
Self-Sustaining Platforms:
a semantic workflow engine?

Sam Coppens, Ruben Verborgh, Erik Mannens, Rik Van de Walle

Ghent University – iMinds – Multimedia Lab
Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium

firstname.lastname@ugent.be

Abstract. In this paper, we provide a novel semantic workflow system,
based on semantic functional service descriptions and a rule file. The
workflow engine follows a three-step process. First, it determines for all
the resources in its knowledge base the functionality they need to progress
in the workflow. This uses a phase-functionality rule file which binds
phases of the workflow to functionalities. During a second phase, the func-
tionalities are mapped to REST service calls using RESTdesc functional
descriptions. During the third step, the engine executes the generated
service calls and pushes the resource it acted on to the next phase in the
workflow using a phase-transition rule file. The main advantage of this
approach is that each step can be influenced by external information from
the Linked Open Data cloud. It exploits the fact that Linked Open Data
and RESTful Web services and APIs are resource-oriented. Moreover, the
workflow rule file makes the system easily adaptable and extensible to
achieve new functionalities or to obey changing company policies. Finally,
the separation between functional descriptions and service descriptions
supports easy management over the fast-changing services at hand.

1 Introduction
Today, applications on the Web increasingly rely on Linked Open Data [2] and
RESTful services [3]. Both have a resource-oriented architecture that exploit the
links between these resources. The increasing speed at which Linked Open Data,
Web services and APIs are being deployed, demands an intelligent, expandable
workflow engine grows in various domains, such as factories and Smart Cities.
Process control in factories is often hard-coded into the control software of the
production machines. Whenever they want to introduce a new sensor to steer
the process, software needs to be adapted, recompiled, and re-deployed on every
machine. An even bigger problem arises for Smart Cities, which use millions of
wireless sensors. Existing workflow engines try to make this manageable, yet
they are mostly manually created. Moreover, the intelligence of a platform is
often distributed over the software code and the workflow engine, making the
management of such a system a huge burden. Novel workflow engines should be
able to integrate resources of any kind, i.e., Linked Open Data and RESTful Web
services, to even become resource-agnostic. The only difference is that resources
describing RESTful Web services and APIs get a functionality attached to them.
? The research activities as described in this paper were funded by Ghent University, iMinds, the
Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT), the Fund
for Scientific Research-Flanders (FWO-Flanders), and the European Union.

2 Sam Coppens, Ruben Verborgh, Erik Mannens, Rik Van de Walle

In the solution we envision, the software intelligence and the workflow engine
are unified into one system. Its first cornerstone is that workflows do not require
manual composition anymore, since they are composed automatically using
semantic service descriptions and workflow description files that captures the
intelligence of the platform. By relying on functional service descriptions, services
offering the same functionality become interchangeable. The declarative workflow
rule files steer the reasoning engine by describing the whole process in terms
of functionalities. This way, services become interchangeable and the platform
becomes a loosely coupled system. Adaptations in the services or the workflow
rule files are straightforward, without the need to adapt software code.

The second cornerstone of the envisioned platform is the automated execution
of generated workflows. Together with the automatic workflow composition, the
whole system becomes self-sustaining, easily adaptable and extensible, and highly
portable. Workflows are dynamically recomposed when needed and automatically
triggered when needed.

This unique combination enables our system to form the backend platform
for a broad spectrum of applications, ranging from home domotic systems, long-
term preservation platforms, process control software for factories to large Smart
Cities. The only manageable assets are the service descriptions and the worfklow
description rule files. At any moment new services can be described, which will
automatically be incorporated into the newly generated workflows. Even the
whole process can be changed, by making alterations to the workflow description
rule files. All this happens in a declarative way, eliminating the need to redesign,
recompile, and redeploy the software, keeping the system more manageable.
These two characteristics, i.e., manageability of the services and speed-up of
development process or extensibility of the system, are key to our solution and
distinguish it from traditional workflow engines.

