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Abstract. Elementary object systems (Eos for short) are Petri nets in
which tokens may be Petri nets again. Originally proposed by Valk for a
two levelled structure, the formalism was later generalised for arbitrary
nesting structures.

However, even if restricted to a nesting depth of two, Eos are Turing-
complete and thus many problems like reachability and liveness are un-
decidable for them. Nonetheless, since they are useful to model many
practical applications a natural question is how to restrict the formal-
ism in such a way, that the resulting restricted formalism is still helpful
in a modelling context, but so that important verification problems like
reachability become quickly decidable.

In the last years several structural and dynamic restrictions for Eos have
therefore been investigated. These investigations have been central to the
first author’s recent PhD thesis and have been published in past CS&P
conferences. In this paper we add several new results and present them
together with the old in a unified fashion highlighting the central message
of these investigations.

1 Introduction

Object Petri Nets are Petri Nets whose tokens may be Petri Nets again and
thus may have an inner structure and activity. This approach is useful to model
mobile systems and other systems arising in Computer Science which enjoy a
certain nesting of structures (cf. [13] and [14]).

This approach, which is also called the nets-within-nets paradigm, was pro-
posed by Valk [27, 28] for a two levelled structure and generalised in [15, 16]
for arbitrary nesting structures. By now many related approaches like recur-
sive nets [6], nested nets [24], adaptive workflow nets [25], AHO systems [11],
PN2 [10], Mobile Systems [23], and many others are known. Another line of re-
search also dealing with nesting, but not in the field of Petri nets, is concerned
with process calculi. Arguably most prominently there are the Ambient Calculus
of Gordon and Cardelli [1] and the Seal Calculus [2] among many others. See [18]
and [7] for a detailed discussion.
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Unfortunately even if restricted to a two level structure as in elementary
object systems, the formalism is Turing-complete. A natural question is how to
restrict the formalism in such a way, that the resulting restricted formalism is
still helpful in a modelling context, but so that important verification problems
like reachability become quickly decidable. This “borderline” between modelling
power and fast algorithms is in the case of p/t nets usually drawn at free choice
Petri nets.

In the following we survey several structural restrictions for Eos and give re-
sults concerning the complexity of the reachability problem. Since we conclude,
that even in very restricted cases the reachability problem becomes practically
hard to decide, we then survey dynamic restrictions of Eos, most notably a safe-
ness notion. Here, too, we focus on the complexity on the reachability problem.

The following section gives fundamental definitions of Eos. In Section 3 we
survey results on structural restrictions and in Section 4 we survey results on
dynamic restrictions. The paper ends with a summary of these results and a
conclusion.

In the following we assume basic knowledge of Petri nets, see e.g. [26] and
of Eos, see e.g. [18]. We do not define all notions rigorously here due to space
restrictions, but all notions and an in-depth study can be found in [7].

2 Fundamentals

An elementary object system (Eos) is composed of a system net and a set of
object nets where each of these nets is a p/t net. While the object nets use the
usual black tokens, the system net’s places are marked with either black tokens
or object nets. For this each place of the system net is typed with an object
net with the meaning the only object nets of these type may rest on that place.
Additionally each transition may be labelled with a channel. The meaning here
is that transitions with the same label may only fire synchronously.

Definition 1 (EOS). An elementary object system (Eos) is a tuple OS =

(N̂ ,N , d, l) such that:

1. N̂ is a p/t net, called the system net.
2. N is a finite set of disjoint p/t nets, called object nets.

3. d : P̂ → N is the typing of the system net places.
4. l = (l̂, (lN )N∈N ) is the labelling.

An Eos with initial marking is a tuple OS = (N̂ ,N , d, l, µ0) where µ0 ∈ M
is the initial marking.

