
Best-effort Linked Data Query Processing with
time constraints using ADERIS-Hybrid

Steven Lynden, Isao Kojima, Akiyoshi Matono, and Akihito Nakamura

Information Technology Research Institute
National Institute of Advanced Industrial Science and Technology (AIST), Japan

{steven.lynden|isao.kojima|a.matono|nakamura-akihito}@aist.go.jp

Abstract. Answering SPARQL queries over the Web of Linked Data is a
challenging problem. Approaches based on distributed query processing
provide up-to-date results but can suffer from delayed response times,
indexing-based approaches provide fast response times but results can
be out-of-date and the costs of indexing the growing Web of Linked Data
are potentially huge. Hybrid approaches try to offer the best of both. In
this demo paper we describe a system for answering SPARQL queries
within fixed time constraints by accessing SPARQL endpoints and the
Web of Linked Data directly.

1 Introduction

Answering Linked Data queries in a timely manner is a challenging problem. An
example of one approach towards this is Sindice [1], which provides a SPARQL
query interface over RDF data that has been indexed via crawling the Web of
Linked Data. Other examples include approaches based on distributed query
processing over SPARQL endpoints [5], in addition to link traversal, live ex-
ploration and hybrid approaches as surveyed in [3], which access the Web of
Linked Data directly during query execution. However, such approaches may
result in unpredictable query execution times in the order of minutes for even
basic queries, and while there are obviously applications that would utilise such
results, it is sometimes more important that an approximate or incomplete an-
swer is provided within a shorter time frame. In this paper we introduce a system
based on a hybrid approach where SPARQL endpoints such as Sindice and the
Web of Linked Data are accessed in parallel to answer queries within fixed time
constraints. The system can be found at http://aderis.linkedopendata.net.

2 Hybrid Linked Data Query Processing with Time
Constraints

The approach, illustrated in Figure 1, proceeds as follows:

1. A federated SPARQL query is parsed and compiled into a set of triple pat-
terns. The query is entirely declarative written without knowledge of the

Fig. 1. System details
The active discovery manager and endpoint query manager run in parallel for a fixed
time, are then terminated and the local graph is converted into a query result.

location of data, in contrast to, for example the SPARQL 1.1 Federation [2]
extensions.

2. A local graph component is initialised to store intermediate results, i.e. triples
which have been found to match the set of triple patterns in the query.

3. Two components are executed, the endpoint query manager and the active
discovery manager. The endpoint query manager sends queries to SPARQL
endpoints and the active discovery manager dereferences URIs and matches
the RDF triples retrieved with triple patterns in the query.

4. After a time t, for which the query is scheduled to run, the endpoint query
manager and active discovery manager are terminated and the local graph
component is used to obtain the result of the federated query.

For a detailed description of the optimisation strategies implemented by the
active discovery manager and endpoint query manager, please refer to [4]. For
the purposes of an effective demonstration we have chosen t to be 10 seconds
for the optimisation and configuration of the system, however the value can be
changed. The rationale being that this is a response time within which at least
some useful answers can usually be obtained and for which users are generally
willing to wait. Compared with the work as presented in [4], we have extended the
system with a cache and more extensive statistics from the Web of Linked Data
aimed at prioritising the retrieval of fresh, up-to-date data by the active discovery
manager. As queries are answered on a best-effort basis, it is important to give
the user an idea of how complete the results are estimated to be. An estimate of
the completeness of the results (low, medium, or high) is given to the user based
on the number of relevant URIs that could not be dereferenced by the active
discovery manager in the time allowed, combined with other indicators such as

overlap between the triples retrieved from SPARQL endpoints and URIs (i.e. a
high degree of overlap indicates that URIs not yet dereferenced would be likely
to provide triples already retrieved from endpoints and be therefore unlikely to
provide additional query results).

The proposed approach provides increased coverage and fault tolerance due
to the fact that multiple data sources are used and the effects of individual
data source unavailability can be mitigated. The system provides parallel query
execution by pushing down query fragments to individual SPARQL endpoints
and automatically optimises the queries sent to individual endpoints to comply
with fair-use restrictions such as bounds on query execution time.

3 ADERIS-Hybrid Web Application

The proposed demo presents the ADERIS-Hybrid Web application implementing
the previously described approach, built on our previous work on the Adaptive
Distributed Endpoint Integration System (ADERIS) [5], to provide a Web appli-
cation implementing the hybrid approach described in this paper. The proposed
demonstration will highlight the salient aspects of the system including the con-
struction of SPARQL queries, where a set of example queries are provided which
can be easily edited by the user; results of queries are presented to the user using
the Google Visualization API complemented by a visual representation of the
query execution process, as shown in Figure 2. A summary of the statistics used
by the query processor is also presented.

4 Conclusion

Answering SPARQL queries over the Web of Linked data with reasonable re-
sponse times is an important, challenging problem. The proposed demo is a Web
application based on our approach in [4], extended with a cache, additional data
source statistics, and an estimate of the completeness of the result.

References

1. Sindice: The Semantic Web Index. http://sindice.com.
2. SPARQL 1.1 Federation Extensions. http://www.w3.org/2009/

sparql/docs/fed/gen.html.
3. O. Hartig. An Overview on Execution Strategies for Linked Data Queries.

Datenbank-Spektrum, 13(2):89–99, 2013.
4. S. Lynden, I. Kojima, A. Matono, A. Nakamura, and M. Yui. A Hybrid Approach

to Linked Data Query Processing with Time Constraints. In C. Bizer, T. Heath,
T. Berners-Lee, and M. Hausenblas, editors, WWW2013 Workshop on Linked Data
on the Web - LDOW 2013.

5. S. Lynden, I. Kojima, A. Matono, and Y. Tanimura. ADERIS: Adaptively inte-
grating RDF data from SPARQL endpoints (Demo Paper). In Proceedings of the
Database Systems for Advanced Applications (DASFAA) Conference 2010, 2010.

Fig. 2. Web application
The figure is a screenshot of the Web application. Here, the user has executed a
SPARQL query, which can be seen in the upper left-hand portion of the screen, and
obtained 2 results (not shown in this screenshot due to space restriction). The user
is utilising the system’s “explain” feature to view how the results were obtained. The
percentage of RDF triples that make up the local graph from SPARQL endpoints, the
cache and the Web of Linked Data are shown, in addition to a confidence measure that
the results are complete.

