
Pleasantly Consuming Linked Data
with RDF Data Descriptions

Michael Schmidt1? and Georg Lausen2

1 fluid Operations AG
Altrottstraße 31, 69190 Walldorf, Germany

michael.schmidt@fluidops.com
2 University of Freiburg, Institute for Computer Science

Georges-Köhler-Allee, 79110 Freiburg, Germany
lausen@informatik.uni-freiburg.de

Abstract. Although the intention of RDF is to provide an open, mini-
mally constraining way for representing information, there exists an in-
creasing number of applications for which guarantees on the structure
and values of an RDF data set become desirable if not essential. What
is missing in this respect are mechanisms to tie RDF data to quality
guarantees akin to schemata of relational databases, or DTDs in XML,
in particular when translating legacy data coming with a rich set of
integrity constraints – like keys or cardinality restrictions – into RDF.
Addressing this shortcoming, we present the RDF Data Description lan-
guage (RDD), which makes it possible to specify instance-level data con-
straints over RDF. Making such constraints explicit does not only help in
asserting and maintaining data quality, but also opens up new optimiza-
tion opportunities for query engines and, most importantly, makes query
formulation a lot easier for users and system developers. We present de-
sign goals, syntax, and a formal, First-order logics based semantics of
RDDs and discuss the impact on consuming Linked Data.

1 Introduction

Since the early days of relational databases, constraints have been consid-
ered essential to specify the intended states of the data sets representing
the information of certain applications [1, 2]. In recent years the num-
ber of applications that are based on large scale distributed data avail-
able on the Internet has been constantly increasing. Many of them are
based on RDF [3] and the question arises, whether relational database
like constraints can be considered essential for such applications, as well.
RDF data often comes together with RDFS [3] or even OWL [4], and it
is well-known that these languages are not intended to cover relational
constraints [5]. Further, designed as rule languages, they do not offer
mechanisms to express constraints explicitly over the instance data [6–8].

? Current affiliation: imc information multimedia communication AG, Scheer Tower,
Uni-Campus Nord, 66123 Saarbrücken, Germany.



As an example, consider the work on mapping relational databases
to RDF from the W3C’s Direct Mapping and R2RML initiatives [9, 10].
While they may exploit relational integrity constraints to increase the
mapping quality, these constraints are at most implicit in the resulting
RDF database: for a data consumer, who may not be aware of the under-
lying mappings, no explicit guarantees about properties and structure of
the data are available. For instance, in the Direct Mapping approach [9]
primary keys are exploited to generate unique IRIs for objects using the
key column names and values; yet, there is no constraint in RDF describ-
ing that the properties derived from the key columns are single-valued
and identify the resulting objects. In fact, designed as rule languages nei-
ther RDF(S) nor OWL allow to express constraints [5]. Although their
built-in semantics may imply certain constraints (such as type inheritance
at instance-level for rdfs:subClass relationships), constraints are only im-
plicit and, moreover, may not hold when the data is published under
ground semantics – a common scenario in the Linked Data context.

Contributions. After motivating the need to enable end users in
writing precise SPARQL queries in Section 2, we present the RDF Data
Description language, RDD, to define constraints over RDF, akin to
DTDs for XML. We then discuss design decisions and related work in
Section 3, identifying the need for RDDs to be both user-readable and
machine-processable. Next, we elaborate on the conflict between the Open
World Assumption underlying RDF(S) and the requirements of a hard
constraint language, concluding that RDDs shall support a pay-as-you-go
paradigm in constraining RDF(S). Section 4 formalizes RDDs by means of
a user-friendly syntax that captures a broad range of constraints includ-
ing keys, cardinalities, subclass, and subproperty restrictions. Section 5
presents a First-order Logics semantics, making it easy to implement
RDD checkers and clearing the way for optimizations. Finally, in Sec-
tion 6 we discuss directions of future research, including the implementa-
tion, coverage, extensibility, and relationship to standards like VoID [11].

