
Parameter Synthesis for Timed Kripke
Structures

Extended Abstract

Micha l Knapik1 and Wojciech Penczek1,2

1 Institute of Computer Science, PAS, Warsaw, Poland
2 University of Natural Sciences and Humanities, II, Siedlce, Poland

{knapik,penczek}@ipipan.waw.pl

Abstract. We show how to synthesise parameter values under which a
given property, expressed in a certain extension of CTL called RTCTLP,
holds in a parametric timed Kripke structure. Similarly as in fixed-point
symbolic model checking approach, we introduce special operators which
stabilise on the solution. The process of stabilisation is essentially a trans-
lation from RTCTLP parameter synthesis problem to a discrete opti-
mization task. We argue that this leads to new opportunities in model
checking, including the use of integer programming and related tools.

1 Introduction

Complex systems, both hardware and software, present in critical areas need to
be verified. The best moment for the verification is the design phase, perhaps
even before any prototype is developed. This helps to reduce errors and costs;
the found flaws can also provide valuable pointers to a designer.

Model checking is one of the established methods for verification of complex,
timed, and reactive systems. In this approach, a model for a verified system is
built (e.g. a Kripke structure or a Petri net), and a property to be checked is
specified in a version of a modal logic (e.g. CTL or TCTL). The pair consisting
of a model and a formula is the input for a model checking tool. The output is
simply the property holds or property does not hold answer.

However, such an approach has its drawbacks. In the beginning phases of a
system design some of the features required in a model might be unknown (e.g.
timing constraints), which forces the designer to substitute them with some
guessed or standard values. Even if it is possible to present a full model of the
system, there is no guarantee that this specification will not be subject to some
changes. Often the minimal alteration of the original model may lead to violation
of a checked property, therefore the process of verification has to be repeated.

A system designer using model checking methods would substantially benefit
from a tool that is able to accept an underspecified model with some values
abstracted as parameters. In this case the expected output consists of a set of
parameter valuations under which a given property holds. This approach is called
parametric model checking or parameter synthesis. Parametric model checking



260 M. Knapik, W. Penczek

eliminates the needs for guessing and for performing batches of tests for ranges
of values.

In this paper we show how to perform parameter synthesis for timed Kripke
structures, i.e., Kripke structures where transition is augmented with an addi-
tional label specifying how long it takes to traverse it. The input logic is a certain
extension of Computation Tree Logic, which allows for expressing properties over
the restricted fragments of paths.

1.1 Related Work and Paper Outline

The logic considered in this paper and its models are based on the Real Time
Computation Tree Logic (RTCTL) and timed Kripke structures introduced in
[1].

As we show, the problem of parameter synthesis is decidable for RTCTLP. It
is however not decidable for even as simple properties as reachability for many
other models, e.g. parametric timed automata (PTA) [2, 3] and bounded para-
metric time Petri nets [4]. Difference bound matrix - based semi-algorithms for
reachability were extended to the PTA case in [5] and implemented in UPPAAL-
PMC. In [6] we showed how to synthesise by means of bounded model checking
a part of the set of valuations for PTA reachability. The problem of synthesis
of bounded integer valuations for PTA is analysed in [7] and shown to be in
PSPACE. In [8] the authors show how to synthesise the constraints on valu-
ations under which a PTA is time-abstract equivalent to some initial one; the
work is implemented in IMITATOR prototype tool. Parametric analysis is also
possible with HyTech [9] by means of hybrid automata.

In the next section we introduce the RTCTLP logic and its models. In Section
3 we show how to solve the synthesis problem via a translation to sets of linear
inequalities over natural numbers. We conclude the work with a comment on the
possible benefits and downsides of our approach and future plans.

2 Parameterized Temporal Logics

Let N denote the set of all natural numbers (including 0), and let P (D) denote
the power set of a set D. For any sequence x = (x1, . . . , xn) and 0 ≤ i ≤ n, let
x|i = xi be the projection of x on the i–th variable.

2.1 The Syntax of RTCTLP

The Real Time CTL [1] allows to express branching-time temporal properties
involving the integer time-step depth of considered paths.