2 Concept and Architecture
When composing a workflow, our platform basically needs to following information,
as shown in Figure 1:

Knowledge Base The knowledge base contains actually the information to be
acted on. This is actually Linked Open Data, coming from a local triple store
or optionally the Linked Open Data cloud.

Phase-Functionality rule file A phase-functionality rule file is a declarative
file, stating how the different phases of a workflow are mapped to function-
alities to move the resource to the next phase in the workflow. Rules are
described in N3 [1], as will be discussed in Section 3.1.

Phase-Transition rule file This file is actually responsible for routing the
different phases (and hence functionalities) of a workflow such that it complies
to a certain overall functionality or company policy.

Functional service descriptions These service descriptions describe the indi-
vidual services the workflow engine can make use of to compose its workflows.
RESTdesc [10] describes services, as will be detailed in Section 3.2.

Self-Sustaining Platforms: a semantic workflow engine 3

Fig. 1. Basic building blocks of the self-sustaining platform.

The phase-functionality rule file, the phase-transition rule file and the service
descriptions in combination with the knowledge base, and optionally even external
knowledge bases from the LOD cloud will generate the needed service calls by
means of reasoning. This happens by the workflow generator. Because we rely
on monotonic rule reasoning, this is a single threaded process. The generated
service calls will be executed by the workflow executor. Of course, this can be a
multi-threaded process.

The operation behind the self-sustaining platform actually consists out of
three phases, as illustrated in Figure 2:

1. In the functionality generation phase, the phase-functionality rule file
will tell for each resource which functionality it needs to get to the following
phase of the workflow. This will happen by reasoning with the rule file over
the knowledge base. This will entail triples describing a functionality the
resource needs to get to the following phase of the workflow.

2. In the service call generation phase, these functionalities are mapped to
service calls using the service descriptions. This is also done by reasoning
over the entailed triples of the previous phase. The entailed triples of this
reasoning cycle will describe service calls to be executed during the following
phase. Splitting up the functionalities of service calls has a great advantage
for the management of the services and generated workflows.

3. In the service call execution phase, the generated service call is being
executed. If the service executed successfully, the phase-transition rule file is
used to move to the next phase within the workflow.

Determining the needed transition is performed by means of reasoning over the
entailed from the previous phase. The entailed triples of this phase will be stored
to the knowledge base and a whole new reasoning cycle from the first phase is
started. The next sections, will discuss the different steps in detail.

To demonstrate our idea, we will focus on the use case of publishing Linked
Open Data. Publishing Linked Open Data typically consists of four steps: har-
vesting the data, mapping the harvested data, reconciling the mapped data,
enriching the reconciled data, and finally, publishing the enriched data.

4 Sam Coppens, Ruben Verborgh, Erik Mannens, Rik Van de Walle

Fig. 2. Schematic operation of the self-sustaining platform.

3 Operational Phases
3.1 Functionality Generation Phase
This phase-functionality rule file will split up the workflow into different phases
and it will list for each phase the functionality it needs to get to the following
phase. If we take back the example of publishing Linked Open Data, then
its workflow consists of the following ordered list of functionalities: harvesting,
mapping, reconciliation and publication. Each of the functionalities give rise to
a new phase. An example is schematically shown in Figure 3. Every phase is
characterised with a functionality to complete the phase.

Fig. 3. Example workflow for publishing LOD.

The phases, and the functionalities connecting them, form a functional work-
flow description. This is a composition of functionalities that need to be performed
in order to fulfil a certain policy or achieve a certain goal. Such a goal or policy
can be described using a rule file and a rule-based reasoner. In this rule file, the
phases and functionalities need to denoted with URIs. Taking back our example
of LOD publisher, the rule file looks like the following.

Self-Sustaining Platforms: a semantic workflow engine 5

@prefix wf: <http://example.org/workflow#>.
@prefix fn: <http://example.org/functionalities#>.

{?object0 wf:hasStarted wf:phase_0} =>
{?object0 fn:harvestRecord ?object1.
?object1 wf:hasCompleted wf:phase_0}.