2 RDD by Example

As a motivating example, assume a developer wants to write a SPARQL
query that extracts information about persons in an RDF document, de-
scribed by properties rdfs:label (denoting the name), foaf:age, and
foaf:mbox (mail address) – where every person shall be represented by
exactly one row of the result table.3 While this sounds like a fairly trivial

3 In fact, the problem is a slightly modified example one of the authors recently
encountered in the context of an industrial project.



task (in SQL, with a reasonable schema, this could probably be expressed
by a simple query like SELECT id, name, age, email FROM Person),
with the unconstrained RDF model this may become quite tricky, even
if the schema (i.e., FOAF and RDF(S) vocabulary) is well known to the
developer: without further knowledge about the instance data, the devel-
oper cannot be sure which predicates are present at all, and which of them
may be multi-valued. Making guesses that rdfs:label and foaf:age are
single-valued, the developer may finally come up with the following query:

SELECT ?person ?name ?age (GROUP_CONCAT(?mail; separator=", ") AS ?mail)

WHERE { ?person rdf:type foaf:Person .

OPTIONAL { ?person rdfs:label ?name }

OPTIONAL { ?person foaf:age ?age }

OPTIONAL { ?person foaf:mbox ?mail } } GROUP BY ?name ?age

The OPTIONAL clauses ensure that persons with incomplete infor-
mation are included in the result; to group persons with multiple email
addresses, the developer used GROUP BY combined with GROUP_CONCAT in
the SELECT clause, thus concatenating all email addresses of a single per-
son. The crucial point here is that even this simple task leads to a quite
complex query covering the “worst case scenario” anticipated by the de-
veloper, requiring the use of advanced SPARQL 1.1 constructs (which, as
a matter of fact, are hard to optimize by query engines). And even this
carefully designed query leads to multiple result rows for the same person
in the presence of multiple labels (e.g., with different language tags).

What is needed to ease SPARQL query development is a data descrip-
tion that describes the structural constraints of the instance data beyond
the schema information contained in the underlying RDF(S) specification
and ontologies, which the developer can consult when writing queries. The
RDD language advocated in this paper was designed with exactly this goal
in mind. RDD would allow the data publisher to express the instance data
constraints by means of a well-defined, human readable language.

Figure 1 depicts an example RDD that, when tied to a specific RDF
database, helps the developer in understanding the constraints that hold
on instance level. With respect to the concept foaf:Person, the first part
of the RDD in Figure 1 (left) specifies a set of constraints that are known
to hold for every instance of the class. Summarizing the relevant part of
the RDD, it tells the developer that the property rdfs:label serves as a key
for persons, every person has exactly one foaf:email property (keyword
TOTAL), and every person has at most one foaf:age (keyword FUNCTIONAL).
Further, all theses three properties point to literals, the latter being of
type xsd:integer – this may be useful information when writing e.g. ag-
gregation queries over the age, or when post-formatting the results.



PREFIX ex: <http://www.example.com#>

...

CWA CLASSES {

OWA CLASS foaf:Person SUBCLASS ex:Student {

KEY rdfs:label : LITERAL

TOTAL foaf:email : LITERAL

FUNCTIONAL foaf:age : LITERAL(xsd:integer)

RANGE(foaf:Person) foaf:knows : IRI }

OWA CLASS ex:Student {

TOTAL ex:matricNr : LITERAL(xsd:integer)

MIN(1), RANGE(ex:Course) ex:course : RESOURCE

PATH(ex:course/ex:givenBy), RANGE(foaf:Person)

ex:taughtBy : IRI }

}

OWA PROPERTIES {

TOTAL rdfs:label

foaf:knows SUBPROPERTY ex:taughtBy }

Fig. 1. Example RDF Data Description

With the RDD specification at hand – which can be understood in
few seconds – the developer can considerably simplify the query:

SELECT ?person ?name ?age ?mail .

WHERE { ?person rdf:type foaf:Person ; rdfs:label ?name ; foaf:mbox ?mail .

OPTIONAL { ?person foaf:age ?age } }

Even if the developer is not aware of the RDD and comes up with a
query that uses, e.g., redundant OPTIONAL blocks, the RDD may still
be used by the optimizer to simplify the query and speed up evaluation.

3 Design Decisions and Related Work

Philosophy. RDDs specify constraints that hold in an RDF data set.
However, not to loose RDF’s minimally constraining way for representing
information – where one may interlink and extend data sets by adding new
information – they shall not require the structure of RDF to be defined
completely, but give a pragmatic answer to these two conflicting design
goals in that they adhere to RDF’s Open World character following a
pay-as-you-go paradigm, which allows users to impose constraints only on
a subset of classes, or to constrain classes and properties only partially.