Definition 1 (Syntax of RTCTLP). Let PV be a set of propositional variables
containing the symbol true. The formulae of RTCTLP are defined as follows:

1. every member of PV is a formula,
2. if α and β are formulae, then so are ¬α, α ∧ β,



Parameter Synthesis for Timed Kripke Structures 261

3. if α and β are formulae, then so are EX≤kα, EG≤kα, EαU≤kβ for k ∈ N.

As to give an example of the meaning of an RTCTLP formula, EG≤5p states that
“there exists a path such that p holds in each state reached from the beginning in
time not greater than 5.”

2.2 The Semantics of RTCTLP

We evaluate the truth of the formulae in the parametric timed Kripke struc-
tures. These are standard Kripke structures with the transitions decorated by
additional labels interpreted as time variables.

Definition 2. A parametric timed Kripke structure (a model) is a 5-tuple M =
(S, s0, T,→,L) where:

– S is a finite set of states,
– s0 ∈ S is the initial state,
– T is a set of time step parameters (variables),
– → ⊆ S×T ×S is a transition relation such that for every s ∈ S there exists
s′ ∈ S and t ∈ T with (s, t, s′) ∈ → (i.e., the relation is total),

– L : S −→ 2PV is a valuation function satisfying true ∈ L(s) for each s ∈ S.

Let s, s′ be two states of a model, and let t be a time step parameter. By

s
t→ s′ we denote that (s, t, s′) ∈ →. The intuitive meaning of s

t→ s′ is that
it takes t time units to reach s′ from s. We define in(s), out(s), link(s, s′) as
the sets of the labels of the transitions entering s, leaving s, and connecting

s with s′, respectively. More formally, in(s) = {t ∈ T | s′ t→ s for s′ ∈ S},
out(s) = {t ∈ T | s t→ s′ for s′ ∈ S}, and link(s, s′) = {t ∈ T | s t→ s′}.

A function ω : T → N is called a parameter valuation. The set of all
the parameter valuations is denoted by Ω. Consider an infinite sequence π =

(s0, t0, s1, t1, . . .) such that si ∈ S and si
ti→ si+1 for i ∈ N. By πi = si we denote

the i–th state of π. We define the time distance function between the positions
π0 and πj on a sequence π as δjπ =

∑j−1
i=0 ti, and we assume that δ0π = 0. If ω is

a parameter valuation, then let δjπ(ω) =
∑j−1
i=0 ω(ti). A sequence π is called an

ω–path if limj→∞δ
j
π(ω) =∞, or simply a path if ω is evident from the context.

Definition 3 (Semantics of RTCTLP). Let M = (S, s0, T,→,L) be a model
and s ∈ S. Let α, β ∈ RTCTLP, let ω ∈ Ω be a parameter valuation, and k ∈ N.
M, s |=ω α denotes that α is true at the state s of M under the valuation ω. (In
what follows we omit M where it is implicitly understood.) The relation |=ω is
defined inductively as follows:

1. s |=ω p iff p ∈ L(s),
2. s |=ω ¬α iff s 6|=ω α,
3. s |=ω α ∧ β iff s |=ω α and s |=ω β,
4. s |=ω EX

≤kα iff there exists a path π s.t. π0 = s, δ1π(ω) ≤ k, and π1 |=ω α,



262 M. Knapik, W. Penczek

5. s |=ω EG
≤kα iff there exists a path π such that π0 = s, and for all i ≥ 0

if δiπ(ω) ≤ k, then πi |=ω α,
6. s |=ω EαU≤kβ iff there exists a path π such that π0 = s and for some i ∈

N it holds that δiπ(ω) ≤ k and πi |=ω β, and πj |=ω α for all 0 ≤ j < i.

The RTCTLP logic slightly differs from RTCTL presented in [1]. Firstly, we
have omitted the non-superscripted modalities. It is straightforward to extend
the logic with these, and to see that the standard fixpoint algorithms for EG
and EU verification can be applied with no changes. Secondly, we define the
semantics on ω–paths, explicitly requiring the total traversal time to grow to the
infinity with the depth of the path. This is consistent with the usual requirement
of progressiveness of timed systems.

3 Translation to Linear Algebra

In what follows we fix a model M = (S, s0, T,→,L).
We need several simple notions concerning the sets of statements (called

linear statements) of the form c1t1 + . . . + cntn, where ti ∈ T are time step
parameters, ci ∈ N, and ti 6= tj for all 1 ≤ i, j ≤ n, i 6= j. The set of all linear
statements over T is denoted by LST ; we omit the T subscript if it is implicitly
understood. In this paper we consider only finite subsets of LST .