A system net transition may be labelled with a channel for each object net.
Where an object net transition is only labelled with one channel. If for example a
system net transition t̂ is labelled with channel c1 for the object net N1 and with
channel c2 for object netN2, then t̂may only fire, if it is possible to synchronously
fire a transition in N1 which is labelled with channel c1 and if it is possible to
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synchronously fire a transition in N2 which is labelled with channel c2. Firing
may also happen system-autonomously (an unlabelled system net transition fires
independently from any object net transition) or object-autonomously (firing of
an unlabelled object net transition)

A formal treatment can be found in e.g. [9]. We only give an example here
to illustrate the main points of the firing rule.

Example 1. Figure 1 shows an Eos with the system net N̂ and the object nets
N = {N1, N2}. The system has four net-tokens: two on place p1 and one on p2
and p3 each. The net-tokens on p1 and p2 share the same net structure, but have
independent markings.

Fig. 1. An Elementary Object Net System

Formally we have the system net N̂ = (P̂ , T̂ ,pre,post) with the places

and transitions given by P̂ = {p1, . . . , p6} and T̂ = {t}, the object net N1 =
(P1, T1,pre1,post1) with P1 = {a1, b1} and T1 = {t1} and the the object net
N2 = (P2, T2,pre2,post2) with P2 = {a2, b2, c2} and T2 = {t2}. The typing is
given by d(p1) = d(p2) = d(p4) = N1 and d(p3) = d(p5) = d(p6) = N2.

We have two channels ch1 and ch2. The labelling function l̂ of the system
net is defined by l̂(t)(N1) = ch1 and l̂(t)(N2) = ch2. The labelling lN1 of the
first object net is defined by setting lN1

(t1) = ch1. Similarly, lN2
is defined by

lN2(t2) = ch2.
There is only one (synchronous) event: Θ = Θl = {t[N1 7→ t1, N2 7→ t2]}.

The event is also written shortly as t[t1, t2].
The initial marking µ has two net-tokens on p1, one on p2, and one on p3:

µ = p1[a1 + b1] + p1[0] + p2[a1] + p3[a2 + b2]

Note that for Figure 1 the structure is the same for the three net-tokens on p1
and p2 but the net-tokens’ markings are different.

The marking µ enables t[N1 7→ t1, N2 7→ t2] in the mode (λ, ρ), where

µ = p1[0] + p1[a1 + b1] + p2[a1] + p3[a2 + b2] = p1[0] + λ
λ = p1[a1 + b1] + p2[a1] + p3[a2 + b2]
ρ = p4[a1 + b1 + b1] + p5[0] + p6[c2]
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Fig. 2. The EOS of Figure 1 illustrating the projections Π2
N (λ) and Π2

N (ρ)

The net-tokens’ markings are added by the projections Π2
N resulting in the

markings Π2
N (λ). The sub-synchronisation generate Π2

N (ρ). (The results are
shown above and below the transition t in Figure 2.) After the synchronisa-
tion we obtain the successor marking µ′ with net-tokens on p4, p5, and p6 as
shown in Figure 2:

µ′ = (µ− λ) + ρ = p1[0] + ρ
= p1[0] + p4[a1 + b1 + b1] + p5[0] + p6[c2]

For general Eos the following theorem holds due to Köhler-Bußmeier [12].

Theorem 1 (Köhler 2007). Eos can simulate 2-counter machines. Important
problems like reachability and liveness are thus undecidable.

In the following two sections we focus on introducing structural and dynamic
restrictions that result in a decidable reachability problem.

3 Structural Restrictions

The main reason why Eos are Turing-complete is a null-test that is possible due
to the firing rule. In Figure 3 the system net transition t̂1 is not able to fire: the
object net in the preset has a token on place a1. This token would have to be
distributed among the places of the same object net type in the postset of t̂1,
but there is no such place. The transition t̂2 to the right may fire. The object
net’s marking is 0 and so there are no tokens that need to be distributed.

Conservative Eos avoid this by demanding that each object net type that
appears in the preset of a system net transition also appears in the postset of
that transition.

