
A Restful Interface for RDF Stream Processors

Marco Balduini1 and Emanuele Della Valle1

DEIB – Politecnico di Milano, Italy
marco.balduini@polimi.it, emanuele.dellavalle@polimi.it

Abstract. This poster proposes a minimal, backward compatible and
combinable restful interface for RDF Stream Engine.

1 Introduction

A number of RDF Stream Processors exists (e.g., CQELS [1], SPARQLstream [2],
ETALIS/EP-SPARQL [3], Sparkwave [4], INSTANS [5] and C-SPARQL En-
gine [6]), but they do not talk each other.

This hampers comparative evaluations: existing benchmark proposals [7, 8]
had to create software adapters to test the various processors. In this condition, it
is difficult to assess how much the benchmark results depend on the performances
of the processors and how much on those of the adapters.

Moreover, the lack of a shared protocol to transmit RDF streams hinders the
combined usage of those processors. For instance, a user may want: a) to deploy
SPARQLstream to natively process data streams1; b) to semantically enrich the
resulting RDF streams using Sparkwave (or INSTANS); c) to aggregate the
enriched streams in events using the C-SPARQL Engine (or CQELS); and d),
finally, to detect complex events with ETALIS/EP-SPARQL.
This poster proposes a restful interface for RDF Stream Processors that is:

1. minimal – more sophisticated interface can be envisioned, but in this at-
tempt we would like to create a broad consensus, thus we avoid proposing
controversial solutions.

2. backward compatible – we are reusing RDF and SPARQL standards
wherever we can so to guarantee that adaptation of non-streaming clients
for RDF and SPARQL is straight forward.

3. combinable – the proposed interface enforces that the output of a processor
can serve as input to a processor (including the one that generates it).

The remainder of the paper is organised as follows. Section 2 briefly presents
the background required to understand the proposed interface. Section 3 pro-
poses the interface. Section 4 shortly discusses two requirements that are not
considered for this minimal proposal and how the interface can be extended to
cover them. A proof of concept implementation of the proposed interfaces for
the C-SPARQL engine is available for download at http://streamreasoning.org/

download.
1 SPARQLstream rewrites continuous SPARQL queries issued against virtual RDF
streams on continuous SQL-like queries on data streams.



2 Background

From a conceptual point of view, existing RDF Stream Processors are homoge-
nous. They define the notion of RDF Stream – an unbound list of tuples < t, τ >
where t is an RDF triple and τ is a non-decreasing timestamp –, and continuous
SPARQL query – a SPARQL query extended so that it can process RDF streams
using continuous operators (e.g., windows to logically convert a portion of the
infinite RDF stream in an RDF graph) and time-aware operators (e.g., sequence
to ask that a graph pattern is detected before another one).

To the best of our knowledge, limited efforts was spent in defining a protocol
for: a) transmitting RDF stream across RDF Stream Processor on separated
machines, b) registering a continuous query in a processor, and c) observing
the continuously evolving results. The only existing solution are proprietary.
For instance, the C-SPARQL Engine is typically used within the Streaming
Linked Data framework [9]. Similarly, CQELS is paired with the Super Stream
Collider [10].

3 Services

A community effort is needed to propose a continuous SPARQL extension that
can span across the existing proposals, but we believe this is the right time to
propose a restful interfaces that processors can easily implement.

The following proposal specifies how to manage RDF streams, continuous
SPARQL queries, and observers of continuous results (see Table 1 for details).

Complying to restful principles, users can register a new RDF stream σ in the
processor using the PUT method on the resource /streams/. As a result the RDF
stream /streams/σ becomes available in the processor. At this point, they can
stream information on the RDF stream POSTing an RDF graph to /streams/σ)
and they can unregister it using the DELETE method. The list of all registered
stream is returned when GETting the resource /streams/.

It is worth to note that, learning from flexible time management in data
stream processors [11], we propose to avoid annotating the streamed RDF graphs
with a timestamp. This complies to the expected input of best effort data stream
processors (e.g. esper). We leave the annotation of the streamed RDF graphs with
application timestamp to a future extension of this minimal protocol. Moreover,
this design decision allows the proposal to be backward compatible. Any
Semantic Web application can send information to an RDF Stream Processor
simply posting an RDF graph.