Let η = c1t1 + . . .+ cntn, and let ω ∈ Ω. We define the application of ω to η
as η[ω] = c1ω(t1) + . . . + cnω(tn). We also define the k-bounding operation for
k ∈ N as follows:

[η]k := min(c1, k + 1)t1 + . . .+min(cn, k + 1)tn.

To show an example, consider the statement η = 6t1 + 9t2 and 5-bounding
[η]5 = min(6, 6)t1 +min(9, 6)t2 = 6t1 + 6t2.

The operation of k-bounding has a property such that if ≈ ∈ {≤, <,>,≥},
then for any k ∈ N the inequalities η ≈ k and [η]k ≈ k have the same sets of
solutions. This can be easily verified on a case-by-case basis, by noticing that if
a given coefficient ci of η exceeds k+1, then any nonzero value of ti makes η ≈ k
true for ≈ ∈ {>,≥}, while ≈ ∈ {≤, <} means that only zero can be substituted
for ti.

Previous observation is crucial to the theory, as it means that every set
of linear statements over the finite parameter set T , obtained by means of k-
bounding with respect to some fixed natural k, is finite. We extend the [ ]k
operation to subsets A ⊆ LS as follows:

[A]k = {[η]k | η ∈ A}.

Let A,B ⊆ LS, then we define A+B = {η + µ | η ∈ A and µ ∈ B}.
Now let us consider A ⊆ LS, k ∈ N, and ≈ ∈ {≤, <,>,≥}. We define [A]≈k

as follows:
[A]≈k =

⋃
η∈A
{ω | η[ω] ≈ k}.



Parameter Synthesis for Timed Kripke Structures 263

As to give an example, let A = {t1 + 2t2, t3}, then [A]<4 consists of all the
valuations ω such that ω(t1) + 2ω(t2) < 4, or ω(t3) < 4.

We call the set S × P (Ω) the parametric state space, and its elements are
called the parametric states. As to give an example, consider A ⊆ LS such that
A = {2t1 + 3t2, 2t1 + 3t4}. The pair of form (s0, [A]≤10) is a parametric state.

The last preliminary notion needed in the rest of the paper is the auxiliary
operator Flatten. Let B ⊆ S × P (Ω), then we define:

(s,A) ∈ Flatten(B) iff A =
⋃
{C | (s, C) ∈ B}, A 6= ∅.

To make this definition clearer, consider an example where B = {(s0, C1),
(s0, C2), (s1, C3), (s1, C4), (s2, C5)}. In this case Flatten(B) = {(s0, C1 ∪ C2),
(s1, C3 ∪ C4), (s2, C5)}.

If Flatten(B) = B, then the set B is called flat. If B is flat, then by B(s) we
denote the parameter selector, that is B(s) = C iff (s, C) ∈ B. The parameter
selector is a well defined partial function on S.

Algorithm 1 Synthesize(M,φ)

1: if φ = p then
2: return Ap
3: end if
4: if φ = ¬α then
5: Aα = Synthesize(M,α)
6: return ıAα
7: end if
8: if φ = α ∧ β then
9: Aα = Synthesize(M,α)

10: Aβ = Synthesize(M,β)
11: return Aα ∗Aβ
12: end if
13: if φ = EX≤kα then
14: Aα = Synthesize(M,α)
15: return EX≤kAα
16: end if
17: if φ = EG≤kα then
18: Aα = Synthesize(M,α)
19: return EG≤kAα
20: end if
21: if φ = EαU≤kβ then
22: Aα = Synthesize(M,α)
23: Aβ = Synthesize(M,β)
24: return EAαU≤kAβ
25: end if



264 M. Knapik, W. Penczek

3.1 The translation

Our aim is to find all the valuations under which a given formula φ ∈ RTCTLP

holds in a model M . In our solution we augment each state s with the set Aφ(s)
of parameter valuations such that s |=ω φ iff ω ∈ Aφ(s). This is done recursively
in Algorithm 1, with respect to the formula structure. For each s the set Aφ(s)
can be represented as a finite union of solution sets of a finite number of linear
(integer) inequalities. This means that Aφ(s) has a finite representation for each
s, and for this reason we call the method a translation from RTCTLP parametric
model checking to linear algebraic problem.