Definition 2 (Conservative Eos). A typing is called conservative iff

(d(•t̂) ∪ {•}) ⊆ (d(t̂•) ∪ {•}),

i.e. each object net type that appears in the preset of t̂ also appears in its postset.
An Eos is conservative iff its typing d is.
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Fig. 3. The transition t̂1 is disabled, t̂2 is enabled.

While boundedness and coverability become decidable for conservative Eos,
reachability and liveness remain undecidable. This was proven in [12] and [21].

Theorem 2. For conservative Eos boundedness and coverability are decidable,
while reachability and liveness are undecidable.

The idea in the definition of conservative Eos can be strengthen further by
demanding that each object net type appears exactly once in the preset and
the postset of a system net transition or does not appear at all. This leads to
generalised state machines (GSM) which are suitable to model many practical
applications, since each object net can be seen as a physical entity.

Definition 3 (Generalised State Machines). Let G = (N̂ ,N , d, l, µ0) be an
Eos. G is a generalised state machine (GSM) iff for all N ∈ N \ {N•}

1. ∀t̂ ∈ T̂ : |{p̂ ∈ •t̂ | d(p̂) = N}| = |{p̂ ∈ t̂• | d(p̂) = N}| ≤ 1
2.

∑
p̂∈P̂ ,d(p̂)=N Π1(µ0)(p̂) ≤ 1

holds.

In [17]) it was shown that for each GSM a p/t net, called reference net, can
be easily constructed from which decidability results follow (see [12] and [17]).

Theorem 3. The reachability problem is decidable for generalised state ma-
chines.

While this is a first positive result, the set of transitions is defined by the set
of events of the GSM and the size of this set can become exponential in the size
of the GSM.

Lemma 1 ([8], [9]). Let |T | := max{|TN | | N ∈ N} then |Θ| ≤ |T̂ | · |T ||N |.

Given a GSM it might thus be very expensive to construct its reference
net. This exponential blow up stems from the fact that in a GSM a m : n-
synchronisation between the system net and the object nets exists, i.e. if there
are m system net transitions labelled with channel c for object net N1 and if
in N1 n transitions are labelled with channel c then each of the m system net
transitions may fire synchronously with each of the n object net transitions,
resulting in m · n different events.

To prevent this, we introduced deterministic GSMs and Eos in [8] (see
also [9]).
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Definition 4 (Deterministic and Strongly Deterministic Eos). A Eos
OS is called deterministic if for each N ∈ N and every two transitions t, t′ ∈ TN ,
t ̸= t′ with lN (t) ̸= τ ̸= lN (t′), lN (t) ̸= lN (t′) holds, i.e. if the labels for all all
t ∈ TN with lN (t) ̸= τ are pairwise different.

OS is strongly deterministic if OS is deterministic and additionally for all
t̂ and N with l̂(t̂)(N) ̸= τ the labels l̂(t̂)(N) are pairwise different.

Thus, in a deterministic Eos or GSM each channel is used at most once in
each object net (resulting in a m : 1-synchronisation). In a strongly deterministic
Eos or GSM each channel is additionally used at most once in the system net
(resulting in a 1 : 1-synchronisation).

For Eos the definition of determinism does not significantly reduce the power
of the formalisms introduced so far, namely of Eos or conservative Eos.

Theorem 4 ([7]). The reachability problem for strongly deterministic, deter-
ministic and general Eos is undecidable - even if the Eosis conservative.

However, for GSMs the size of the events and thus the size of the reference
net is reduced considerably.

Lemma 2 ([7]). Let G = (N̂ ,N , d, l, µ0) be a deterministic or strongly deter-

ministic GSM, then |Θ| is bounded above by |T̂ |+
∑

N∈N |TN |.

However, strongly deterministic GSMs can still simulate p/t nets and thus
the reachability problem remains ExpSpace-hard.

Theorem 5 ([7]). Every p/t net system N can be simulated by a strongly de-
terministic GSM GN .

Corollary 1 ([7]). The reachability problem for strongly deterministic, deter-
ministic and general GSMs is ExpSpace-hard.