{?object1 wf:hasStarted wf:phase_1} =>
{?object1 fn:map ?object2.
?object2 wf:hasCompleted wf:phase_1}.

{?object2 wf:hasStarted wf:phase_2} =>
{?object2 fn:reconcile ?object3.
?object3 wf:hasCompleted wf:phase_2}.

{?object3 wf:hasStarted wf:phase_3} =>
{?object3 fn:enrich ?object4.
?object4 wf:hasCompleted wf:phase_3}.

{?object4 wf:hasStarted wf:phase_4} =>
{?object4 fn:publish ?object5.
?object5 wf:hasCompleted wf:phase_4}.

This phase-functionality rule file actually describes the different phases of a
resource in a workflow and for each phase its functionality. It doesn’t tell how the
different phases should be coupled in order to achieve a certain workflow. These
transitions are described in the phase-transition rule file, discussed in Section 3.3.
During the second step, this functional workflow, actually described as entailed
triples, is being materialised to explicit service calls. Assume we have an URL of
a resource we want to publish as LOD. e.g., http://foo.org/resource/1234.
If we add the following triple to our triple store/knowledge base, we get the
publishing procedure starting:

<http://foo.org/resource/1234> wf:hasStarted wf:phase_0.

Reasoning over this triple with our example rule file yields the following triples:
<http://foo.org/resource/1234> fn:harvestRecord ?object1.
?object1 wf:hasCompleted wf:phase_0.

These triples are passed to the next step, where functionalities are translated
into REST service calls. During this step another reasoning cycle will happen.
All the entailed triples will be added to the knowledge base after the successful
execution of this phase of the workflow during the last step. After this step, a
new reasoning cycle is fired. Another reasoning cycle over these triples would
yield the following triples, which in turn are passed to the next step:

?object1 fn:map ?mappedResult.
?mappedResult wf:hasCompleted wf:phase_1.

Eventually, after several reasoning cycles, the entire workflow will be executed.

6 Sam Coppens, Ruben Verborgh, Erik Mannens, Rik Van de Walle

3.2 Service Generation Phase
As explained, this step is going to turn the result of the functionality generation
phase into a service call description, which will be fed to the service execution
and transition phase. The result of the functionality generation phase is actually
a set of entailed triples, as shown in the previous section. For each phase in the
workflow, we have a triple denoting the functionality it needs for the next phase.
These triples should actually result in a description of the of a REST service,
which serves the functionality.

For the service description, we rely on RESTdesc. RESTdesc is both a de-
scription and a discovery method targeting restful Web services, with an explicit
focus on functionality. It consists of well-established technologies such as HTTP
and RDF/Notation3 and is built upon the concepts of hyperlinks and Linked
Data. Its goal is to complement the Linked Data vision, which focuses on static
data, with an extension towards Web services that focus on dynamic data. All
RESTdesc descriptions are:

– self-describing: using Notation3 semantics;
– functional: explaining exactly what the operation does;
– simple: descriptions are expressed directly using domain vocabularies.

Since RESTdesc entails the operational semantics of Notation3, it allows for
versatile discovery methods. We can indeed use the power of Notation3 reasoners
to determine whether a service satisfies at set of conditions. Even more advanced
reasoning is possible to decide on service matching, and to create complex
compositions of different services. We see this as an important prerequisite for
services in order for them to contribute to the future Web of Agents, since new
functionality can only be obtained by on-demand compositions tailored to a
specific problem. Such a RESTdesc description of a service that harvests a record,
looks like this:

@prefix fn: <http://example.org/functionalities#>.
@prefix http: <http://www.w3.org/2011/http#>.

{ ?url fn:harvestRecord ?record. }
=>
{ _:request http:methodName "GET";

http:requestURI ?url;
http:resp [http:body ?record].}.

It actually says: If you have a URL from which you want to harvest a metadata
record, then you can do this by an http GET request on the URL and the
response will contain the record in its body. POST requests are also described in
this way. The following mapping service is a good example of a POST request.

