
Towards an Object-Oriented Programming
Language for Physarum Polycephalum

Computing

Andrew Schumann1 and Krzysztof Pancerz1,2

1 University of Information Technology and Management
Sucharskiego Str. 2, 35-225 Rzeszów, Poland

aschumann@wsiz.rzeszow.pl
2 University of Management and Administration

Akademicka Str. 4, 22-400 Zamość, Poland
kpancerz@wszia.edu.pl

Abstract. In the paper, we present foundations of a new object-oriented
programming language for Physarum polycephalum computing. Both,
theoretical foundations and assumptions for a language specification are
considered. Physarum polycephalum is a one-cell organism. In the phase
of plasmodium, its behavior can be regarded as a biological substrate
that implements the Kolmogorov-Uspensky machine which is the most
generalized and nature-oriented version of a mathematical machine. The
proposed language will be used for developing programs for Physarum
polycephalum by the spatial configuration of stationary nodes (inputs).

Keywords: Physarum polycephalum, unconventional computing, nature-
inspired computing, object-oriented programming language, Kolmogorov-
Uspensky machine

1 Introduction

Physarum polycephalum is a one-cell organism belonging to Physarales, sub-
class Myxogastromycetidae, class Myxomycetes and division Myxostelida. In
the phase of plasmodium, it looks like an amorphous giant amoeba with net-
works of protoplasmic tubes. It feeds on bacteria, spores and other microbial
creatures (substances with potentially high nutritional value) by propagating
towards sources of food particles and occupying these sources. A network of pro-
toplasmic tubes connects the masses of protoplasm. As a result, the plasmodium
develops a planar graph, where the food sources or pheromones are considered
as nodes and protoplasmic tubes as edges. This fact allows us to claim that plas-
modium behavior can be regarded as a biological implementation of Kolmogorov-
Uspensky machines [7]. The modification of locations of nutrients (food sources)
causes a storage modification of plasmodium. Hence, the plasmodium may be
used for developing a biological architecture of different abstract automata such
as Kolmogorov-Uspensky machines [16, 22], Tarjan’s reference machine [21], and

390 A. Schumann, K. Pancerz

Schönhage’s storage modification machines [19, 20]. In Physarum Chip Project:
Growing Computers From Slime Mould [11] supported by FP7 we are going
to implement programmable amorphous biological computers in plasmodium of
Physarum. This abstract computer is called slime mould based computer.

One of the paths of our research in this area concerns creating a new pro-
gramming language that simulates plasmodium behavior. The following main
tasks can be distinguished in the first step of this path:

1. Constructing the programming language on the basis of storage machines.
The static storage structure is represented by a two-dimensional configura-
tion of point-wise sources of chemo-attractants and chemo-repellents.

2. Constructing the programming language on the basis of the Kolmogorov-
Uspensky machine (KUM), where edges are represented by protoplasmic
strands.

3. Developing programs represented by the spatial configuration of stationary
nodes (treated as inputs of the programs). Outputs of the programs may be
recorded optically.

The rest of the paper is organized as follows. In Section 3, we give foundations
of specification of a new language. Assumptions of specification are preceded by
a theoretical background of Physarum automata (see Section 2).

2 Physarum Automata

Plasmodium’s active zones of growing pseudopodia interact concurrently and in
a parallel manner. At these active zones, three basic operations stimulated by
nutrients and some other conditions can be observed: fusion, multiplication, and
direction operations. The fusion Fuse means that two active zones A1 and A2

both produce new active zone A3 (i.e. there is a collision of the active zones). The
multiplication Mult means that the active zone A1 splits into two independent
active zones A2 and A3 propagating along their own trajectories. The direction
Direct means that the active zone A is not translated to a source of nutrients
but to a domain of an active space with a certain initial velocity vector v. These
operations, Fuse, Mult, Direct, can be determined by the following stimuli:

– The set of attractants {N1, N2, . . .}. Attractants are sources of nutrients or
pheromones, on which the plasmodium feeds. Each attractant N is charac-
terized by its position and intensity. It is a function from one active zone to
another.

– The set of repellents {R1, R2, . . .}. Plasmodium of Physarum avoids light
and some thermo- and salt-based conditions. Thus, domains of high illu-
mination (or high grade of salt) are repellents such that each repellent R
is characterized by its position and intensity, or force of repelling. In other
words, each repellent R is a function from one active zone to another.

Such plasmodium behavior can be presented as an implementation of some
abstract automata.

Towards an Object-Oriented Programming Language 391

Fig. 1. The stimulation of the following operations in Physarum automata: (a) fusion,
(b) multiplication, and (c) direction, where A1, A2, A3 are active zones, N , N1, N2,
N3 are attractants, α is a protoplasmic tube, R is a repellent.

