SILURIAN: a Sparql visuaLizer for UndeRstanding
querles And federatioNs

Simon Castillo, Guillermo Palma, Maria-Esther Vidal

Universidad Simén Bolivar, Caracas, Venezuela
{scastillo, gpalma, mvidal}@ldc.usb.ve

Abstract. SPARQL federated queries can be affected by both characteristics

of the query and datasets in the federation. We present SILURIAN a Sparql
visualizer for understanding queries and federations. SILURIAN visualizes SPARQL
queries and, thus, it allows the analysis and understanding of a query complexity
with respect to relevant endpoints and shapes of the possible plans.

1 Introduction

Over the past decade, the number of datasets in the Linking Open Data cloud has ex-
ploded as well as the number of SPARQL endpoints. As more linked data becomes
available, applications from different domains are frequently developed, and queries
that require gathering data from several endpoints are more likely everyday. So far sev-
eral approaches have addressed the problem of executing federated SPARQL queries on
the Web of Data [1, 2, 4]. For example, FedX [4] is a rule-based system able to generate
left-linear plans comprised of subqueries that can be exclusively answered by existing
endpoints (Exclusive Groups (EG)); ANAPSID [1] resorts to source descriptions to de-
termine all the triple patterns that can be executed on the same endpoints and that can be
grouped as star-shaped queries; finally, SPLENDID [2] exploits statistics during source
selection and query planning to identify the subqueries that will be executed to gather
the query answers. Performance of SPARQL queries against these federated engines can
be affected by diverse parameters, e.g., number of triple patterns in the query, number of
endpoints that can answer a triple pattern, and shape of the query. Analyzing a query and
the federation where this query is going to be executed provides the basis not only to un-
derstand the performance of a given federated query engine, but also can be useful dur-
ing query benchmarking. We present SILURIAN a Sparql visualizer for understanding
queries and federations. We will demonstrate SILURIAN; attendees will be able to vi-
sualize SPARQL queries and understand complexity of both federations and possible
plans. The demo is published at http://choroni.ldc.usb.ve/silurian.

2 The SILURIAN architecture

SILURIAN is built on top of existing federated engines to visualize plans generated
by the engines for a given query and federation of endpoints. In this first version, SIL-
URIAN was built on top of ANAPSID[1], and exploits visualization services imple-
mented by the D3.js JavaScript libraryl. Figures 1(a), (b), (c), and (d) show SILURIAN

"http://d3js.org/

snapshots; users will be able to introduce their own SPARQL queries and select the
federation (Figure 1(a)). Different type of plots will be used to illustrate the properties
of queries and federations. Figure 1(b) uses a Concept Network Browser plot?
to illustrate the endpoints that can answer the triple patterns in a query. Figure 1(c) uses
Force-Directed Graph?® to visualize a join graph of the input SPARQL query.
Each node in the graph represents a triple pattern in the query; an edge between two
nodes exists if the corresponding triple patterns do not share a join variable or there is
no endpoint in the federation that can answer both triple patterns. Finally, Figure 1(d)
relies on a Hierarchical Edge Bundling® to visualize the decomposition of a
query into subqueries of triple patterns; nodes correspond to triple patterns while edges
connect triple patterns in the same subquery of the decomposition.

A Sparq|l visuaLizer for U ing querles And %' :3
Py o
74 o
* *
- YRS T# o o THIZ
(a) SILURIAN Data Entry (b) Triple Patterns Per Endpoint
2 2
°)
' % &
[o
Tes
]
{)
. . T#3
1w Tez
(¢) Join Graph (d) Query Decomposition

Fig. 1. The SILURIAN snapshots for two Federations of Endpoints on FedBench data collections.

3 Demonstration of Use Cases

We motivate our work by observing how the performance of existing federation engines
can be affected during the execution of SPARQL queries with triple patterns bound to

http://www.findtheconversation.com/concept-map
3http://bl.ocks.org/mbostock/4062045
*http://mbostock.github.io/d3/talk/20111116/bundle.html

predicates of general vocabularies such as RDFS or OWL. These vocabulary terms may
occur in almost all data sources, e.g., rdf:type, owl:sameAs, Or rdfs:seeAlso;
we denominate these terms general predicates. We designed a set of three queries q;
(j = 0...2), where q;11 is comprised of more triple patterns bound to general predicates
than q;. First, qg retrieves the Kegg compound identifier and among their drugs, those
that have a substrate that is an enzyme. Next, q; selects drugs that meet qy and their
owl:sameAs link to Drugbank; and finally, q2 checks that these drugs are also drugs
in the DBpedia ontology. Triple patterns bound to general predicates are highlighted.

qo Select * WHERE {?d drugbank:keggCompoundId ?c. ?e bio2rdf-kegg:xSubstrate Z?c.

’?e rdf :type bioZrdf—kegg:Enzyme‘}

q1 Select * WHERE {?d drugbank:keggCompoundId ?c. ?e bio2rdf-kegg:xSubstrate ?c.

’?e rdf:type bio2rdf-kegg:Enzyme.?d owl:sameAs ?dl ‘.}
q2 Select * WHERE {?d drugbank:keggCompoundId ?c. ?e bio2rdf-kegg:xSubstrate ?c.