Designed for Humans. To make it easy for humans to understand,
write, and use RDDs as a guide when writing queries, RDDs shall come
with a user-understandable syntax. To this end, we use an object-oriented
approach closely aligned to the RDF(S) data model, reusing concepts
like classes, properties, and subclass/subproperty relationships. An RDF
serialization of RDDs is out of the scope of this paper (cf. Section 6).

Scope. The importance of constraints for RDF(S) has recently been
emphasized in the context of REST-based enterprise applications [12].
With the goal to provide a machine-readable language, OSLC Resource
Shape defines an RDF vocabulary to encode qualified property constraints
(such as cardinality, range, or value restrictions). While no formal seman-
tics is given, the authors propose an implementation via SPARQL ASK



queries. RDDs, in contrast, are designed for humans, come with a formal
semantics, and go far beyond what can be expressed with OSLC (e.g., ex-
pressing completeness guarantees and unqualified property constraints).

Enabling the targeted restriction of RDF(S) constructs, RDDs pro-
vide built-in constructs to express constraints over classes, subclasses, and
properties such as domain, range, or cardinality restrictions. In the light
of the Direct Mapping and R2RML standards [9, 10], RDDs shall also
cover constraints from the relational databases domain, in order to carry
over integrity information when translating relational data.

RDF data is often equipped with RDFS or OWL axioms and may
be interpreted in different entailment regimes. Dedicated studies of con-
straints in the context of OWL have been presented in [6, 13]. Adhering to
the different semantics under which RDF can be published, RDDs should
be independent from the entailment regime. Our approach is similar to
SPARQL [14], which also supports different entailment regimes (and is
defined independently): if, e.g., RDF is published under ground seman-
tics, an associated RDD spec would specify the constraints that hold on
the bare instance data; if, e.g., RDFS inferencing is turned on, an RDD
specification would take inferred facts into account – in both cases, an end
user can transparently rely on the RDD spec when accessing the data.

Formal Semantics. While a SPARQL-based semantics may seem
like a natural choice (cf. [12, 8]), we argue that is desirable to choose a
semantics that can easily be mapped to existing work on integrity con-
straints from the relational database community, e.g. to carry over Seman-
tic Query Optimization techniques (e.g., the seminal work [15]). We there-
fore decided for a First-order Logics (FOL) based semantics, represent-
ing constraints as First-order sentences known as tuple-generating and
equality-generating dependencies [16], which are well understood from
previous investigations (e.g. [15]). A possible implementation of our FOL
based semantics by means of SPARQL will be discussed later in Section 6.

4 RDD Syntax and Model

Figure 1 provides an example RDD. The definition for class foaf:Person
contains the constraints for predicates rdfs:label, foaf:email, and foaf:age
discussed in Sec. 2, plus a constraint expressing that predicate foaf:knows,
when used for an instances of type foaf:Person, points to instances of type
foaf:Person, which are always IRIs (i.e., not blank nodes). In the spirit
of RDF, this does not enforce referred objects to be exclusively typed as
foaf:Person, but only that one edge typing the object as foaf:Person is
present. The OWA keyword (short for Open World Assumption) in front



of the CLASS definition allows persons to have further properties not
listed in the class specification; its counterpart, keyword CWA, would en-
force that the class is closed in the sense that class instances are com-
pletely described by the properties occurring in the CLASS section. Fur-
ther, foaf:Person has a subclass ex:Student (keyword SUBCLASS). With
RDDs focusing on instance-level constraints, this does not enforce a
triple (ex:Student, rdfs:subClassOf, foaf:Person) in the data, but guaran-
tees that every ex:Student satisfies the same constraints as foaf:Persons.

Similar in spirit, the CLASS definition for ex:Student guarantees that
(i) ex:matricNr is a TOTAL property, i.e. every student has exactly one
matriculation number, (ii) ex:course occurs at least once and has RANGE

ex:Course, and (iii) the PATH and RANGE constraints defined for property
ex:taughtBy asserts that, for every ex:Student, there is a property path
along the edges ex:course followed by ex:givenBy pointing to the same
value of type foaf:Person as property ex:taughtBy. Path constraints are
special kinds of inclusion constraint, similar in spirit to foreign keys.