2.1 Physarum Cellular Automata

Recall that a cellular automaton is a 4-tuple A = 〈Zd, S, u, f〉, where (1) d ∈ N
is a number of dimensions, and the members of Zd are referred to as cells, (2)
S is a finite set of elements called the states of an automaton A, the members
of Zd take their values in S, (3) u ⊂ Zd \ {0}d is a finite ordered set of n
elements, u(x) is said to be a neighborhood for the cell x, (4) f :Sn+1 → S that
is f is the local transition function (or local rule). As we see an automaton is
considered on the endless d-dimensional space of integers, i.e., on Zd. Discrete
time is introduced for t = 0, 1, 2, . . . For instance, the cell x at time t is denoted
by xt. Each automaton calculates its next state depending on states of its closest
neighbors. The cellular automata thus represent locality of physics of information
and massive-parallelism in space-time dynamics of natural systems.

In abstract cellular automata, cells are physically identical. They can differ
just by one of the possible states of S. In case of Physarum, cells can possess
different topological properties. This depends on intensity of chemo-attractants
and chemo-repellents. The intensity entails the natural or geographical neigh-
borhood of the set’s elements in accordance with the spreading of attractants
or repellents. As a result, we obtain Voronoi cells. Let us define what they are
mathematically. Let P be a nonempty finite set of planar points and |P| = n.
For points p = (p1, p2) and x = (x1, x2) let d(p, x) =

√
(p1 − x1)2 + (p2 − x2)2

denote their Euclidean distance. A planar Voronoi diagram of the set P is a par-
tition of the plane into cells, such that for any element of P, a cell corresponding

392 A. Schumann, K. Pancerz

to a unique point p contains all those points of the plane which are closer to p
in respect to the distance d than to any other node of P. A unique region

vor(p) =
⋂

m∈P,m 6=p

{z ∈ R2: d(p, z) < d(m, z)}

assigned to a point p is called a Voronoi cell of the point p. Within one Voronoi
cell a reagent has a full power to attract or repel the plasmodium. The distance
d is defined by the intensity of reagent spreading. A reagent attracts or repels
the plasmodium and the distance, on which it is possible, corresponds to the
elements of a given planar set P. When two spreading wave fronts of the two
reagents meet, this means that on the board of meeting the plasmodium cannot
choose its one further direction and splits (see Figure 2).

Fig. 2. The Voronoi diagram for Physarum, where different attractants have different
intensity and power.

The direction of protoplasmic tubes is defined by concentrations of chemo-
attractants or chemo-repellents in Voronoi neighborhood. Each dynamics of pro-
toplasmic tube can be characterized at time step t by its current position xt and
the angle αt.

2.2 Physarum Kolmogorov-Uspensky Machines

Let Γ be an alphabet, k a natural number. We say that a tree is (Γ, k)-tree, if one
of nodes is designated and is called root and all edges are directed. Each node
is labeled by one of the signs of Γ and each edge from the same node is labeled
by different numbers {1, . . . , k} (so, each node has not more than k edges). We
see that by this definition of (Γ, k)-tree, the pseudopodia growing from the one
active zone, where all attractants are labeled by signs of Γ , and protoplasmic
tubes are labeled by numbers of {1, . . . , k}, is a (Γ, k)-tree.

Let r be the maximal possible path of (Γ ; k)-tree. We can always design
Physarum Voronoi diagrams (using attractants and repellents) for inducing dif-
ferent numbers r and appropriate local properties. The (Γ ; k)-tree limited by

Towards an Object-Oriented Programming Language 393

r is called (Γ ; k)-complex. Programming in Kolmogorov-Uspensky machines is
considered as transforming one (Γ ; k)-complex to another with the same r by
changing nodes and edges using some rules. In case of Physarum implementation
of Kolmogorov-Uspensky machines programming is presented as transforming
one Voronoi diagram into another with the same r by dynamics of Physarum
(e.g. when some attractants become eaten by Physarum).

The simpler version of the Kolmogorov-Uspensky machines is presented by
Schönhage’s storage modification machines.

2.3 Physarum Schönhage’s Storage Modification Machines

These machines consist of a fixed alphabet of input symbols, Γ , and a mutable
directed graph with its arrows labeled by Γ . The set of nodes X, identified with
attractants is finite, as well. One fixed node a ∈ X is identified as a distinguished
center node of the graph. It is the first active zone of growing pseudopodia. The
distinguished node a has an edge x such that xγ(a) = a for all γ ∈ Γ . That is, all
pointers from the distinguished center node point back to the center node. Each
γ ∈ Γ defines a mapping xγ from X to X. Each word of symbols in the alphabet
Γ is a pathway through the machine from the distinguished center node.

