
Towards an RDF Analytics Language:

Learning from Successful Experiences

Fadi Maali and Stefan Decker

Digital Enterprise Research Institute, NUI Galway, Ireland
{fadi.maali,stefan.decker}@deri.org

Abstract. SPARQL, the W3C standard querying language for RDF,
provides rich capabilities for slicing and dicing RDF data. The latest
version, SPARQL 1.1, added support for aggregation, nested and dis-
tributed queries among others. Nevertheless, the purely declarative na-
ture of SPARQL and the lack of support for common programming pat-
terns, such as recursion and iteration, make it challenging to perform
complex data processing and analysis in SPARQL. In the database com-
munity, similar limitations of SQL resulted in a surge of proposals of
analytics languages and frameworks. These languages are carefully de-
signed to run on top of distributed computation platforms. In this paper,
we review these efforts of the database community, identify a number of
common themes they bear and discuss their applicability in the Semantic
Web and Linked Data realm. In particular, design decisions related to
the data model, schema restrictions, data transformation and the pro-
gramming paradigm are examined and a number of related challenges
for defining an RDF analytics language are outlined.

1 Introduction

The cost of acquiring and storing data has dropped dramatically in
the last few years. Consequently, petabytes and terabytes datasets
are becoming commonplace, especially in industries such as telecom,
health care, retail, pharmaceutical and financial services. This col-
lected data is playing a crucial role in societies, governments and
enterprises. For instance, data science is increasingly utilised in sup-
porting data-driven decisions and in delivering data products [16, 20].
Furthermore, scientific fields such as bioinformatics, astronomy and
oceanography are going through a shift from “querying the world” to
“querying the data” in what commonly referred to as e-science [12].
The main challenge nowadays is analysing the data and extracting
useful insights from it.



In order to process the available massive amount of data, a num-
ber of frameworks were built on top of distributed cluster of com-
modity machines. In 2004, Google introduced the MapReduce frame-
work [9] and its open source implementation, Hadoop1, came out in
2007. Microsoft also introduced Dryad [14], its own distributed com-
putation engine. Furthermore, there has also been a surge of activ-
ity on layering distributed and declarative programming languages
on top of these platforms. Examples include PIG Latin from Ya-
hoo [19], DryadLINQ from Microsoft [29], Jaql from IBM [2] and
Meteor/Sopremo [11].

While analytics languages aim to utilise the high scalability of
distributed platforms, they also aim to increase developer produc-
tivity by facilitating flexible adhoc data analysis and exploration. It
is increasingly recognised that SQL, the main database query lan-
guage, has a number of limitations that restrict its utility in analytics
and complex data processing scenarios [9, 19, 29, 24]. SQL limitations
include: (i) a very restrictive type system (ii) common programming
patterns such as iteration and recursion can not be expressed directly
in SQL (iii) processing data requires importing and formatting the
data into a normalised relational format (iv) programmers often find
it unnatural to analyse data by writing pure declarative queries in
SQL instead of writing imperative scripts.

A close parallel can be drawn in the Semantic Web and Linked
Data realm. The size of available RDF data is increasing and massive
datasets are becoming commonplace. The 1.2 billion triple of Free-
base can be freely downloaded2 and the LOD Cloud grew to 31 billion
RDF triples as of September 2011 3. Furthermore, distributed exe-
cution platforms are being utilised to process RDF data particularly
for building query engines that support (part of) SPARQL [18, 8,
22] and for reasoning [28, 27, 15]. However, there has not been much
activity in introducing high-level languages to support RDF analyt-
ics and processing. While general-purpose languages, such as PIG
Latin and HiveQL, can be used; they are not tailored to address the
peculiarities of the RDF data model and do not utilise its strength

1 http://hadoop.apache.org/core/
2 https://developers.google.com/freebase/data
3 http://lod-cloud.net/state/



points. We contend that SPARQL alone is also not sufficient as it
suffers from the same restrictions that SQL has.

In this paper, we present lessons that can be learned from existing
efforts towards building an analytics language on top of RDF. We
review a number of high-level analytics languages proposed in the
big data and database communities. We identify five common themes
they bear. For each of these themes, we present our observation,
discuss corresponding efforts in the Semantic Web community and
present pertinent challenges (section 2). We also discuss some further
characteristics of RDF and Linked Data that can prove useful for
analytics language (section 3).

2 Common Themes of High-level Languages

2.1 Data model4

Observation: Adoption of “relaxed” versions of the relational data
model.

