
Extending R2RML to a source-independent
mapping language for RDF

Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Erik Mannens, and
Rik Van de Walle

Ghent University - iMinds - Multimedia Lab
Gaston Crommenlaan 8, bus 201, B-9050 Ledeberg-Ghent, Belgium

firstname.lastname@ugent.be

Abstract. Although reaching the fifth star of the Open Data deploy-
ment scheme demands the data to be represented in RDF and linked,
a generic and standard mapping procedure to deploy raw data in RDF
was not established so far. Only the R2RML mapping language was
standardized but its applicability is limited to mappings from relational
databases to RDF. We propose the extension of R2RML to also sup-
port mappings of data sources in other structured formats (indicatively
CSV, TSV, XML, JSON). Broadening further its scope, the focus is put
on the mappings and their optimal reuse. The language becomes source-
agnostic, and resources are integrated and interlinked at a primary stage.

1 Introduction

Today, the idea of the (Linked) Open Data is widely spread and adopted. How-
ever, while reaching the fourth star of the Open Data deployment scheme1 is
easily attainable, achieving the fifth demands a well-considered approach and
significantly greater effort. Current solutions are either highly customized to
each case’s specific needs or they follow a schematic and/or syntactic map-
ping approach. This fails to fully depict the semantics as it remains tied to
the source file’s structure. To this end, only R2RML2 became a W3C recom-
mendation aiming to formalize the mappings from relational databases to RDF
(RDB2RDF). In practice though, one publishes data available in different source
formats which, in turn, requires a more generic approach.

A generic language that maps the data independently of the source structure
(schema-agnostic) and puts the focus on the mappings is a prominent advance-
ment. Thereby, one deals with all different source files in a uniform way; in con-
trast with other languages that handle the mappings of different source formats
separately. Therefore, the initial learning costs remain limited and the potential
for the custom-defined mapping’s reuse augments. As a result, the per-file map-
ping model followed so far gets surpassed, leading to contingent data integration
and interlinking at a primary stage. In this paper, we propose an extension of
the R2RML aiming to broaden its scope to cover also mappings from different
structured data formats –CSV, TSV, XML and JSON files– to RDF.

1
http://5stardata.info

2
http://www.w3.org/TR/r2rml

2 State of the art

Beyond R2RML which has already several implementations3, other RDB2RDF
mapping languages were defined [1]. In the same context, there are corresponding
languages to support CSV-to-RDF mappings (CSV2RDF), e.g., the XLWrap’s
mapping language [2], the Mapping Master’s M2 [3] and Vertere4. On the other
hand, in the case of mappings from XML to RDF (XML2RDF), the different
tools rely mostly on existing XML solutions. To be more precise, XSLT-based
approaches were explored, as the Krextor [4] and the AstroGrid-D5 mapping
tools, while other implementations deploy mappings using XPath and XQuery,
e.g., the Tripliser6 and the XSPARQL [5]. These solutions for XML sources lead
to mappings on the syntactic level rather than on the semantic level or fail to
provide a solution applicable to a broader domain. Beyond the standard Extract-
Map-Load (EML) mappings, dynamic query translation was also explored, e,g,
in the case of Tarql7 (CSV2RDF) and XSPARQL (mapping and integration
of XML, RDB and RDF resources).

In general, most tools deploy mappings from a certain source format to RDF
(source-centric approaches). There are only a few tools that provide mappings
from various source formats to RDF –DataLift [6], the DataTank [7], Karma [8],
Open Refine8 and Virtuoso Sponger9 are the most well known– but only the
DataTank uses a mapping language. For the latter’s needs, Vertere was extended
not only to cover CSV2RDF mappings but mappings from other structured data
sources as well, namely databases, XML and JSON. Since R2RML became a
W3C standard and due to its analogous nature to Vertere, the extension of
R2RML is considered a prominent solution and its applicability verified.