?e rdf:type bio2rdf-kegg:Enzyme.?d owl:sameAs ?dl‘

2dl rdf:type dopedia-owl:Drug ‘.}

An experiment was set up in order to evaluate the performance of different federated
SPARQL query engines: FedX, SPLENDID, and ANAPSID. Queries qg, q1, and q2
were executed on 26 Virtuoso endpoints that locally access the FedBench collections’,
November 2011. Each collection was assigned to one Virtuoso endpoint, except Geon-
ames and DBpedia that were fragmented to impact on the performance of the query de-
composition techniques. Geonames was horizontally partitioned into eleven fragments
and each fragment was assigned to a different endpoint. Additionally, each of the DB-
pedia files was made available through a different SPARQL endpoint, i.e., DBpedia was
vertically partitioned. This study was executed on a Linux Mint machine with an Intel
Pentium Core 2 Duo E7500 2.93GHz 8GB RAM 1333MHz DDR3. We could observe
that the performance of all these engines is deteriorated as the number of triple patterns
on general predicates increases. Based on these results, we formulated the following
research questions: /) is the observed behavior due to limitations of these federation
engines?, or 2) is this behavior caused by the properties of these queries?. We will visu-
alize the characteristics of queries and federations that provide evidences to answer our
research questions. FedBench 10 collections: DBpedia, NY Times, Geonames, KEGG,
ChEBI, Drugbank, Jamendo, LinkedMDB, SW Dog Food, and SP2B-10M, were inte-
grated into two federations of endpoints. Fed; comprises the previously explained 26
Virtuoso® endpoints, and Feds is composed of 10 endpoints, one per FedBench collec-
tion. In both federations, Virtuoso timeout was set up to 300 secs. or 100,000 tuples.
Different criteria to decompose SPARQL queries into subqueries answerable by exist-
ing endpoints will be demonstrated; e.g., Exclusive Groups (EG) [2,4] , Star-Shaped
Group Single endpoint selection (SSGS), and Star-Shaped Group Multiple endpoint se-
lection (SSGM) [3]. We will demonstrate the following use cases:

Effects of number of triple patterns bound to general predicates. We will demon-
strate that in queries as the ones presented in the previous example, almost all the end-
points in the federation can instantiate variables in the triple patterns of the query. Par-
ticularly, triple patterns bound to owl:sameAs could be answerable for 24 out of 26

Shttp://fedbench.fluidops.net
®http://virtuoso.openlinksw.com/, November 2011.

endpoints of Fed; and all the endpoints of Feds. Federated engines may have to con-
sider all these endpoints to produce a complete answer of the query.

Effects of the number of triple patterns and shape of the query. Attendees will ob-
serve that in queries will a large number of triple patterns that comprised star-shaped
or chain-shaped subqueries, the space of possible plans of the query may exponentially
explode. For example, we will show queries comprise of 46 triple patterns which can
be decomposed into 9 star-shaped subqueries, which could not be executed in any of
existing federated engines in less than 30 minutes. These queries may constitute chal-
lenges for federation engines and should be included in future benchmarks.

Effects of the data fragmentation and replication. The aim of this use case is to show
the effects of data fragmentation and replication in the complexity of SPARQL feder-
ated queries. In federation Fed;, data in Geonames is horizontally partitioned while
DBpedia is vertically fragmented. Attendees will observe that the number of relevant
endpoints increases according to fragments of data are made available from different
endpoints of a federation. For example, in queries with triple patterns bound to pred-
icates in Geonames the number of relevant endpoints is larger in Fed; than in Feds.
Because Geonames data is horizontally partitioned, many of the relevant data may not
actually provide the instantiations of the variables required to execute the query. Thus,
federated engines have to either contact all the endpoints to decide which one can exe-
cute the corresponding subqueries or simply pay the price of executing the subquery in
all of them, and the execution of these queries can be costly. These queries may be chal-
lenging for existing federation engines and should be included in future benchmarks.

4 Conclusions

SILURIAN visualizes SPARQL federated queries as well as the properties of the fed-
erations that may impact on the complexity of these queries. Particularly, SILURIAN
helps to understand why data fragmentation and replication among different endpoints,
shape of the queries and the type of predicates in the triple patterns, may affect the per-
formance of a federated query engine. Because main sources of query complexity can
be analyzed, SILURIAN provides the basis for understanding the behavior of existing
engines and may help during the design of benchmarks to evaluate these engines.

References

1. M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. Anapsid: an adaptive query
processing engine for sparql endpoints. In ISWC, pages 18-34, 2011.

2. O. Gorlitz and S. Staab. SPLENDID: SPARQL Endpoint Federation Exploiting VOID De-
scriptions. In COLD, Bonn, Germany, 2011.

3. G. Montoya, M.-E. Vidal, and M. Acosta. A heuristic-based approach for planning federated
sparql queries. In COLD, 2012.

4. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. Fedx: Optimization techniques
for federated query processing on linked data. In ISWC, pages 601-616, 2011.