A large number of data models that relax the constraints of the
relational data model has been proposed and adopted recently, par-
ticularly in the context of big data. MapReduce [9] uses a simple
key-value pair data model. PIG [19] and HiveQL [25] support tuples
but allow richer data types such as arrays, lists and maps. Jaql [2]
uses a nested data model very similar to JSON. Cattell presented a
survey of data models used in SQL and NoSQL data stores [6].

RDF is the data model underlying Semantic Web data. RDF is
a graph-based data model that consists of a set of of triples. There
has been a number of proposals for a more abstract view of RDF
data. Ding et al. proposed the notion of RDF molecule [10] to de-
compose RDF graphs into components more coarse granular than
triples. Carroll et al. introduced Named graphs [5] as a way to group
and describe a set of RDF triples. Ravindra et al. introduced Nested
Triple Group to refer to a set of RDF triples sharing the same subject
or object [21].

4 A data model consists of a notation to describe data and a set of operations used
to manipulate that data [26]. We address the operators separately in the next
subsection.



We argue that an RDF analytics language requires defining a
data model that abstracts the data at a higher level than individual
triples. This introduces a number of challenges and design choices of
whether to support a notion of records or tuples, whether to support
nesting data structures and whether to support collection types such
as sets and arrays. Nested data structures simplify data manipulation
and processing. Additionally, a collection of nested data is easier to
be partitioned and processed in parallel. On the other hand, adopting
a nested data structure on top of RDF requires enforcing the RDF
graph into a set of trees. This approach was adopted by Tabulator
for intuitive presentation of RDF graphs [1] and by RAPID+ [21]
to enhance the performance of processing RDF on top of Hadoop.
JSON-LD5 also encodes RDF into tree but additionally extends the
semantic of JSON by allowing referencing other objects in a man-
ner similar to the RDF/XML serialisation use of rdf:resource (i.e.
nesting with references). It remains to be seen which option of nest-
ing, nesting with referencing or pure referencing would prove best in
the context of a data model for an analytics language.

Challenge: Define a data model on top of RDF that simplifies ma-
nipulating data and works at a higher level than individual triples.

2.2 Data processing operators

Observation: Supporting only a subset of relational algebra, focusing
on operators that can be easily executed in a distributed architecture.

There has been a number of proposals to support SQL on top
of MapReduce framework. However, many of those proposals chose
not to support the full relational algebra underlying SQL. HiveQL
for instance supports only equality predicates in a join. Similar re-
strictions are included in SCOPE [7] and PIG Latin.

Challenge: define a subset of SPARQL algebra that is sufficient to
address most common needs and is amenable to distributed execution.

2.3 Programming paradigm

Observation: A shift from pure declarative languages towards hybrid
ones.
5 http://www.w3.org/TR/json-ld/



Declarative languages are abstract, concise, easier for domain ex-
perts and provide opportunities for optimisation. Nevertheless, they
are not always the preferred way by programmers. It is often hard
to fit complex needs in a single query. Imperative scripts also allow
programmers to pin down an execution plan to exploit optimisation
opportunities that automatic optimisers might miss.

Increasingly, declarative languages are enriched with features from
other paradigms such as imperative, functional and logic-based. PIG
Latin adopts a hybrid imperative-declarative programming paradigm.
Jaql and Cascalog6 adopt features from functional programming.

On the other hand, most of the languages utilised in the Seman-
tic Web and Linked Data realms are pure declarative languages. Ex-
amples include R2RML7 for mapping relational databases to RDF,
SPIN8 to define rules in SPARQL and the languages defined as part
of the Linked Data Integration Platform (R2R for schema map-
ping [3], Silk LSL for data interlinking [4] and Sieve configuration
for data fusion and quality definition [17]). Another strand of related
work is embedding RDF manipulation in common object-oriented
languages such as ActiveRDF9 for Ruby and SuRF10 for Python.
These approaches inherit the expressivity of the general-purpose pro-
gramming language they are embedded in, but they still handle RDF
data in a detailed low-level manner.

Challenge: Adopt a hybrid declarative-imperative programming paradigm
for RDF processing.

2.4 Schema

Observation: From rigid schemas to partial or no schemas.

Relational databases require the schema to be designed before
any data can be added to the database (a.k.a. schema first). It is gen-
erally not easy to change the schema and data that does not strictly
adhere to the schema cannot be added to the database. There is a

6 https://github.com/nathanmarz/cascalog
7 http://www.w3.org/TR/r2rml/
8 http://www.w3.org/Submission/spin-overview/
9 http://activerdf.org/

10 https://code.google.com/p/surfrdf/



number of advantages to schema specification, including data valida-
tion, transactional consistency guarantees, static type checking and
optimisation. Nevertheless, requiring a predefined rigid schema can
be an overkill particularly for ill-defined ad-hoc analytics tasks. In
this context, users want to start working with the data right away
in an exploratory read-only manner. Consequently, schema-on-read
is increasingly adopted. PIG and Jaql support partial schema defi-
nition and allow schema definition to evolve as users are interacting
with the data.