3 Extending R2RML for a more generic use

An extension of the R2RML language is proposed, aiming to broaden its scope
beyond RDB2RDF mappings, to cover every structured data format (a Global-
As-View approach), and to address the limitations of existing languages. The
R2RML’s RDF graphs are used to express mappings independently of the
source format. Therefore, the same custom mappings are reused whether the
source files are in the same format or not, only by redetermining the references
to the source values to be mapped, as the expected custom mapping defini-
tions remain the same. The vocabulary extending the R2RML is available at
http://mmlab.be/users/andimou/rml.ttl. The expansion is achieved as follows:

3
http://www.w3.org/2001/sw/rdb2rdf/wiki/Implementations

4
https://github.com/knudmoeller/Vertere-RDF

5
http://www.gac-grid.de/project-products/Software/XML2RDF.html

6
http://daverog.github.io/tripliser/

7
https://github.com/cygri/tarql

8
http://openrefine.org/

9
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger

Extending RDF triples mapping. Triples map is extended not only to
map each row in the logical table, but each resource in the logical source.
To this end, the rr:logicalTable and rr:tableName become a sub-property of
rml:logicalSource and rml:sourceName respectively, while rr:elementName for
XML sources and rr:objectName for JSON sources are introduced. In the exam-
ple, books is a logical table’s, a JSON object’s or an XML element’s name.
<#RDB_CSV_map > rml:logicalSource [rr:tableName "BOOKS"];

rr:subjectMap [rr:template "http :// data.example.com/books/{ISBN}"];

rr:predicateObjectMap [rr:predicate ex:id; rr:objectMap [rml:resource "ID"]].

<#XML_map > rml:logicalSource [rml:elementName "/books"];

rr:subjectMap [rr:template "http :// data.example.com/books/{book/ISBN }"];

rr:predicateObjectMap [rr:predicate ex:id; rr:objectMap [rml:resource "book/ISBN@id"]].

<#JSON_map > rml:logicalSource [rml:objectName "books"];

rr:subjectMap [rr:template "http :// data.example.com/books/{book.ISBN }"];

rr:predicateObjectMap [rr:predicate ex:id; rr:objectMap [rml:resource "book.id"]].

Extending resources’ mapping. In the same context, term maps are ex-
tended to generate RDF terms from any logical resource, either this is a table
row, an XML element or a JSON object. The column-valued term map is ex-
tended to cover every resource term map. Therefore, the R2RML’s rr:column

property becomes a sub-property of the rml:resource which is a valid column
name for relational databases and CSV files, a valid XPath expression for an
XML node’s or attribute’s absolute path and a valid path pattern in JavaScript
syntax for objects in JSON source files, as in the aforementioned example.

Multiple entities per row. Most of the mapping languages (including R2RML)
follow the entity-per-row model and consider that each row’s RDF triples are
mapped to the same subject. In its extended version, R2RML can map sets of
columns to different subjects, which are then related among each other with a
predicate-object triples map. For example, a row may have several columns with
information about an event and a few of them refer to its location, e.g., latitude
and longitude. Using this single row a triples map may be defined for the event
while another triples map may be defined for the location where the event takes
place (this mapping definition might be reused for other locations’ mapping)
and the two of them are related with a predicate-object triples map, as in the
following example:
<#Event_map > rml:logicalSource [rml:elementName "/ events"];

rr:subjectMap [rr:template "http :// data.example.com/events /{ event/id}"];

rr:predicateObjectMap

[rr:predicate ex:location; rr:objectMap [rr:parentTriplesMap <#Location_map >]] ,

[rr:predicate ex:transport; rr:objectMap [rr:parentTriplesMap <#Transport_map > ;

rr:joinCondition [rr:child "event/bus/num"; rr:parent "BUS_NUM"]]].

<#Location_map > rml:logicalSource [rml:elementName "/ events"];

rr:subjectMap [

rr:template "http :// data.example.com/location /{event/location/lat},{event/location/long }"].