{ ?record fn:map ?mappedRecord.}
=>
{ _:request http:methodName "POST";

http:requestURI "http://example.org/service/map/";
http:body ?record;
http:resp [http:body ?mappedRecord].}.

Self-Sustaining Platforms: a semantic workflow engine 7

Thus, during this second step, we only need to reason with the RESTdesc service
descriptions over the entailed triples of the first step in order to get the service
call descriptions that need to be executed during the next step. If we take back
the example of Section 3.1, the entailed triples from the first reasoning cycle
being feed to this step are:

<http://foo.org/resource/1234> fn:harvestRecord ?result.
?result wf:hasCompleted wf:phase_0.

Reasoning over these triples with the service description of the harvest service,
inferences the following triples that are fed to the workflow execution step:

_:request http:methodName "GET";
http:requestURI <http://foo.org/resource/1234>;
http:resp [http:body ?record].

If you have in your repository with RESTdesc service descriptions multiple
services covering the same functionality, this phase would yield multiple REST
service calls being described. Not all these service descriptions need to be fed to
the service execution phase, only one needs to. For this reason, this phase stops
after the first RESTdesc service description that entails a service call description.
This separation of functionalities and services that cover these functionalities
greatly enhances the management of the services and the workflows. It makes
services with the same functionality interchangeable. Of course, this service
selection step can also be influenced, as will be discussed in Section 4.3.

3.3 Service Execution and Transition Phase
In this step, the entailed triples of the previous step are processed. The entailed
triples of the previous step actually describe a REST service call, explaining the
HTTP GET request can be done on the URL http://foo.org/resource/1234

and the record’s metadata will be returned into the response’s body. Thus, an
execution agent can process these entailed triples, describing a service call. If the
agent executes the service call successfully, the phase transition rule file is used
to progress to the next phase of the workflow. This phase-transition file actually
routes all the different phases of the workflow. This is done by reasoning over
the entailed triples of the previous steps. For our LOD publication example, this
phase transition file looks like this:

@prefix wf: <http://example.org/workflow#>.
@prefix fn: <http://example.org/functionalities#>.
{?object wf:hasCompleted wf:phase_0} =>

{?object0 wf:hasStarted wf:phase_1}.

{?object wf:hasCompleted wf:phase_1} =>
{?object0 wf:hasStarted wf:phase_2}.

{?object wf:hasCompleted wf:phase_2} =>
{?object0 wf:hasStarted wf:phase_3}.

{?object wf:hasCompleted wf:phase_3} =>
{?object0 wf:hasStarted wf:phase_4}.

8 Sam Coppens, Ruben Verborgh, Erik Mannens, Rik Van de Walle

For our example, these entailed triples fed to this step are:
<http://foo.org/resource/1234> wf:hasCompleted wf:phase_0.
_:request http:methodName "GET";

http:requestURI <http://foo.org/resource/1234>;
http:resp [http:body ?record].

The service-executing agent detects the service call description and executes it.
If the execution was successful, the reasoning with the phase-transition file is
started, yielding the following triples:

<http://foo.org/resource/1234> wf:hasStarted wf:phase_1.

After this last reasoning cycle, all the entailed triples of the three steps are being
ingested into the knowledge base and a new functionality generation phase is
started, as shown in Figure 2. If the execution of the service call was unsuccessful,
the operation breaks up, storing nothing to the knowledge base, because you
cannot state the phase has already finished. Thus, the triples being added to the
knowledge base are:

<http://foo.org/resource/1234> wf:hasCompleted wf:phase_0.
_:request http:methodName "GET";

http:requestURI <http://foo.org/resource/1234>;
http:resp [http:body ?record].

<http://foo.org/resource/1234> wf:hasStarted wf:phase_1.