Let p ∈ PV, then Ap = {(s,Ω) | p ∈ L(s)} is the set of such pairs (s,Ω)
that p ∈ L(s). Intuitively, Ap contains the pairs consisting of a state in which p
holds, together with the full set Ω; this expresses the lack of restrictions on the
parameter values. Obviously, Ap is flat.

In the algorithm we use several new operators that are counterparts of propo-
sitional connectives and RTCTLP modalities:

1. operator ∗ – a counterpart of ∧,
2. operator ı – related to ¬,
3. operator EX≤k – a counterpart of EX≤k,
4. operator EG≤k – a counterpart of EG≤k.
5. operator EU≤k – related to EU≤k.

The detailed description of these notions is a subject of the rest of this section,
starting with the ∗ operator.

Definition 4. Let A,B be two flat subsets of S × P (Ω). Define:

A ∗B = {(s, C ∩ C ′) | (s, C) ∈ A, and (s, C ′) ∈ B}.

The next corollary follows immediately from the above definition.

Corollary 1. Let φ, ψ be RTCTLP formulae, and Aφ, Aψ be such flat subsets of
the parametric state space that s |=ω φ iff ω ∈ Aφ(s) and s |=ω ψ iff ω ∈ Aψ(s)
for all s ∈ S. Then s |=ω φ ∧ ψ iff ω ∈ (Aφ ∗Aψ)(s).

It should be noted that in our applications, the ∗ operation is purely symbolic,
as we deal with the sets of inequalities only.

Example 1. Consider the following sets:

Aφ = {(s0, Ω), (s1, {ω | ω(t1) + 3ω(t2) < 5})},
Aψ = {(s1, {ω | 2ω(t1) + 3ω(t3) < 4})},

We have Aφ ∗Aψ = {(s1, {ω | ω(t1) + 3ω(t2) < 5 ∧ 2ω(t1) + 3ω(t3) < 4})}.

In the translation of EG≤k and EU≤k we make use of the bounded backstep
operation. This operation is defined on sets of triples (s,A,C), where s is a state,
A is a set of linear statements used to track possible constraints on parameters,
and C is a set of parameter valuations used to track the allowed values of time
step parameters.



Parameter Synthesis for Timed Kripke Structures 265

Definition 5. Let D ⊆ S × P (LS)× P (Ω), k ∈ N, and Init be a flat subset of
S × P (Ω) such that for each e ∈ D there is f ∈ Init satisfying e|1 = f |1. Now,
(s,A,C) ∈ BackStepk(D, Init) iff:

1. there exists e ∈ D such that e|1 = s,
2. for some A′ ⊆ LS, C ′ ⊆ Ω, and s′ ∈ S there exists (s′, A′, C ′) ∈ D, such

that:
(a) the set link(s, s′) of time step parameters (treated as linear statements)

is nonempty (i.e. there is a transition from s to s′),
(b) A = [link(s, s′) +A′]k,
(c) C = C ′ ∩ Init(s).

While the bounded backstep operation may seem involved, it originates from a
natural idea. Let φ be some property and let Init be such a set that s |=ω φ iff
ω ∈ Init(s) for each state s. Let D ⊆ S × P (LS)× P (Ω) and (s′, A′, C ′) ∈ D.

s s′

s |=ω φ iff ω ∈ Init(s) s′ |=ω φ iff ω ∈ Init(s′)

A′ = {[δnπ ]k | π0 = s′}A = {[δn+1
π ]k | π0 = s and π1 = s′}

t1

Assume that C ′ = Init(s′), let n ∈ N, and A′ be the set of k–bounded time
distance functions for all paths leaving s′ and measuring the distance up to
the n–th position. It is easy to see, that BackStepk(D, Init) contains a tuple
(s,A, Init(s) ∩ Init(s′)), where A = [link(s, s′) + A′]k. The set A consists of
k–bounded time distance functions for all paths leaving s, entering s′ in the
next step, and measuring the distance up to the (n + 1)–th position. The set
Init(s)∩Init(s′) contains such parameter valuations ω that s |=ω φ and s′ |=ω φ.