Schönhage’s machine modifies storage by adding new elements and redirect-
ing edges. Its basic instructions are as follows:

– Creating a new node: new W . The machine reads the word W , following the
path represented by the symbols of W until the machine comes to the last
symbol in the word. It causes a new node y, associated with the last symbol
of W , to be created and added to X. Adding a new node means adding a
new attractant within a Physarum Voronoi diagram.

– A pointer redirection: set W to V . This instruction redirects an edge from
the path represented by word W to a former node that represents word V .
It means that we can remove some attractants within a Physarum Voronoi
diagram.

– A conditional instruction: if V = W then instruction Z. It compares two
paths represented by words W and V and if they end at the same node, then
we jump to instruction Z, otherwise we continue. This instruction serves to
add edges between existing nodes. It corresponds to the splitting or fusion
of Physarum.

3 Foundations of Specification of an Object-Oriented
Programming Language for Physarum Polycephalum

The plasmodium of Physarum polycephalum functions as a parallel amorphous
computer with parallel inputs and parallel outputs. Data are represented by
spatial configurations of sources of nutrients. Therefore, we can generally as-
sume that a program of computation is coded via configurations of repellents
and attractants. The plasmodium of Physarum polycephalum is a computing

394 A. Schumann, K. Pancerz

substrate. In [10], Adamatzky underlined that Physarum does not compute. It
obeys physical, chemical and biological laws. Its behavior can be translated to
the language of computations.

In this section, we deal with foundations of specification of a new object-
oriented programming language for Physarum polycephalum computing on the
basis of using a Voronoi diagram for implementing Kolmogorov-Uspensky ma-
chines. In an object-oriented programming (OOP) paradigm, concepts are repre-
sented as objects that have data fields (properties describing objects) and associ-
ated procedures known as methods. The OOP approach assumes that properties
describing objects are not directly accessible by the rest of the program. They are
accessed by calling special methods, which are bundled in with the properties.
This approach has been implemented in our new language. Moreover, we have
referred to conventions used in the JavaBeans API [4], i.e., the object properties
must be accessible using get, set, and is (used for Boolean properties instead of
get). They are called accessor methods. For readable properties, there are getter
methods reading the property values. For writable properties, there are setter
methods allowing the property values to be set or updated.

Our new language has been proposed as a prototype-based programming lan-
guage like, for example, Self [1], JavaScript and other ECMAScript implemen-
tations [2]. Unlike traditional class-based object-oriented languages, it is based
on a style of object-oriented programming in which classes are not present. Be-
havior reuse is performed via a process of cloning existing objects that serve as
prototypes. This model is also known as instance-based programming.

Table 1. Main objects identified in Physarum polycephalum computing

Object Properties

Layer id, size, elements

Physarum id, position, intensity

Attractant id, position, intensity

Repellent id, position, intensity

The main objects identified in Physarum polycephalum computing are col-
lected in Table 1. We assume that a computational space is divided into two-
dimensional computational layers on which Physarum polycephalum, as well as
attractants and repellents, can be scattered. Our approach allows interaction
between elements placed on different layers. This property enables us to use,
in the future, the multi-agent paradigm in Physarum polycephalum computing.
The user can define, in the computational space, as many computational layers
as needed. For each layer, its size can be determined individually. We apply the
point-wise configuration of elements scattered on the layers. Therefore, for each
element (Physarum, attractant, repellent), its position can be determined using
two integers (coordinates). As it was mentioned in Section 2, attractants and

Towards an Object-Oriented Programming Language 395

repellents are characterized by the property called intensity. This property plays
an important role in creation of the Voronoi cells. For each attractant and repel-
lent, the intensity is a fuzzy value from the interval [0, 1], where 1 denotes the
maximal intensity, while 0 the minimal intensity, i.e., a total lack of impact of a
given attractant or repellent on Physarum polycephalum. The force of attracting
(repelling) of Physarum is a combination of intensity of attractants (repellents)
and distances between plasmodium and attractants (repellents), respectively.

Let p = (p1, p2) and x = (x1, x2) be points on the layer where Physarum and
attractant (repellent), respectively, are located. To create the Voronoi cells, we
can use the following measure modyfying a distance, which is commonly used:

f(p, x) =
1

ε(x)

√
(p1 − x1)2 + (p2 − x2)2,

where ε(x) is the intensity of attractant (repellent) placed at x. It means that
the Voronoi cells cover the force of attracting (repelling) of plasmodium instead
of simple distances between it and attractants (repellents). In the current version
of the language, the Voronoi cells are built within layers only.

Analogously to layers, the user can create and scatter on layers as many
elements as needed.