Due to this results further structural restrictions are necessary to reduce the
complexity of the reachability problem. Several structural restrictions known
from p/t nets are carried over to GSMs and investigated in [8], [9], [21], and [7].

The results are summarised in Table 1. ttGSMs, ppGSMs, ptGSMs, and
tpGSMs are GSMs where the system net and/or the object nets are restricted
to be T-nets or P-nets. In ptGSMs the system net is a P-net and the object nets
are T-nets and in tpGSMs the system net is a T-net and the object nets are P-
nets. Despite being rather simple in the case of p/t nets, it is evident in Table 1,
that the reachability problem becomes hard in the case of object nets due to the
synchronisation between the system net and the object nets. Most notably in
the case of ppGSMs where all participating nets are P-nets and thus similar to
finite automata, the reachability problem is already PSpace-complete.

acGSMs are GSMs where all nets are acylic and fcGSMs are GSMs where all
nets are free-choice nets. For cfGSMs the definition of conflict-freedom has to be
adapted, because it is not enough to demand a similar structural restrictions as
for p/t nets if one wants to structurally rule out conflicts (cf. [8] and [7]).
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Table 1. Complexity of the reachability problem for various formalisms.

strongly deterministic deterministic general

ttGSM P ? ?

ppGSM PSpace-complete PSpace-complete PSpace-complete

ptGSM NP-hard PSpace-hard PSpace-hard

tpGSM ? ? ?

acGSM NP-hard NP-hard NP-hard

cfGSM NP-complete NP-hard NP-hard

fcGSM ExpSpace-hard ExpSpace-hard ExpSpace-hard

GSM ExpSpace-hard ExpSpace-hard ExpSpace-hard

cEos undecidable undecidable undecidable

Eos undecidable undecidable undecidable

Definition 5 (Conflict-Free GSMs ([8])). A GSM OS = (N̂ ,N , d, l, µ0) is
conflict-free if

1. ∀N ∈ N ∪ {N̂} ∀p ∈ P̂ ∪ PN : |p•| > 1 ⇒ p• ⊆ •p

2. ∀N ∈ N ∀p ∈ PN : (∃t ∈ p• ∃t̂1, t̂2 ∈ T̂ ∃p̂ ∈ P̂ ∃c ∈ C : t̂1 ̸= t̂2 ∧ p̂ ∈
•t̂1 ∩ •t̂2 ∧ d(p̂) = N ∧ lN (t) = l̂(t̂1)(N) = l̂(t̂2)(N) = c) ⇒ p ∈ t•

holds. We also say that OS is a cfGSM.

Proofs for the results in Table 1 can be found in [7] with pointers to the
literature where the results where first proven.

Most notably in Table 1 are the results for ppGSMs and for fcGSMs. They
show that even very strong structural restrictions as in the case of ppGSMs lead
to an already hard to solve reachability problem and that more openly structural
restrictions as in the case of fcGSMs where the formalism would be suitable for
modelling purposes lead to complexity results that render algorithms practically
unusable. Thus other restrictions than structural restrictions are necessary if one
aims at solving the reachability problem quickly.

4 Dynamics Restrictions

In [7] unary and persistent Eos are introduced where in unary Eos in each reach-
able marking at most one event is enabled and in persistent Eos conflicts are
dynamically ruled out. For both formalisms, however, the reachability problem
remains undecidable. These dynamical restrictions are thus not strong enough
for our purpose.

In general, the state space of an Eos is of infinite size which is a source for
undecidability results or strong lower complexity bounds. In [19] we therefore
introduced four different notions of safeness for Eos, safe(1), safe(2), safe(3),
and safe(4), to adapt the notion of safeness for p/t nets to Eos. For p/t nets
1-safeness guarantees not only finiteness of the state space size but also that
each reachable marking can be seen as a set. This set idea is adapted in [19].
Furthermore, a safe(4) Eos is also a safe(3) Eos which is in turn a safe2 Eos
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and so on. Positive results concerning the solvability of the reachability problem
thus carry over from safe(i) to safe(i + 1) and negative results carry over from
safe(i+ 1) to safe(i).