The surrounding CLASSES section is defined as CWA, guaranteeing com-
pleteness in the sense that the data contains only instances of the two
classes foaf:Person and ex:Student. Subsequently, the RDD contains a
PROPERTIES section constraining properties in an unqualified, global way.
The first entry, TOTAL rdfs:label, ensures that every Resource has ex-
actly one label – a useful information for query authors. The SUBPROPERTY
spec, targeting the instance level again, ensures that, for every triple
(X,ex:taughtBy,Y) in the data, there is an implied triple (X,foaf:knows,Y).
Finally, the OWA keyword of the PROPERTIES section expresses that there
may be other properties than those listed in the section.

Rather than presenting the concrete syntax (see the Technical Re-
port [17] for this level of detail), Figure 2 visualizes the structure and
concepts of the RDD language in a UML-style notation. Boxes denote
concepts, arrowed lines sub-concept relationships, and the second line
type indicates that concept A uses B. At top-level, RDDs consist of
a ClassConstraintSec and a PropConstraintSec, which contain
lists of ClassConstraints and PropConstraints, respectively, plus
a boolean flag indicating whether the sections should be interpreted under
Open or Closed World Assumption (i.e., whether the classes and proper-
ties in the sections describe the RDF data completely or nor) – the OWA

keyword enables RDDs to be written in a pay-as-you-go fashion, where
known constraints are specified, while unknown parts are left unspecified.

Central to the RDD concept is the notion of PropConstraints, an
abstract concept that is further subclassed into specific subclasses:



class : IRI
subClasses : List<IRI>
isSingleton : Boolean
isOWA : Boolean
keys : List<Key>
qpcs : List<PropertyConstraint>

ClassConstraint

prop : IRI
PropConstraint (abstract)

nr : Integer
MaxConstraint

domain : IRI
DomainConstraint

keyProps : List<IRI>
Key

range : IRI
RangeConstraint

FunctionalityConstraint

TotalityConstraint path : List<IRI>
PathConstraint

subProps : List<IRI>
SubPropertyConstraint

ccs : ClassConstraintSec
pcs : PropConstraintSec

RDD

ccs : List<ClassConstraint>
isOWA : Boolean

ClassConstraintSec

rangeType: RangeType
RangeTypeConstraint

nr : Integer
MinConstraint

upcs : List<PropConstraint>
isOWA : Boolean

PropConstraintSec

Fig. 2. Structural Overview of the RDD Language

– A RangeTypeConstraint indicates that the property prop points
to either a URI, BlankNode, Resource, or a (possibly typed) Literal.

– A Min/MaxConstraint indicates that the property prop occurs at
least or at most nr times, respectively.

– A Domain/RangeConstraint indicates a guaranteed domain or
range for subject and objects associated with prop, respectively.

– A PathConstraint indicates that the value of prop can as well be
reached by following a given path of properties.

– A SubPropertyConstraint indicates that for every triple using
property subProp, there is also an identical triple using property prop.

– Functionality/TotalityConstraints express that prop occurs
at most or exactly one time, respectively.

PropConstraints are used in two different contexts: (1) The Prop-
ConstraintSec (cf. keyword PROPERTIES) contains a list upcs of Prop-
Constraints, implementing unqualified, global characteristics of proper-
ties. For instance, the TotalityConstraint in Fig. 1 (keyword TOTAL)
for prop :=rdfs:label asserts that every resource has exactly one label.
(2) Variable qpcs inside ClassConstraints represents qualified, class-
specific PropConstraints, e.g. the MinConstraint (keyword MIN) for
prop :=ex:course and nr := 1 in Fig. 1 in the class section of ex:Student
ensures that every instance of ex:Student visits at least one course.

In addition to qpcs, a ClassConstraint contains (i) a list of sub-
classes (keyword SUBCLASS), enforcing that instances of the subclasses
inherit inner constraints of the superclass, (ii) a boolean flag isSingleton,
enforcing that exactly one instance of the class exists, (iii) the isOWA flag,
and (iv) a list of keys. We sketch their semantics in the next section.



5 RDD Semantics

The semantics, denoted by JrKE , decomposes an RDD r into constraints
that can be checked individually and independently. It uses an environ-
ment E capturing SUBCLASS and SUBPROPERTY relations specified in the
RDD. The result is a set of in First-order Logics (FOL) constraints over
relation TD(s, p, o) representing the RDF triples in RDF document D.
With J.KE at hand, we define the notion of consistency as follows.