4 Advanced Features

In this section, we are going to discuss some advanced features of the workflow
engine. Until now, only the basic operation has been discussed. By adapting the
phase-functionality, file, the phase-transition file and the service descriptions,
some more advanced features are possible in this framework. The advanced
features discussed in this section are: how to integrate feedback loops, cron jobs,
and nested functionalities. The advanced features are not limited to these ones.
Other features are, e.g., the possibility to include Linked Open Data into the
workflow, such that workflow are adapted or triggered by external data from
the Linked Open Data cloud. SPARQL endpoint results can be integrated into
the workflows. For this, SPARQL requests are modeled as RESTful service calls.
The results from these endpoints can then be used within the rule files make the
workflows adapting to this external data. Another feature that can be integrated
into the workflow engine is basic workload balancing. For this, we can include
counters attached on the service endpoints, such that the load for a functionality
is shared across the different services, serving the same functionality. A last
feature to mention is that it becomes easy to integrate authorisation into the
workflows. To integrate this in the workflows, a new phase must be integrated
into the workflow, e.g., in our example, for validating the generated enrichments.
The transition from this phase is then actually steered by an external REST
service, which is triggered by the authority. In the remainder of this section, we
will discuss in detail feedback loops with a cronjob (time-based task), nested
functionalities, and how to influence the service selection.

Self-Sustaining Platforms: a semantic workflow engine 9

4.1 Feedback Loops

Feedback loops can be built into the workflow. In our example, we can introduce
a update process by introducing a recurring reharvest of the record. This is
achieved by adapting the first rule and adding a rule to the phase-functionality
rule file:

@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix time: <http://www.w3.org/2000/10/swap/time#>.

{?object0 wf:hasStarted wf:phase_0} =>
{?object0 fn:harvestRecord ?object1.
?object1 wf:hasCompleted wf:phase_0.
?object1 dc:source ?object0.
?object1 dcterms:modified time:localTime.}.

{?object5 wf:hasStarted wf:phase_5.} =>
{?object5 dc:source ?url.
?url fn:reHarvestRecord ?object6.
?object6 wf:hasCompleted wf:phase_5.}.

With these rules, we define an extra phase for the workflow, i.e., wf:phase:5,
which is coupled to the functionality fn:reHarvestRecord. Next, this phase
needs to be integrated into the phase-transition rule file. The phase-transition
file will get the following extra rule:

@prefix func: <http://www.w3.org/2007/rif-builtin-function#>
@prefix pred: <http://www.w3.org/2007/rif-builtin-predicate#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

{?object wf:hasCompleted wf:phase_4;
dcterms:modified ?lastHarvest.

(time:localTime ?lastHarvest) func:subtract-dateTimes ?difference.
(?difference "P14D"^^xsd:dayTimeDuration)

pred:dayTimeDuration-greater-than true.} =>
{?object wf:hasStarted wf:phase_5}.

{?object wf:hasCompleted wf:phase_4} =>
{?object wf:hasStarted wf:phase_1}.

4.2 Nesting

The functionalities can be nested using multiple rules. In our previous example,
the reharvest functionality consists actually of a new delete and an already
existing harvest functionality. The following rules for the phase-functionality rule
file shows reharvesting:

{?object fn:reHarvestRecord ?result} =>
{?object wf:hasStarted wf:phase_6.}.

{?object wf:hasStarted wf:phase_6} =>
{?object fn:delete ?delete.
?object wf:hasCompleted wf:phase_6}

10 Sam Coppens, Ruben Verborgh, Erik Mannens, Rik Van de Walle

And the following rules are added to the phase-transition file:
{?object wf:hasCompleted wf:phase_6} =>