However, despite the fact that the markings are sets, safe(1) and safe(2)
Eosstill have an infinite state space and the reachability problem remains un-
decidable for them even if the Eos is additionally structurally restricted.

Theorem 6 ([19], [7]). The reachability problem is undecidable for safe(1) or
safe(2) Eos - even in the case of strongly deterministic and conservative Eos.

In the following we concentrate on safe(3) Eos which have a finite state
space.

Definition 6 (Safeness). An Eos OS is safe(3) or simply safe iff for all reach-
able markings there is at most one token on each system net place and each
net-token is safe:

∀µ ∈ RS (OS ) : ∀p̂ ∈ P̂ : Π1(µ)(p̂) ≤ 1 ∧
∀N ∈ N : ∀p ∈ PN : ∀p̂[M ] ≤ µ : M(p) ≤ 1

Theorem 7 ([19], [7]). If an Eos is safe(3) or safe(4), then its set of reachable
markings is finite.

Indeed, an upper bound for the state space size if given in [7]. Let k := |P̂ |
and l := max{|PN | | N ∈ N}, then there are at most (1+2l)k different markings.

For safe Eos two very strong result can be shown. Not only are reachability
and liveness decidable, but every property that can be expressed in the temporal
logics LTL or CTL can be decided in polynomial space in the size of the Eos and
the formula. The the problems are PSpace-hard follows directly from similar
results for safe p/t nets (see e.g. [5]). It is thus surprising that this bound can
also be met from above in the case of safe Eos despite their quite huge state
space.

Theorem 8 ([19], [7]). Given a safe(3) or safe(4) Eos OS and an LTL for-
mula ϕ, checking whether OS satisfies ϕ can be done in polynomial space in the
size of OS and ϕ, that is, there is a polynomial p, independent of OS and ϕ,
such that the algorithm uses O(p(|OS |+ |ϕ|)) space.

Corollary 2. The reachability problem for safe Eos is PSpace-complete.

Theorem 9 ([20], [7]). Given a safe(3) or safe(4) Eos OS and a CTL formula
ϕ checking whether OS satisfies ϕ can be done in O(|OS |4 · |ϕ|) space.

Corollary 3. The liveness problem for safe Eos is PSpace-complete.

Both model checking algorithms are an adaption of a technique from Esparza
for 1-safe p/t nets [5]. The LTL model checking algorithms additionally uses
techniques from Vardi from automata theory [29].

The proofs of the above theorems are very involved. Detailed discussions and
proofs can be found in [19], [20], and [7].

In addition to the results above it can also be decided in polynomial space if
an Eos is safe(3), which is helpful from a modelling point of view.
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Theorem 10 ([7]). Given an Eos OS it is PSpace-complete to decide if OS
is safe.

Safe Eos can in addition be structurally restricted. In some cases as in the
case of conflict-free Eos this reduces the complexity of the reachability prob-
lem (cf. Table 2). However, the formalisms where this happens seem to be too
restricted to be useful in a modelling context.

Table 2. Complexity of the reachability problem for safe Eos with further structural
restrictions.

strongly deterministic deterministic general

ttGSM P PSpace PSpace

ppGSM PSpace-complete PSpace-complete PSpace-complete

ptGSM NP-hard, PSpace PSpace-complete PSpace-complete

tpGSM PSpace PSpace PSpace

acGSM PSpace PSpace PSpace

cfGSM P PSpace PSpace

fcGSM PSpace-complete PSpace-complete PSpace-complete

GSM PSpace-complete PSpace-complete PSpace-complete

cEos PSpace-complete PSpace-complete PSpace-complete

Eos PSpace-complete PSpace-complete PSpace-complete

A discussion of structural restrictions of safe(1) and safe(2) Eos can be found
in [7].