Definition 1. Let D be an RDF document and r be an RDD specifi-
cation. Further let cs := JrKE be the set of first-order logic constraints
defined by r. Document D is consistent w.r.t. r if and only if for all
constraints c ∈ cs it holds that c is valid in TD, i.e. TD |= c.

The evaluation function J.KE is defined by about 40 rules along the
structure of RDDs. At top-level, an RDD is decomposed into its Class-
ConstraintSec and PropConstraintSec (i.e., the members of class
RDD, cf. Fig. 2), which are then further decomposed by dedicated rules.
At the core are inference rules mapping the individual constraints – e.g.,
the PropConstraint subclasses – into FOL. We sketch the idea of the
evaluation and refer to the TR [17] for a complete listing of the rules.

Let us exemplarily discuss the inference rule for ClassConstraints,
which derives constraints for its key and property constraints, as well
as its global “configuration”, namely, the subclass hierarchy, whether it
is defined as singleton, and whether it is defined under Open or Closed
World Assumption. According to Figure 2, the ClassConstraint is rep-
resented by a structure (class,subClasses,isSingleton,keys,qpcs,isOWA).

cssingleton :=J(class, isSingleton) : SingletonKE
cssc :=

⋃
csc∈subClasses

J(csc,false,E.C(csc),keys,cpcs,true) : ClassConstraintKE

cskey :=
⋃

key∈keys

J(class,key) : ClassKeyKE

csqpcs :=
⋃

cpc∈cpcs

J(class,cpc) : ClassPropConstraintKE

cswa :=J(class, E.A(class), isOWA) : OWAP KE
J(class : IRI, subClasses : List〈IRI 〉, isSingleton : Boolean, keys : List〈Key〉,

qpcs : List〈PropConstraint〉, isOWA : Boolean) : ClassConstraintK `
cssingleton ∪ cssc ∪ cskey ∪ csqpcs ∪ cswa

Starting with the conclusion, the result of evaluating the Class-
Constraint is the union of the constraint sets cssingleton, cssc, . . . ; the
premise of the rule describes how these constraint sets are calculated. The



constraint set cssingleton, for instance, is obtained by evaluating a sub-
structure Singleton with class IRI and the isSingleton flag as argument
– if isSingleton=true, this substructure generates a constraint enforcing
that the class has exactly one instance. The scheme for computing cswa,
cskey and the qualified PropConstraints csqpcs are analogous. Most
interesting is the computation of cssc, which captures the inheritance of
constraints to subclasses. It is obtained by evaluating a replicated version
of the class constraint for every subclass csc. In these replicas, we pass
the keys and cpcs constraints, and consult environment E to obtain the
subclasses of the csc. Note that we neither inherit the singleton constraint
(passing isSingleton:=false) nor impose a CWA constraint on the subclass
(passing isOWA=true); this gives the RDD designer greater flexibility.

To conclude, let us sketch the evaluation of a qualified RangeCon-
straint as one of the constraint-generating rules. The rule below im-
plements such a constraint for property p with range R for class C: the
resulting formula enforces that for every instance s of class C, every value
o referenced by p is of type R. Note the difference toward RDFS: while
predicate rdfs:range is similar by idea, it does not enforce the presence of
such a triple, but sets up a rule that generates/completes the data – the
constraint guarantees the presence of such a triple in the database.

J(C : IRI, (p : IRI, R : IRI) : RangeConstraint)KE `
{∀s, o(TD(s, rdf:type, C) ∧ TD(s, p, o) → TD(o, rdf:type, R))}

6 Discussion and Future Research Direction

RDDs constitute a powerful mechanism to describe instance-level con-
straints and help both humans – when writing SPARQL queries – and
engines – which may exploit RDDs with its concise semantics to assert
data consistency and optimize queries (cf. [8]). Our approach opens up a
new research field, which we will shortly discuss in the following.