Example 2. Consider the sets:

C1 = {ω | ω(t1) > 2}, C2 = {ω | ω(t2) + ω(t3) ≤ 4},
D = {(s1, {6t1 + 8t2}, C1), (s2, {4t2 + 7t3, t4}, C2)},

and assume that the only transitions involving s1 and s2 are (s1, t1, s2), (s1, t2, s2),
and let Init = {(s1, C1), (s2, C2)}. Let us compute BackStep5(D, Init). We can
see that link(s1, s2) = {t1, t2}, link(s1, s1) = link(s2, s2) = link(s2, s1) = ∅. Let
A = [{t1, t2}+ {4t2 + 7t3, t4}]5 = {t1 + 4t2 + 6t3, 5t2 + 6t3, t1 + t4, t2 + t4}, and
C = C2 ∩ Init(s1) = C2 ∩ C1 = {ω | ω(t1) > 2 and ω(t2) + ω(t3) ≤ 4}. In this
case BackStep5(D, Init) = {(s1, A,C)}.

We say that a sequence of sets H0, H1, . . . stabilizes if there exists i ≥ 0 such
that Hj = Hi for all j > i, and denote this as limj→∞Hj = Hi.

Let D be a finite subset of S × P (LS) × P (Ω). Notice that if we fix some
k ∈ N and Init, then the sequence defined by H0 = D, and Hi+1 = Hi ∪
BackStepk(Hi, Init) stabilizes. This is due to the fact that there is a finite



266 M. Knapik, W. Penczek

number of time parameters in a model (therefore a finite number of k-bounded
expressions built with respect to [ ]k), and a finite number of parameter valuation
sets in D.

Let (s,A,C) ∈ S × P (LS) × P (Ω), ≈ ∈ {≤, <,>,≥}, and k ∈ N. Denote
[(s,A,C)]≈k=(s, [A]≈k∩C). Intuitively, this encodes a state together with those
parameter valuations which satisfy constraints present in [A]≈k (the path length
constraints), and in C (the initial constraints). We extend this notion to the space
on which BackStep operates, by putting [D]≈k = {[(s,A,C)]≈k | (s,A,C) ∈ D}
for any D ⊆ S × P (LS)× P (Ω).

Let us move to the first application of BackStepk operation, i.e., the trans-
lation of EG≤k. The following example provides some intuitions behind the
parametric counterpart of this modality.

Example 3. Consider model shown in Fig. 1, where L(s0) = L(s1) = {p}, and
formula EG≤2p. For the simplicity, the loops on states s2, s3 are unlabeled.

s0

p

s1

p s2

s3
t1

t1

t2

Fig. 1: A simple model

It is easy to see that s1 |=ω EG≤2p iff ω(t1) > 2 or ω(t2) > 2, i.e., using the
newly introduced notation, ω ∈ [out(s1)]>2. It also holds that s0 |=ω EG

≤2p if
ω ∈ [out(s0)]>2, but this is not an exhaustive description of all such parameter
valuations. Indeed, s0 |=ω EG

≤2p also if 2ω(t1) > 2 or ω(t1) + ω(t2) > 2, i.e.,
ω ∈ [t1 + out(s1)]>2. By a straightforward case-by-case analysis we can check
that s0 |=ω EG

≤2p iff ω ∈ [out(s0)]>2 ∪ [t1 + out(s1)]>2.

Definition 6. Let A be a flat subset of S × P (Ω) and k ∈ N. Define:

G0(A) = {(s, out(s), A(s)) | there exists e ∈ A such that e|1 = s},
Gj+1(A) = BackStepk(Gj(A), A).

We define EG≤kA = Flatten(
⋃∞
j=0[Gj(A)]>k).

The Flatten operator is used only in order to obtain the result in a less complex
form, where for each state s there exists at most one e ∈ EG≤kA such that
e|1 = s.

Theorem 1. Let φ be a formula of RTCTLP, and Aφ be such a flat subset of
S×P (Ω) that s |=ω φ iff ω ∈ Aφ(s). For any state s ∈ S, k ∈ N, and a parameter

valuation ω we have s |=ω EG
≤kφ iff ω ∈ (EG≤kAφ)(s).

Proof. If s |=ω EG≤kφ, then there exists a path π = (s0, t0, s1, t1, . . .), such
that for some n ∈ N it holds that π0 = s, δn+1

π (ω) > k and δiπ(ω) ≤ k for all



Parameter Synthesis for Timed Kripke Structures 267

0 ≤ i ≤ n, and πi |=ω φ for all 0 ≤ i ≤ n.