{?object wf:hasStarted wf:phase_0.
?object wf:isReharvest true.}

{?object wf:hasCompleted wf:phase_0} =>
{?object wf:hasStarted wf:phase_1.}

{?object wf:isReharvest true.
?object wf:hasCompleted wf:phase_0} =>

{?object wf:hasCompleted wf:phase_5.}

This needs a little explanation. There is no service providing the reharvest
functionality, there are services for the delete and harvest functionality. Whenever
our semantic workflow engine cannot trigger a rule with the entailed triples from
the functionality generation phase during the service generation phase, these
entailed triples are taken to the service execution and transition phase. This
reasoning cycle, only defines phase transitions without delivering a service call
description. During the subsequent reasoning cycle, our newly defined rules,
bringing our object from the deadlocked reharvest state to the delete state for
which it has a service description. In turn, the delete phase will give rise eventually
to the harvest phase and this is how functionalities can be nested in our platform.
After this harvest, the nested loop needs to be closed. This is done with the last
rule from the phase-transition file, which says that if the harvest is finished and
is part of a reharvest operation, the reharvest operation is finished.

4.3 Service Selection
In Section 3.2, we described what happens if several service descriptions fulfil the
same needed functionality. Via the workflow rule file this service generation phase
can be influenced to obey certain rules for selecting the appropriate service. A
use case for this would the selection of the right mapping service. One can image
having several mapping services in place, each covering other mapping formats as
input and output. Then one can have the following rules in the workflow rule file
to select the appropriate mapping service during this service generation phase:

{?object wf:hasStarted wf:phase_0} =>
{?object fn:harvestRecord ?result.
?result wf:hasCompleted wf:phase_0.
?result ex:vocabulary <http://www.loc.gov/MARC21/slim>}.

{?object wf:hasStarted wf:phase_1} =>
{?object fn:map ?result.
?result wf:hasCompleted wf:phase_1.
?result ex:vocabulary <http://purl.org/dc/terms/>}.

In this workflow rule file, we specified in the first rule the vocabulary used to
describe the record harvested, i.e., MARC XML. In the second rule, we specify
that everything needs to be mapped to the vocabulary dcterms. In combination
with specifying the mapping vocabularies, you can steer the selection of the
services used for a functionality:

Self-Sustaining Platforms: a semantic workflow engine 11

{ ?record ex:vocabulary <http://www.loc.gov/MARC21/slim>.
?record fn:map ?mappedRecord.
?mappedRecord ex:vocabulary <http://purl.org/dc/terms/>.}

=>
{ _:request http:methodName "POST";

http:requestURI "http://example.org/service/map";
http:body ?record;
http:resp [http:body ?mappedRecord].}.

This way service descriptions can be manipulated to also include, e.g., a trust
rating or a quality rating. The workflow rule file can then be adapted to take
always the most trustworthy service or the most qualitative one.

5 Related Work
Our self-sustaining platform relies on two basic technologies: Semantic service
descriptions and automatic workflow composition. “Semantic Web Services: a
RESTful approach” [4] has a RESTful grounding ontology that maps OWL-S [8]
and WADL [6]. OWL-S is a W3C submission for Semantic Web service descrip-
tions. Web Application Description Language (WADL) is a W3C submission for
describing REST over HTTP Web services. The Semantic Automated Discovery
and Integration (SADI [11]) offer Web service Design-Patterns, an API and a
reference Implementation that simplify the publication of services such that they
can easily be discovered and integrated.

When it come to automatic workflow composition, Data-Fu, a language and
interpreter for interaction with read/write Linked Data, is related to our research.
Data-Fu is a declarative rule language for specifying interactions between web
resources. Another platform, supporting automatic workflow composition is the
work of Krummenacher [7]. In this work, he investigates the composition of
RESTful resources in a process space. The work is based on resources described
by graph patterns. Similar work is carried out by Speiser and Harth [9], which
also relies on graph patterns for RESTful Linked Data Services. In this context,
it is also worth mentioning WINGS, (Workflow INstance Generation and Special-
ization [5]). WINGS is a semantic workflow system that consists of the WINGS
Portal, which is its user interface, and the WINGS Semantic Workflow Reasoner,
which contains its constraint reasoning and propagation algorithms.