Implementation. Given the First-order semantics, it is straightfor-
ward to build a constraint checker using existing FOL engines. In the
context of SPARQL engines, though, it may be favorable to implement
checkers by means of SPARQL Ask queries. The close connection be-
tween SPARQL and logics-based formalisms has been pointed out in sev-
eral works [18, 19]. In [8] it was shown how to encode constraints such
as keys and cardinalities in SPARQL. Further, it was proven in [19] by
a constructive proof that every First-order sentence can be expressed
in SPARQL. These results make it easy to map the FOL semantics to



SPARQL. The efficient implementation of constraint checking, though,
is a challenging task left for future work. A simple approach based on a
one-by-one execution of Ask queries may have limitations, in particular
when it comes to scenarios with frequent data updates. Here, incremental
constraint checking approaches would be required. However, given that
integrity constraints are an integral part of other data models (such as re-
lational data and DTDs for XML) and that the logical structure of RDD
constraints – EGDs and TGDs, which are well understood in theory – is
very similar, we are convinced that efficient implementations are possible.

Deriving RDDs. An interesting topic is the derivation of RDDs
from instance data or – when the data has been obtained from relational
systems [9, 10] – from constraints in the original data sources. RDFS or
OWL specifications, for instance, that are included in the data, or query
logs may give valuable hints about candidate constraints that hold in the
instance data, allowing to automatically build RDDs that could be refined
manually. In this line, it would also be interesting to study interrelations
between different entailment regimes and their implications for RDDs.

Coverage and Extensibility. Since the early years of database re-
search, various classes of constraints have been investigated (see e.g. [20,
15]). Based on the design goals from Section 3, we selected a reasonable
set of constraints that (i) may be encountered in typical RDF(S) scenar-
ios and (ii) may be of benefit when writing SPARQL queries. There are,
of course, constraint types that are currently not supported by RDDs.
One extension would be user-defined constraints in the form of arbi-
trary SPARQL Ask queries – they could be easily added through a new
USER in RDDs, containing a list of queries including the expected results.
While such custom constraints may be hard to understand by users, they
could help to model complex data consistency scenarios. Other types of
constraints that are candidates for extension include functional depen-
dencies [21], EGDs and TGDs with disjunction [22],4 or value restriction
(e.g. expressing that property foaf:gender maps to either male or female).

As a side note, we want to point out that we intentionally did not
include foreign keys as proposed in [8]. Although they play an important
role in relational modeling, they are an artificial construct arising due to
the relational structure: when mapping relational database into RDF(S),
foreign keys typically result in range specifications over object properties
(cf. [23, 9]), which RDDs can easily capture using RangeConstraints.

4 In RDDs, some constraints like the CWA restriction implicitly contain disjunction.
We may want to express disjunction in other contexts, e.g. over range restrictions.



Other applications. RDDs can be exploited for use cases beyond
query formulation, semantic query optimization, and quality assurance.
For instance, the constraints encoded in RDDs may give valuable input
for schema mapping and alignment. As another example, RDDs could be
used to derive precise data input forms, and thus help in producing data.

RDD and Linked Open Data. Constraint checking, at first glance,
may look like a local task. However, as RDF resources being identified
by IRIs are globally unique, local checking of constraints for certain con-
straints classes may not be sufficient. Assume an inclusion dependency,
say a range constraint r, is violated in data set R1, however the violating
resource exists and is typed accordingly in a data set R2. According to the
principles of Linked Open Data, r should not be declared to be violated.

We conclude that constraint checking in an LOD environment in gen-
eral requires us to consider the constraints of all involved data sets. Even
though this does not make constraint checking inapplicable, it may re-
quire novel ways and paradigms to specify and check constraints in the
context of an open world, with possibly incomplete knowledge. We leave
a closer investigation of these issues for future work.

Publishing of RDDs. As a bridge between the publishers and users
of RDF data, W3C proposes the VoID vocabulary (Vocabulary of Inter-
linked Datasets) [11, 24]. We suggest to develop a canonical RDF repre-
sentation for RDDs (coexisting with the user-friendly syntax presented in
the paper), with tooling to convert between the two syntaxes. This would
make it quite easy to, e.g., publish RDD descriptions as part of VoID. A
detailed study of the relationships toward VoID and an RDF serialization
for the RDD language are interesting topics for future work.

Standardization. The next steps we plan are the implementation of
the RDD language by means of a SPARQL query generator that outputs
the Ask queries for checking RDDs, which would make RDDs immedi-
ately usable by any SPARQL engine. Further, we are investigating differ-
ent ways to standardize the proposed language, e.g. as part of the W3C
standardization activities in the semantic technology space.