π =

δn+1
π (ω)>k︷ ︸︸ ︷

s0
t0→ s1

t1→ s2
t2→ . . .

tn−1→︸ ︷︷ ︸
δnπ (ω)≤k

sn
tn→ sn+1

tn+1→ . . .

For each 0 ≤ i ≤ n we have that πi |=ω φ, therefore Aφ(si) is well defined for each
0 ≤ i ≤ n, and ω ∈

⋂n
i=0Aφ(si). It is easy to see that (sn, out(sn), Aφ(sn)) ∈

G0(Aφ), and tn ∈ out(sn). Notice that sn−1
tn−1→ sn, thus (sn−1, [link(sn−1, sn)+

out(sn)]k, Aφ(sn−1) ∩ Aφ(sn)) ∈ BackStepk(G0(Aφ), Aφ) = G1(Aφ). Again, we
have that [tn−1 + tn]k ∈ [link(sn−1, sn) + out(sn)]k. After n + 1 such inductive
steps we obtain that there is a tuple (s0, A,

⋂n
i=0Aφ(si)) ∈ Gn(Aφ) such that

[t0 + t1 + . . .+ tn]k ∈ A, and ω ∈
⋂n
i=0Aφ(si). Recall that δnπ = t0 + t1 + . . .+ tn,

and as δnπ(ω) > k, we have that [t0 + t1 + . . . + tn]k(ω) > k, therefore ω ∈
[A]>k. This means that ω ∈ [A]>k ∩

⋂n
i=0Aφ(si), which in view of the fact that

[(s,A,
⋂n
i=0Aφ(si))]>k ∈ [Gn(Aφ)]>k concludes this part of the proof.

Now let ω ∈ (EG≤kAφ)(s). This means that for some m ∈ N, and em =
(sm, Bm), where sm = s we have that em ∈ [Gm(Aφ)]>k, and ω ∈ Bm. This in
turn means that there is a sequence (s0, A0, C0), (s1, A1, C1), . . . , (sm, Am, Cm)
such that:

1. Ai = [link(si, si−1) +Ai−1]k for all 0 < i ≤ m, and A0 = out(s0),

2. Ci =
⋂i
j=0Aφ(sj) and ω ∈ Ci for all 0 ≤ i ≤ m,

3. (si, Ai, Ci) ∈ Gi(Aφ) for all 0 ≤ i ≤ m,

4. [An]>k ∩ Cm = Bm.

From the above points it follows that there exists such a finite sequence π′ =
(sm, tm, sm−1, tm−1 . . . , s0, t0) that [δmπ′ ]k = [tm + tm−1 + . . . + t0]k ∈ Am, and
[δmπ′ ]k(ω) > k. Notice that the latter is equivalent to δmπ′(ω) > k, and that the
second point implies that si |=ω φ for all 0 ≤ i ≤ m. The sequence π′ is a prefix
of some infinite path π (due to the totality of the transition relation), such that
πi |=ω φ for all 0 ≤ i ≤ m, and δmπ (ω) > k. This means that s |=ω EG≤kφ,
which concludes the proof. ut

Definition 7. Let A,B be two flat subsets of S × P (Ω) and k ∈ N. Denote:

H0(A,B) = {(s, link(s, s′), A(s) ∩B(s′)) | there exists e ∈ B, e|1 = s′,

and link(s, s′) 6= ∅},
Hi+1(A,B) = BackStepk(Hi(A,B), A).

We define EAU≤kB = Flatten((
⋃∞
i=0[Hi(A,B)]≤k) ∪B).

Again, the Flatten operator is used only for the convenience, and the sequence
(
⋃j
i=0Hi)j≥0 is guaranteed to stabilize.



268 M. Knapik, W. Penczek

Theorem 2. Let φ, ψ be RTCTLP formulae, and Aφ, Aψ be such flat subsets of
parametric state space that s |=ω φ iff ω ∈ Aφ(s) and s |=ω ψ iff ω ∈ Aψ(s),
for each state s. For any state s, any k ∈ N, and parameter valuation ω it holds
that s |=ω EφU

≤kψ iff ω ∈ (EAφU≤kAψ)(s).