5 Conclusion and Outlook

In summary we have investigated formalisms which are useful to model mobil-
ity, interaction, and nesting of structures. We then focused on object nets, but
it is possible to adapt these results for other formalisms mentioned in the intro-
duction. Since in their general form object nets are Turing-complete it was our
goal to restrict the formalism of elementary object systems such that modelling
capabilities mostly remain and interesting applications can still be conveniently
modelled, and also such that properties can be automatically and quickly veri-
fied.

To achieve this goal we have restricted the formalism structurally and dy-
namical. We introduced restrictions natural for object nets like determinism and
strong determinism and carried over restrictions known from p/t nets to object
nets. We then focused on the complexity of the reachability problem to evaluate
the formalisms. The results are summarised in Table 1 and 2.

As a conclusion structural restrictions alone are not enough even if the
possibility to synchronise is additionally restricted. The restriction to safe(3)
Eos,however, allows for a quick verification of important properties and is also
still useful from a modelling point of view.



190 F. Heitmann, M. Köhler-Bußmeier

In [7] Eos and GSMs are furthermore generalised to an arbitrary but fixed
nesting depth k > 2. In this case a safeness definition can also be introduced
which allows to carry over the results for CTL and LTL model checking. These
problems are then solvable in polynomial space, too, albeit the polynomial wors-
ens.

Also in [7] object net systems are introduced, which allow a vertical transport
of net tokens, i.e. a transport of net tokens between nesting levels. For this
systems different safeness definitions are introduced in [7]. In particular, it is not
enough to demand that on each place resides at most one (net) token. Due to
the arbitrary nesting depth, the state space might still be infinite. However, for
the strongest safeness definition for object net systems in [7], which among other
things does not allow the creation and destruction of net tokens, again PSpace-
completeness results for LTL- and CTL-model-checking can be established.

Open question in the context presented here are, obviously, to match upper
and lower bounds in the tables above. While this might be interesting from a
theoretical point of view, the effect for the question tackled here are limited. The
open cases are for formalisms which are structurally restricted in such a way,
that using them in a modelling context is doubtful. Thus even if the reachabil-
ity problem is solvable more quickly than PSpace the formalisms will not be
practically useful.

Another open question concerns the borderline between safe(1) and safe(2)
Eos and the borderline between safe(3) and safe(4) Eos. While it is known that
e.g. for safe(3) and safe(4) Eos the reachability problem is PSpace-complete,
the polynomial will almost surely be smaller for safe(4) Eos. Again this question
is more from a theoretical nature.

A question with much practical relevance is how to improve the LTL- and
CTL-model-checking algorithms uses so far in this context. In [7] the algorithm
are rather direct and not optimised. It is to be expected that these algorithms
can be improved. Afterwards, it would be nice to implement these algorithms in
a tool which can then be used by modellers. We believe that such a tool might be
very useful in practice, since many applications can be modelled more intuitively
with object nets and such a tool would allow to verify properties of the model
automatically and with modest time and space requirements.

Questions not tackled so far which would open up whole new directions are
compositionality and adaptivity. The goal in compositionality is to find properties
and restrictions such that properties of the whole system can than be deduced
from properties of components treated in isolation. This might reduce the com-
plexity considerably. First results concerning compositionality with regard to
nested nets are published in [3] and [4].

Adaptivity means to introduce formalisms which do not only allow a trans-
port of net tokens as presented here, but also to manipulated these net to-
kens during run-time. First formalisms which allow this are adaptive workflow
nets [25] and higher order nets [22].

This two questions, how to introduce compositionality and adaptivity for
object nets, are the questions we want to tackle in the future. We believe that
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they will be of high practical relevance for run-time analysis of systems in general
and workflows in particular.
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14. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling mobility and mobile
agents using nets within nets. In W. v. d. Aalst and E. Best, editors, Application
and Theory of Petri Nets, volume 2679 of Lecture Notes in Computer Science,
pages 121–140. Springer-Verlag, 2003.
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