Acknowledgments. This work was supported by the German Federal
Ministry of Economics and Technology as part of the project “Durch-
blick”, grant KF2587503BZ2, and by Deutsche Forschungsgesellschaft as
part of the project “CORSOS”, grant LA 598/7-1.

The authors want to thank Peter Haase and Michael Meier for fruitful
discussions and the anonymous reviewers for their constructive feedback.



References

1. E. F. Codd, “A Relational Model of Data for Large Shared Data Banks,” Commun.
ACM, vol. 13, no. 6, pp. 377–387, 1970.

2. M. Stonebraker, “Implementation of Integrity Constraints and Views by Query
Modification,” in SIGMOD Conference, 1975, pp. 65–78.

3. “RDF Specification Overview (W3C),” http://www.w3.org/standards/techs/.
4. “OWL 2 Web Ontology Language Document Overview (Second Edition),”

http://www.w3.org/TR/owl2-overview/.
5. B. Motik, I. Horrocks, and U. Sattler, “Adding Integrity Constraints to OWL,” in

OWLED, 2007.
6. B. Motik, I. Horrocks, and U. Sattler, “Bridging the Gap Between OWL and

Relational Databases,” J. Web Sem., vol. 7, no. 2, pp. 74–89, 2009.
7. J. Sequeda, M. Arenas, and D. P. Miranker, “On Directly Mapping Relational

Databases to RDF and OWL,” in WWW, 2012, pp. 649–658.
8. G. Lausen, M. Meier, and M. Schmidt, “SPARQLing Constraints for RDF,” in

EDBT, 2008, pp. 499–509.
9. “A Direct Mapping of Relational Data to RDF,” http://www.w3.org/TR/rdb-

direct-mapping/.
10. “R2RML: RDB to RDF Mapping Language,” http://www.w3.org/TR/r2rml/.
11. K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao, “Describing Linked

Datasets - on the Design and Usage of VoID,” in LDOW, 2009.
12. A. Ryman, A. L. Hors, and S. Speicher, “OSLC Resource Shape: A Language for

Defining Constraints on Linked Data,” in LDOW, 2013.
13. J. Tao, “Adding integrity constraints to the semantic web for instance data eval-

uation,” in International Semantic Web Conference (2), 2010, pp. 330–337.
14. “SPARQL 1.1 Entailment Regimes,” www.w3.org/TR/2013/REC-sparql11-

entailment-20130321/.
15. D. Maier, A. O. Mendelzon, and Y. Sagiv, “Testing Implications of Data Depen-

dencies,” ACM Trans. Database Syst., vol. 4, no. 4, pp. 455–469, 1979.
16. C. Beeri and M. Vardi, “Formal Systems for Tuple and Equality Generating De-

pendencies,” SIAM Journal on Computing, vol. 13, no. 1, pp. 76–98, 1984.
17. M. Schmidt and G. Lausen, “Pleasantly Consuming Linked Data with RDF Data

Descriptions,” 2013, TR, arXiv (submit/0758082).
18. A. Polleres, “From SPARQL to Rules (and Back),” in WWW, 2007, pp. 787–796.
19. M. Schmidt, M. Meier, and G. Lausen, “Foundations of SPARQL Query Opti-

mization,” in ICDT, 2010, pp. 4–33.
20. W. Armstrong, “Dependency Structures of Data Base Relationships,” in IFIP,

1974, pp. 580–583.
21. E. F. Codd, “Further Normalization of the Data Base Relational Model,” Data

base systems, pp. 33–64, 1972.
22. M. Meier, M. Schmidt, F. Wei, and G. Lausen, “Semantic Query Optimization in

the Presence of Types,” J. Comput. Syst. Sci., vol. 79, no. 6, pp. 937–957, 2013.
23. J. Sequeda, S. H. Tirmizi, Ó. Corcho, and D. P. Miranker, “Survey of Directly

Mapping SQL Databases to the Semantic Web,” Knowledge Eng. Review, vol. 26,
no. 4, pp. 445–486, 2011.

24. “Describing Linked Datasets with the VoID Vocabulary,”
http://www.w3.org/TR/void/.


