one, for which it
does not hold and vice versa, we have P € sOp(é. Now let us consider process
P =1U.Nil +1.(hI'".Nil + I".Nil), an observation function which does not see
action h and a predicate which holds for sequences containing h action. It easy
to check that P € S’Op% but P ¢ sOp%. For process P’ = I.I'.Nil + l.h.l".Nil
we have P’ ¢ SOp‘é but P’ € sOp%. The rest of the proof follows from Lemma
1, Propositions 1 and 4.

As it was mentioned, the opacity properties could be undecidable even for
very simple observation functions or predicates (depending on their mutual com-
bination). Here we can obtain its decidability by restrictions put on Oy and O-,
respectively. Note that existence of O-4 for given Oy is not guaranteed in gen-
eral due to Turing power of TPA. As regards observation function, m-orwellian
ones are the most interesting, since for their computations we do not need in-
finite memory and still the most of real attacks are based on them. As regards
predicates, again those ones, which can be associated with finite automata are
the most useful and frequent ones. If a combination of an observation function
and predicates results in finite state process algebra the resulting properties are
decidable. We elaborate this more precisely now.

We say that process E emulates an observational function O if it produces the
corresponding output after receiving input traces. Formally, for every w € Actt*
it holds O(w) = o iff (E|w.Nil)\ A =~ o.

Lemma 2. For every m-orwellian observation function there exists finite state
process which emulates it.

Proof. Sketch. Emulating process has to record the previous m inputs from em-
ulated trace to produce an output. Emulation is straightforward. If |A| = n then
process which emulates given m-orwellian function has O(m™) states.

178 D. P. Gruska

We call predicate ¢ finitely definable, if there exist finite state process T' such
that for every w € Actt* ¢(w) holds iff (T'|w.Nil)\ A ~ /.Nil where 4/ is a new
symbol indicating the successful termination.

Proposition 7. Let ¢ and —¢ are finitely definable. Then opacity properties
SOp% and sSOp‘é could be decided in time O((n.m.k.|A])®) and O((n.m.k.|A])?)
for finite state processes and every m-orwellian observation function O, where
n, m, k are numbers of states of P, process emulating O and mazximum of number
of states of processes corresponding to ¢, ¢, respectively.

Proof. Sketch. We combine processes ¢, —¢ and O. First we need a special pro-
cess which duplicates all action and one copy is send to process corresponding
to the predicate and to proces for observation function. The size of this auxil-
iary process is O(|A]). Hence the overall size of the process is n.m.k.|A|. The
rest of the proof follows from complexity results for weak simulation and weak
bisimulation (see [CPS90,KS83]).

If we have a process which does not belong to .S Op% for some ¢ and O then
this means that the process could be jeopardize by an attacker which can react
to process by means of O and is interested in validity of ¢. But there are attacks
which are not covered by our framework. For example, timing attacks, which have
a particular position among attacks against systems security. They represent a
powerful tool for “breaking” “unbreakable” systems, algorithms, protocols, etc.
For example, by carefully measuring the amount of time required to perform
private key operations, attackers may be able to find fixed Diffie-Hellman expo-
nents, factor RSA keys, and break other cryptosystems (see [Ko96]). This idea
was developed in [DKL98| where a timing attack against smart card implemen-
tation of RSA was conducted.

We can extend our framework so that we can model also timing attacks and
we can distinguish them from ordinary attacks. Here we formulate the prop-
erty for simulation opacity but the same can be done also for strong simulation
opacity.

Definition 11. We say that process P is jeopardized by timing attack on validity
of ¢ with a given observation function iff (P|Og)\ A £ (P|O-¢)\ A and (P|Oy)\
A <y (P1O-g) \ A.

Ezample 2. Let ¢™™(s) for 1 < n < m holds iff s = s1.h.s2.h'.s3,h, ' € H
such that n < [s2|;| < m and si1,s9,53 € (LU {t})*, i.e. ™™ (s) holds if s
contains two private actions from H and time elapsing between their occurrences
is between n and m time units and observation function see just low level actions
and elapsing of time. Then the following process

O¢[LX.(Z z.0,. X + Z x.F")

r€L zeH

where

Opacity Testing 179

F'=pX.() 2.0, X +.Fy),
zeL

F, = [LX.(Z 2.05. X +t.F 1)
z€L

for i < n and

F, = /LX.(Z r.0. X +1.F)
zEL

for i =n,

F = MX.(Z 2.0..X + Z z.xd F" 4+t il+1)
xeL reH

for i < m and

F" = MX.(Z 2.05. X + Z z.0X + Z 2.0,.04 + Z 2.0.04)

zeL zeH zeL zeH

is the process definition of predicate ¢™". Similarly, for predicate —¢™™
we can construct an appropriate finite state process. Clearly, timed proces are
jeopardize by timing attacks on validity of ¢™™.