<#Transport_map > rml:logicalSource [rr:tableName "TRANSPORTATIONS"];

rr:subjectMap [rr:template "http :// data.example.com/transport /{TYPE }/{ BUS_NUM }"];

rr:predicateObjectMap [rr:predicate ex:name; rr:objectMap [rml:resource "BUS_NAME"]].

Extended the logical sources. According to the rr:sqlQuery, the rml:xmlQuery

is adapted and both are sub-properties of rml:query to serve a query against a
source file. In the same context the rml:queryLanguage is defined to determine
which language is used (indicatively, a W3C standard in the case of XML).

Integrated mapping. Extending the reference object map, one can use the sub-
jects of another triples map as the objects generated by a predicate-object map.
Since the triples maps may be based on different logical sources, the potential to
create triples based on integrated sources emerges. At the aforementioned event
example, an element node may refer to the number of the bus going to the event
location, but the bus names are associated to the bus numbers at a separate
table which is mapped by another triples map. The mappings of both of them
are defined and a predicate-object terms map may be used to relate them.

4 Conclusions and Future Work

A generic mapping language is proposed to handle the mappings from different
source formats to RDF. The uppermost goal of such an extension is to keep the
focus on the mappings to be expressed rather than on the data and their original
structure. With this work, we bring into discussion its feasibility, possible barriers
and aspects that should be taken into consideration. In the future the arising
generic mapping language will be used at the DataTank, instead of Vertere, to
cover mappings from different source formats to RDF and, in the same time, to
confront with the standard mapping language for the RDB2RDF mappings.

References

1. Hert, M., Reif, G., Gall, H.C.: A comparison of RDB-to-RDF mapping languages. In:
Proceedings of the 7th International Conference on Semantic Systems. I-Semantics
’11, New York, NY, USA, ACM (2011) 25–32

2. Langegger, A., Wöß, W.: XLWrap – Querying and Integrating Arbitrary Spread-
sheets with SPARQL. In: Proceedings of the 8th International Semantic Web Con-
ference. ISWC ’09, Berlin, Heidelberg, Springer-Verlag (2009) 359–374

3. O’Connor, M.J., Halaschek-Wiener, C., Musen, M.A.: Mapping Master: a flexible
approach for mapping spreadsheets to OWL. In: Proceedings of the 9th International
Semantic Web Conference on The Semantic Web - Volume Part II. ISWC’10, Berlin,
Heidelberg, Springer-Verlag (2010) 194–208

4. Lange, C.: Krextor - an extensible framework for contributing content math to the
Web of Data. In: Proceedings of the 18th Calculemus and 10th international confer-
ence on Intelligent computer mathematics. MKM’11, Berlin, Heidelberg, Springer-
Verlag (2011) 304–306

5. Bischof, S., Decker, S., Krennwallner, T., Lopes, N., Polleres, A.: Mapping between
rdf and xml with xsparql. Journal on Data Semantics 1(3) (2012) 147–185

6. Scharffe, F., Atemezing, G., Troncy, R., Gandon, F., Villata, S., Bucher, B., Hamdi,
F., Bihanic, L., Képéklian, G., Cotton, F., Euzenat, J., Fan, Z., Vandenbussche,
P.Y., Vatant, B.: Enabling Linked Data publication with the Datalift platform. In:
Proc. AAAI workshop on semantic cities, Toronto, Canada (2012)

7. Vander Sande, M., Colpaert, P., Van Deursen, D., Mannens, E., Van de Walle, R.:
The DataTank: an open data adapter with semantic output. In: 21st International
Conference on World Wide Web, Proceedings. (2012)

8. Gupta, S., Szekely, P., Knoblock, C., Goel, A., Taheriyan, M., Muslea, M.: Karma:
A system for mapping structured sources into the Semantic Web. In: 9th Extended
Semantic Web Conference (ESWC2012). (May 2012)