Proof. Assume that s |=ω EφU≤kψ. This means that there exists a sequence
π = (s0, t0, s1, t1, . . . , sn, tn, . . .) such that π0 = s, for some n ≥ 0 we have
δnπ(ω) ≤ k, πn |=ω ψ, and πi |=ω φ for all 0 ≤ i < n. If n = 0, then s |=ω ψ,
therefore ω ∈ Aψ(s); now it suffices to notice that Aψ is a (flattened) subset of
EAφU≤kAψ. We can therefore assume that n > 0, which means that sn−1 |=ω

φ, and sn |=ω ψ, thus ω ∈ Aφ(sn−1) ∩ Aψ(sn). As tn−1 ∈ link(sn−1, sn), we
obtain that

(
sn−1, link(sn−1, sn), (Aφ(sn−1)∩Aψ(sn))

)
∈ H0(Aφ, Aψ). Similarly

as in a first part of the proof of Theorem 1 we can now create a sequence
(s0, A0, C0), (s1, A1, C1), . . . , (sn−1, An−1, Cn−1) such that for all 0 ≤ i ≤ n− 1:

1. Ai = [link(si, si+1) + link(si+1, si+2) + . . .+ link(sn−1, sn)]k,

2. Ci =
⋂n−1
j=i Aφ(sj) ∩Aψ(sn) and ω ∈ Ci,

3. (si, Ai, Ci) ∈ Hn−i−1(Aφ, Aψ).

Now let us notice that [t0 + t1 + . . . + tn−1]k ∈ A0, and as δnπ(ω) ≤ k, also
[t0 + t1 + . . .+ tn−1]k(ω) ≤ k. This means that ω ∈ [A0]≤k ∩C0, therefore there
is e ∈ [H0(Aφ, Aψ)]≤k such that e|1 = s0 = s, and ω ∈ e|2, which concludes the
case.

Now let us assume that ω ∈ (EAφU≤kAψ)(s). If ω ∈ Aψ(s), then obviously
s |=ω ψ and s |=ω EφU≤kψ, therefore let us assume that for some m ∈ N we
have that e = (sm, Bm) ∈ [Hm(Aφ), Aψ]≤k where sm = s, and ω ∈ Bn. Again,
this means that there exist a state s′ such that ω ∈ Aψ(s′), and a sequence
(s0, A0, C0), (s1, A1, C1), . . . , (sm, Am, Cm) such that:

1. link(si+1, si) 6= ∅ for all 0 ≤ i < m, and link(s0, s
′) 6= ∅,

2. Ai = [link(si, si−1) + link(si−1, si−2) + . . .+ link(s0, s
′)]k for all 0 ≤ i ≤ m,

3. Ci =
⋂i
j=0Aφ(sj) ∩Aψ(s′) and ω ∈ Ci for all 0 ≤ i ≤ m,

4. (si, Ai, Ci) ∈ Hi(Aφ, Aψ) for all 0 ≤ i ≤ m,
5. [Am]≤k ∩ Cm = Bm.

From the above points we can infer the existence of such a finite sequence π′ =
(sm, tm, sm−1, tm−1, . . . , s0, t0, s

′, t′) (the t′ is an arbitrary time step parameter
from out(s′)) that:

1. ti ∈ link(si, si−1) for all 0 < i ≤ m, and t′ ∈ link(s0, s
′),

2. π′(i) |=ω φ for all 0 ≤ i ≤ m, and π′(m+ 1) |=ω ψ,
3. δmπ′(ω) ≤ k, as [δmπ′ ]k(ω) = [t0 + t1 + . . .+ tm]k(ω) ≤ k.

By the virtue of the totality of the transition relation this means that s |=ω

EφU≤kψ, which concludes the proof. ut

Definition 8. Let A be a flat subset of S × P (Ω), and k ∈ N. Denote:

Ik(A) = {(s, link(s, s′), A(s′)) | exists e ∈ A s. t. e|1 = s′ and link(s, s′) 6= ∅}.

We define EX≤kA = Flatten([Ik(A)]≤k).



Parameter Synthesis for Timed Kripke Structures 269

Intuitively, in Ik(A) for each state s we gather its connections with other states
s′ and constraints A(s′) imposed in s′. It suffices to ensure that these constraints
are consistent with conditions of transition from s to s′ in under k time units.