For our workflow composition, we rely on rule-based reasoning. All the
intelligence of an application is gathered by three rule files. This centralisation of
the application’s intelligence allows easy management of the services, because
services become interchangeable if they provide the same functionality. At the
same time, it allows easy adaptation and extensibility of the application through
the adaptation of the three rule files. There is no need anymore to recompile,
and redeploy the software.

6 Conclusions
In this paper, we presented a novel workflow engine, based on Linked Data,
RESTful Web services and rule-based reasoning. Our platform will generate
workflows described in terms of phases and functionalities connecting the phases.

12 Sam Coppens, Ruben Verborgh, Erik Mannens, Rik Van de Walle

In a later phase, these functionalities are mapped into service call descriptions,
which are finally executed. A main feature of our platform is that it is easily
adaptable and expandable. The whole system captures the application intelligence
through three N3 rules files. One for describing the different phases of a workflow
and for each phase the functionality it needs. Another describing the phase
transitions, and finally one describing the RESTful Web services the platform
relies on. These files can be adapted at runtime, but at the same time aggregate the
platform’s intelligence. Another main feature is the explicit separation between
functionalities and services. By this, services serving the same functionality
become interchangeable. This makes both the management of the workflows and
the services a lot easier. Our generated workflows can be steered by external
Linked Data, so that the platform can act on this external data. A last feature
of the platform is its ability for error handling. These features together make the
platform self-sustaining.

References
1. Berners-Lee, T. and Connolly, D. Notation 3, 2006. Available at http://www.w3.

org/DesignIssues/Notation3.
2. Bizer, C.;Heath, T. and Berners-Lee, T. Linked Data – the story so far. Int. J.

Semantic Web Inf. Syst., 5(3):1–22, 2009.
3. Roy T. Fielding and Richard N. Taylor. Principled design of the modern web

architecture. In Proceedings of the 22nd international conference on Software
engineering, ICSE ’00, pages 407–416, New York, NY, USA, 2000. ACM.

4. Otávio Freitas Ferreira Filho and Maria Alice Grigas Varella Ferreira. Semantic Web
Services: A RESTful Approach. In IADIS International Conference WWWInternet
2009, pages 169–180. IADIS, 2009.

5. Yolanda Gil, Varun Ratnakar, Jihie Kim, Pedro A. González-Calero, Paul T. Groth,
Joshua Moody, and Ewa Deelman. Wings: Intelligent workflow-based design of
computational experiments. In IEEE Intelligent Systems, 2011.

6. Marc J. Hadley. Web application description language (wadl). Technical report,
Sun Microsystems, Inc., Mountain View, CA, USA, 2006.

7. Reto Krummenacher, Barry Norton, and Adrian Marte. Towards linked open services
and processes. In Arne-Jørgen Berre, Asunción Gómez-Pérez, Kurt Tutschku, and
Dieter Fensel, editors, FIS, volume 6369 of Lecture Notes in Computer Science,
pages 68–77. Springer, 2010.

8. David Martin, Mark Burstein, Erry Hobbs, Ora Lassila, Drew Mcdermott, Sheila
McIlraith, Srini Narayanan, Bijan Parsia, Terry Payne, Evren Sirin, Naveen Srini-
vasan, and Katia Sycara. OWL-S: Semantic markup for web services. Technical
report, W3C, November 2004.

9. Sebastian Speiser and Andreas Harth. Integrating linked data and services with
linked data services. In ESWC (1), volume 6643 of Lecture Notes in Computer
Science, pages 170–184. Springer, 2011.

10. Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Jos De Roo, Rik Van de
Walle, and Joaquim Gabarró Vallés. Capturing the functionality of Web services
with functional descriptions. Multimedia Tools and Applications, (2):365–387, 2013.

11. Mark Wilkinson, Benjamin Vandervalk, and Luke McCarthy. The semantic auto-
mated discovery and integration (sadi) web service design-pattern, api and reference
implementation. Journal of Biomedical Semantics, 2(1):8, 2011.

http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/DesignIssues/Notation3

	Self-Sustaining Platforms: a semantic workflow engine