Below, we present an exemplary fragment of a code in our language responsi-
ble for creating the layer and elements, setting individual properties of elements
and scattering elements on the layer.

l1=new Layer;

p1=new Physarum;

a1=new Attractant;

a2=new Attractant;

a3=new Attractant;

a4=new Attractant;

l1.add(p1);

p1.setPosition(800,200);

l1.add(a1);

a1.setPosition(500,150);

a1.setIntensity(0.7);

l1.add(a2);

a2.setPosition(500,350);

a2.setIntensity(0.5);

l1.add(a3);

a3.setPosition(400,250);

a3.setIntensity(0.6);

l1.add(a4);

a4.setPosition(600,250);

a4.setIntensity(0.5);

For experiments with Physarum polycephalum computing, a specialized com-
puter tool (PhyChip Programming Platform) is being developed using the Java
environment. The tool consists of two main modules:

396 A. Schumann, K. Pancerz

1. Code creation and compilation module. For generating the compiler of our
language, the Java Compiler Compiler (JavaCC) tool [3] is used. JavaCC is
the most popular parser generator for use with Java applications.

2. Simulation module. It enables the user to perform time simulation of growing
pseudopodia, i.e., to run the program.

Fig. 3. The Voronoi cells for 4 attractants defined in the exemplary program generated
in our tool (attractants are marked with dots whereas Physarum with a square).

In Figure 3, we have shown the Voronoi cells generated in our computer
tool for 4 attractants (a1, a2, a3, a4) with different intensity assigned to them,
defined in the exemplary program. Attractants are marked with dots whereas
Physarum with a square. The measure defined earlier has been used to create
cells. It is easy to see that Physarum is attracted first of all by the most right
attractant.

4 Summation

In the paper, we have outlined theoretical foundations as well as assumptions
for a new object-oriented programming language for Physarum polycephalum
computing. The next mile steps in our research are the following: implementation
of operations based on the π-calculus model [17] of processes and extension
of the programming platform to the agent-oriented programming language for
computation with raw plasmodium.

Acknowledgments

This research is being fulfilled by the support of FP7-ICT-2011-8.

Towards an Object-Oriented Programming Language 397

References

1. Self, http://selflanguage.org/
2. ECMAScript, http://www.ecmascript.org/
3. JavaCC, http://java.net/projects/javacc/
4. JavaBeans. Tech. rep., Sun Microsystems (1997)
5. Adamatzky, A.: Reaction-diffusion algorithm for constructing discrete generalized

voronoi diagram. Neural Network World 6, 635–643 (1994)
6. Adamatzky, A.: Computing in Nonlinear Media and Automata Collectives. Insti-

tute of Physics Publishing (2001)
7. Adamatzky, A.: Physarum machine: implementation of a kolmogorov-uspensky

machine on a biological substrate. Parallel Processing Letters 17(4), 455–467 (2007)
8. Adamatzky, A.: Growing spanning trees in plasmodium machines. Kybernetes

37(2), 258–264 (2008)
9. Adamatzky, A., De Lacy Costello, B., T., S.: Universal computation with limited

resources: Belousov-zhabotinsky and physarum computers. International Journal
of Bifurcation and Chaos 18(8), 2373–2389 (2008)

10. Adamatzky, A.: Physarum Machines: Computers from Slime Mould. World Scien-
tific (2010)

11. Adamatzky, A., Erokhin, V., Grube, M., Schubert, T., Schumann, A.: Physarum
chip project: Growing computers from slime mould. International Journal of Un-
conventional Computing 8(4), 319–323 (2012)

12. Adamatzky, A., Costello, B.D.L., Asai, T.: Reaction-Diffusion Computers. Elsevier
Science, Amsterdam (2005)

13. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cam-
bridge University Press (2005)

14. De Lacy Costello, B., Ratcliffe, N., Adamatzky, A., Zanin, A.L., Liehr, A.W., Pur-
wins, H.G.: The formation of voronoi diagrams in chemical and physical systems:
Experimental findings and theoretical models. International Journal of Bifurcation
and Chaos 14(7), 2187–2210 (2004)

15. Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific (2001)
16. Kolmogorov, A.: On the concept of algorithm. Uspekhi Mat. Nauk 8(4), 175–176

(1953)
17. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Information

and Computation 100(1), 1–40 (1992)
18. Pavlović, D., Escardó, M.: Calculus in coinductive form. In: Proceedings of the

13th Annual IEEE Symposium on Logic in Computer Science. pp. 408–417 (1998)
19. Schönhage, A.: Real-time simulation of multi-dimensional turing machines by stor-

age modification machines. Project MAC Technical Memorandum 37, MIT (1973)
20. Schönhage, A.: Storage modification machines. SIAM Journal on Computing 9(3),

490–508 (1980)
21. Tarjan, R.: Reference machines require non-linear time to maintain disjoint sets.

Tech. Rep. STAN-CS-77-603 (1977)
22. Uspensky, V.: Kolmogorov and mathematical logic. The Journal of Symbolic Logic

57, 385–412 (1992)