Corollary 2. Let φ be a formula of RTCTLP, let k ∈ N, and let Aφ be such a
flat subset of S×P (Ω) that s |=ω φ iff ω ∈ Aφ(s). For any state s and parameter

valuation ω we have s |=ω EX
≤kφ iff ω ∈ (EX≤kAφ)(s).

We have proved that the proposed translation is valid for all nonnegated expres-
sion. To complete the theory we show how to deal with negations.

Definition 9. Let A be a flat subset of S × P (Ω). We define:

ıA = Flatten({(s,Ω \A(s)) | exists e ∈ A such that e|1 = s}
∪{(s,Ω) | there is no e ∈ A such that e|1 = s}).

Let us present some intuitions concerning the translation of the negation. Let
Aφ characterize the states augmented with parameter valuations under which
the φ property holds. The ıAφ set is built by:

1. augmenting any state s represented in Aφ, by those valuations under which
φ does not hold (the complement of Aφ(s)),

2. including all the states which are not represented in Aφ together with the
full set of parameter valuations.

This gives rise to the following corollary.

Corollary 3. Let Aφ be such a flat subset of S×P (Ω) that s |=ω φ iff ω ∈ Aφ(s).
For any state s and ω ∈ Ω it holds that s |=ω ¬φ iff ω ∈ (ıAφ)(s).

4 Conclusions

The method presented in this paper allows for the synthesis of parameter values
in timed Kripke structures for properties expressed in RTCTLP logic. To be more
precise, for a given property φ the result of synthesis is the set Aφ of constraints
on time step parameters. These constraints are expressed as linear inequalities
over natural numbers, therefore our method is in fact a translation from the
problem of RTCTLP parameter synthesis to a problem stated in the language
of linear algebra. If properly implemented, this enables to take advantage of the
vast work and available tools from the discrete optimization field.

It is rather straightforward to show that for a given RTCTLP formula φ
it suffices to consider only the parameter step values which do not exceed the
greatest superscript in φ plus 1. While Ω can be limited to a finite set, an enu-
merative verification of all possible valuations from this set would soon prove to
be intractable. A symbolic model checking approach gives a chance of alleviating
these limitations via an efficient representation of statespace and operations on
its subsets. We plan to research the possibilities of implementing the presented
work using various versions of decision diagrams and SMT-theories.



270 M. Knapik, W. Penczek

Acknowledgements Micha l Knapik is supported by the Foundation for Polish
Science under International PhD Projects in Intelligent Computing. Project fi-
nanced from the European Union within the Innovative Economy Operational
Programme 2007-2013 and European Regional Development Fund.

References

1. Emerson, E.A., Trefler, R.: Parametric quantitative temporal reasoning. In: Proc. of
the 14th Symp. on Logic in Computer Science (LICS’99), IEEE Computer Society
(July 1999) 336–343

2. Alur, R., Henzinger, T., Vardi, M.: Parametric real-time reasoning. In: Proc. of the
25th Ann. Symp. on Theory of Computing (STOC’93), ACM (1993) 592–601

3. Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett.
102 (May 2007) 208–213

4. Tranouez, L.M., Lime, D., Roux, O.H.: Parametric model checking of time Petri
nets with stopwatches using the state-class graph. In: Proc. of the 6th Int. Workshop
on Formal Analysis and Modeling of Timed Systems (FORMATS’08). Volume 5215
of LNCS., Springer-Verlag (2008) 280–294

5. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model
checking of timed automata. In: Proc. of the 7th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’01). Volume 2031 of LNCS.,
Springer-Verlag (2001) 189–203

6. Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata.
T. Petri Nets and Other Models of Concurrency 5 (2012) 141–159

7. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed au-
tomata. In: Proceedings of the 19th international conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. TACAS’13, Berlin, Heidelberg,
Springer-Verlag (2013) 401–415

8. André, E., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. International Journal of Foundations of Computer Science
20(5) (Oct 2009) 819–836

9. Henzinger, T., Ho, P., Wong-Toi, H.: HyTech: A model checker for hybrid systems.
In: Proc. of the 9th Int. Conf. on Computer Aided Verification (CAV’97). Volume
1254 of LNCS., Springer-Verlag (1997) 460–463