RDF data is self-describing in the sense that (a significant part
of) the schema is explicitly encoded in the data and can be extracted.
However, an essential task in consuming RDF data from different
sources is schema mapping [23, 3]. Schema mapping exposes a ho-
mogeneous model to facilitate efficient consumption and analysis of
the data. The current practice of schema mapping is similar to that of
schema-first approach of relational databases (i.e. full schema map-
ping needs to be defined, executed before data consumption might
start). We argue for supporting partial and evolving schema mapping
while interacting with RDF data.

Challenge: support partial and evolving schema mapping while in-
teracting with RDF data.

2.5 In-situ data processing

Observation: in-place processing has become an important tool for
dealing with data.

The increasing volume of data generated by applications has
added constraints on how easily and efficiently it can be processed.
Requiring data to be moved before it can be processed, especially
with read-only analytics tasks, is not a viable mechanism at ex-
treme scale. Therefore, processing data in-place is more and more
supported. In-situ data processing is also reflected by processing
data coming from different locations and in different formats. It is
common for analytics language to support plain text, HDFS files,
JSON and databases. Most RDF tools require full transformation
and materialisation of data into RDF before it can be processed
(with R2RML being a notable positive exception).



Challenge: Support in-situ RDF data processing and in-place trans-
formation of non-RDF data.

3 Further characteristics of RDF and Linked
Data

Linked Data has an additional number of characteristics that should
be utilised in the design of an analytics language. In the following,
we go through some of these characteristics.

HTTP accessibility deploying RDF data as Linked Data makes it
available via the Web and interlinked to related information. Sup-
port for retrieving data over the Web and following links should
be employed by RDF processing languages.

Graph-based nature this introduces opportunity to support graph
traversal and graph algorithms on top of the RDF data. SPARQL
1.1 property path provides first support in this regards. However,
other languages such as Gremlin11 and Green-Marl [13] provide
richer graph traversal capabilities and support for breadth-first
and depth-first traversal. These features can be embedded in an
RDF analytics language.

Inference RDF has a formally defined semantics that can be used
for inferencing. Inferencing allows enriching the data and makes
implicit relations and facts explicit. An RDF processing language
should include some support for basic inference tasks. However,
a trade-off between inference capabilities and performance is in-
evitable.

4 Conclusion and Future Work

The Linked Data community has been very successful in publishing
large amounts of useful data as evidenced by the growth of the LOD
Cloud. Further emphasis is being put on building applications that
utilise this data. The interlinked nature of RDF data along with its
clearly defined semantics form a great basis to enable rich analysis
and distilling valuable insights from this data.

11 https://github.com/tinkerpop/gremlin/wiki



In this paper we focused on a number of lessons that can be
learned from existing efforts on designing analytics language and on
identifying some of the challenges ahead. Our current work focuses
on defining use cases where SPARQL and other existing approaches
for processing RDF data fall short. These use cases, along with the
design clues outlined in this paper, will be used to inform the de-
sign, the implementation and the evaluation of an RDF analytics
language.

Acknowledgements. Fadi Maali is funded by the Irish Research
Council, Embark Postgraduate Scholarship Scheme. The ideas in
this paper benefited from valuable discussions with Aidan Hogan
and Marcel Karnstedt and from the material of the “Introduction to
Data Science” course on Coursera by Bill Howe.

References

1. T. Berners-lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach,
A. Lerer, and D. Sheets. Tabulator: Exploring and Analyzing Linked Data on
the Semantic Web. In In Procedings of the 3rd International Semantic Web User
Interaction Workshop (SWUI06), 2006.

2. K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Y. Eltabakh, C.-C. Kanne,
F. zcan, and E. J. Shekita. Jaql: A Scripting Language for Large Scale Semistruc-
tured Data Analysis. PVLDB, 4(12), 2011.

3. C. Bizer and A. Schultz. The R2R Framework: Publishing and Discovering Map-
pings on the Web. In O. Hartig, A. Harth, and J. Sequeda, editors, COLD, volume
665 of CEUR Workshop Proceedings. CEUR-WS.org, 2010.

4. C. Bizer, J. Volz, G. Kobilarov, and M. Gaedke. Silk - A Link Discovery Framework
for the Web of Data. In 18th International WWW Conference, April 2009.