5 Conclusions

We have presented generalization of opacity called simulation opacity and we
have elaborated it in timed process algebra setting. This concept offers not only
an uniform framework for security theory but can be used to model more elabo-
rated security properties than traditional ones and moreover, by careful choice of
processes expressing predicated and observations we can obtain properties which
can be effectively checked (note that in general, opacity is undecidable). By this
concept we can also naturally model security with respect to limited time length
of an attack, with a limited number of attempts to perform an attack and so on.

The presented approach allows us to use also other types of process algebras
enriched by operators expressing also other properties (space, distribution, net-
working architecture, processor or power consumption and so on) and in this way
also other types of attacks which exploit these information to detect information
flow through various covert channels can be described.

Our approach limits us to predicates and observation functions (i.e. ob-
servers) which can be expressed by process algebra processes. In fact, this re-
striction does not represent any real limitation. Practically, all predicates and
observation function of interest (used in known attacks) can be described by
finite state processes and there is even no need to exploit full universal power
of process algebras. In other words, it has no practical meaning to consider
predicates and observation functions which cannot be effectively computed.

180 D. P. Gruska

References

[BKRO4]

Bryans J., M. Koutny and P. Ryan: Modelling non-deducibility using Petri
Nets. Proc. of the 2nd International Workshop on Security Issues with Petri
Nets and other Computational Models, 2004.

[BKMRO6] Bryans J., M. Koutny, L. Mazare and P. Ryan: Opacity Generalised to

[BG04]

[CPS90]

[DKL9S]

[FGMOO]

[GMO4]

[GM82]

[Gro90]

[Gru12]
[Grul2a)
[Grull]
[Gru10]
[Gru09]
[Gru08]
[Gru07]

[KS83]

[Ko96]

[Mil89]

Transition Systems. In Proceedings of the Formal Aspects in Security and
Trust, LNCS 3866, Springer, Berlin, 2006.

Busi N. and R. Gorrieri: Positive Non-interference in Elementary and Trace
Nets. Proc. of Application and Theory of Petri Nets 2004, LNCS 3099,
Springer, Berlin, 2004.

Cleaveland R, J. Parrow and B. Steffen: A semantics-based verification
tool for finite-state systems. Proc of Protocol specification, testong and
verification, Elsevier Science Publishers, 1990.

Dhem J.-F., F. Koeune, P.-A. Leroux, P. Mestre, J.-J. Quisquater and J.-
L. Willems: A practical implementation of the timing attack. Proc. of the
Third Working Conference on Smart Card Research and Advanced Appli-
cations (CARDIS 1998), LNCS 1820, Springer, Berlin, 1998.

Focardi, R., R. Gorrieri, and F. Martinelli: Information flow analysis in
a discrete-time process algebra. Proc. 13" Computer Security Foundation
Workshop, IEEE Computer Society Press, 2000.

Gorrieri R. and F. Martinelli: A simple framework for real-time crypto-
graphic protocol analysis with compositional proof rules. Science of Com-
puter Programing, Volume 50, Issues 13, 2004.

Goguen J.A. and J. Meseguer: Security Policies and Security Models. Proc.
of IEEE Symposium on Security and Privacy, 1982.

Groote, J. F.: “Transition Systems Specification with Negative Premises”.
Baeten, J.C.M. and Klop, J.W. (eds.), CONCUR’90, Springer Verlag,
Berlin, LNCS 458, 1990.

Gruska D.P.: Informational analysis of security and integrity. Fundamenta
Informaticae, vol. 120, Numbers 3-4, 2012.

Test based security. Concurrency, Specification and Verification CS&P 2012,
Vol. 1, Berlin, 2012.

Gruska D.P.: Gained and Excluded Private Actions by Process Observa-
tions. Fundamenta Informaticae, Vol. 109, Number 3, 2011.

Gruska D.P.: Process algebra contexts and security properties. Fundamenta
Informaticae, vol. 102, Number 1, 2010.

Gruska D.P.: Quantifying Security for Timed Process Algebras. Funda-
menta Informaticae, vol. 93, Numbers 1-3, 2009.

Gruska D.P.: Probabilistic Information Flow Security. Fundamenta Infor-
maticae, vol. 85, Numbers 1-4, 2008.

Gruska D.P.: Observation Based System Security. Fundamenta Informati-
cae, vol. 79, Numbers 3-4, 2007.

Kanellakis, P. C. and S.A. Smolka: CCS expressions, finite state processes,
and three problems of equivalence. Proc. of the second annual ACM sym-
posium on Principles of distributed computing, ACM, 1983.

Kocher P.C.: Timing attacks on implementations of Diffie-Hellman, RSA,
DSS and other systems. Proc. Advances in Cryptology - CRYPTO’96,
LNCS 1109, Springer, Berlin, 1996.

Milner, R.: Communication and concurrency. Prentice-Hall International,
New York,1989.