5. J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named Graphs. Journal of Web
Semantics, 3(3), 2005.

6. R. Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Rec., 39(4), May
2011.

7. R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and
J. Zhou. SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets.
Proc. VLDB Endow., 1(2), Aug. 2008.

8. H. Choi, J. Son, Y. Cho, M. K. Sung, and Y. D. Chung. SPIDER: A System
for Scalable, Parallel / Distributed Evaluation of Large-scale RDF Data. In Pro-
ceedings of the 18th ACM conference on Information and knowledge management,
CIKM ’09. ACM, 2009.

9. J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Commun. ACM, 51(1), Jan. 2008.



10. L. Ding, T. Finin, Y. Peng, P. P. da Silva, and D. L. McGuinness. Tracking RDF
Graph Provenance using RDF Molecules. In Proceedings of the 4th International
Semantic Web Conference, November 2005.

11. A. Heise, A. Rheinländer, M. Leich, U. Leser, and F. Naumann. Meteor/Sopremo:
An Extensible Query Language and Operator Model. In BigData Workshop, 2012.

12. T. Hey, S. Tansley, and K. Tolle, editors. The Fourth Paradigm: Data-Intensive
Scientific Discovery. Microsoft Research, 2009.

13. S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl: a DSL for Easy and
Efficient Graph Analysis. In Proceedings of the seventeenth international confer-
ence on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XVII. ACM, 2012.

14. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed Data-
parallel Programs from Sequential Building Blocks. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, EuroSys ’07.
ACM, 2007.

15. C. Liu, G. Qi, and Y. Yu. Large Scale Temporal RDFS Reasoning Using MapRe-
duce. In AAAI, 2012.

16. M. Loukides. What is Data Science? O‘Reilly radar, 6 2010.
17. P. N. Mendes, H. Mühleisen, and C. Bizer. Sieve: Linked Data Quality Assessment

and Fusion. In Proceedings of the 2012 Joint EDBT/ICDT Workshops, EDBT-
ICDT ’12. ACM, 2012.

18. J. Myung, J. Yeon, and S.-g. Lee. SPARQL Basic Graph Pattern Processing
with Iterative MapReduce. In Proceedings of the 2010 Workshop on Massive Data
Analytics on the Cloud, MDAC ’10. ACM, 2010.

19. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: a Not-so-
foreign Language for Data Processing. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’08. ACM, 2008.

20. F. Provost and T. Fawcett. Data Science and its Relationship to Big Data and
Data-Driven Decision Making. Big Data, 1(1), Mar. 2013.

21. P. Ravindra, H. Kim, and K. Anyanwu. An Intermediate Algebra for Optimizing
RDF Graph Pattern Matching on MapReduce. In Proceedings of the 8th extended
semantic web conference on The semanic web: research and applications - Volume
Part II, ESWC’11. Springer-Verlag, 2011.

22. A. Schätzle, M. Przyjaciel-Zablocki, and G. Lausen. PigSPARQL: Mapping
SPARQL to Pig Latin. In Proceedings of the International Workshop on Semantic
Web Information Management, SWIM ’11. ACM, 2011.

23. P. Shvaiko and J. Euzenat. Ontology Matching: State of the Art and Future
Challenges. IEEE Transactions on Knowledge and Data Engineering, 25(1), 2013.

24. M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Hel-
land. The End of an Architectural Era: (It’s Time for a Complete Rewrite). In
Proceedings of the 33rd international conference on Very large data bases, 2007.

25. A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Z. 0002, S. Anthony,
H. Liu, and R. Murthy. Hive - a Petabyte Scale Data Warehouse Using Hadoop.
In ICDE. IEEE, 2010.

26. J. Ullman. Principles of Database and Knowledge-base Systems, chapter 2. Com-
puter Science Press, Rockville, 1988.

27. J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen, and H. Bal. OWL Reasoning
with WebPIE: Calculating the Closure of 100 Billion Triples. In Proceedings of the
7th international conference on The Semantic Web: research and Applications -
Volume Part I, ESWC’10. Springer-Verlag, 2010.



28. J. Urbani, S. Kotoulas, E. Oren, and F. Harmelen. Scalable Distributed Rea-
soning Using MapReduce. In Proceedings of the 8th International Semantic Web
Conference, ISWC ’09. Springer-Verlag, 2009.

29. Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and J. Currey.
DryadLINQ: a System for General-purpose Distributed Data-parallel Computing
Using a High-level Language. In Proceedings of the 8th USENIX conference on
Operating systems design and implementation. USENIX Association, 2008.