User can register a new continuous SPARQL query γ in the processor using
the PUT method on the resource /queries/. The proposed interface is agnostic
w.r.t. the language used to declare the query and leaves to the processor to
parse the query in the body of the request. Nonetheless, it requires the query to
refer only to RDF streams already registered in the processor. If the user tries
to register a query on streams that have not been registered, yet, the service
must refuse to register the query. If the registration is successful, the processor
starts the continuous execution of the query and the query /queries/γ appears in



Table 1: The herein proposed restful interfaces for RDF Stream Processors. Along
with restful principles, GETing a resource returns what was PUTed.

RDF Streams
Method Address Body Description
PUT /streams/<id> Register new stream
DELETE /streams/<id> Delete specified stream
POST /streams/<id> RDF model Stream new information
GET /streams Get the list of streams

Continuous SPARQL queries
Method Address Body Description
PUT /queries/<id> query Register new query
DELETE /queries/<id> Delete specified query
POST /queries/<id> callback URL Adds an observer
POST /queries/<id> Action [pause, restart] Change query status
GET /queries Get the list of queries

Observers
Method Address Body Description
DELETE /queries/<id>/observers/<id> Delete specified observer
GET /queries/<id>/observers Get observers list

the list of queries that can be retrieved GETting the resource /queries/. As for the
RDF streams, the query /queries/γ can be unregistered using the DELETE method.
The method POST on the resource /queries/γ is used to start observing the query
results, to pause the query and to restart it.

Access to query results follows an observable-observer design pattern. In or-
der to start observing the results of a query γ, a user has to POST a callback
URL to /queries/γ. The created observer ω is identified by an URL of the form
/queries/γ/observers/ω. The user can stop observing the query by DELETing this
resource. Multiple observers per query are possible. Whenever γ computes new
results, the processor notifies all the observers by invoking the provided callback
URLs.

If the query is of the forms SELECT or ASK, results must be formatted according
to SPARQL 1.1 query results2, thus allowing for backward compatibility with
existing SPARQL resultset parsers.

If the query is of the forms CONSTRUCT or DESCRIBE, the processor must POST an
RDF graph containing the result. As a result our proposal is not only backward
compatibility – it is conform to SPARQL 1.1 result formats –, but it is also
combinable – the results of a query can be POSTed to another registered RDF
stream. The callback URL passed as parameter in starting an observer simply
has to be the URL of an existing RDF stream3.

4 Conclusions

The proposal, being minimal, ignored important requirements w.r.t. time mod-
elling, access control, and transmission overhead.
2 Our implementation supports http://www.w3.org/TR/2013/REC-sparql11-results-json/
3 In order to avoid the overhead to stream on HTTP an RDF stream that is consumed
by the same processor, when a query γ of the forms CONSTRUCT or DESCRIBE is registered,
an RDF stream, whose identifier is /streams/γ, is automatically registered. The result
of the query γ is internally streamed on it.



Adding the application time to the protocol is only a matter to POST a times-
tamp together with the RDF graph. However, as explained in [11], in the case
of multiple distributed sources POSTing to the same RDF stream, out-of-orders
can appear due to lack of clock synchronisation and different network delays. In
our future work, we will propose this extension and, at the same time, we will
release an open-source package that includes the management out-of-orders.

The proposed interface lacks access control, but it is ready for HTTP-based
access control. An HTTP server, between the user and the Restful service con-
tainer, can handle access to /streams and /queries. Moreover, only the owner of
a query γ can start observing the results of γ or is allowed to list all the ob-
servers (i.e., GETting /queries/γ/obsevers/). However, investigating OAuth-based
access-control is on our research agenda.

Last, but not least, we recognise that the transmission overhead of the pro-
posed solution can reduce the processor throughput if the user frequently POSTs
RDF graphs containing only few triples. In our future work, we intent to explore
the streaming of RDF triples in N-quads format on a Web-socket.

References
1. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and

adaptive approach for unified processing of linked streams and linked data. In:
ISWC. (2011) 370–388

2. Calbimonte, J.P., Corcho, O., Gray, A.J.G.: Enabling ontology-based access to
streaming data sources. In: ISWC. (2010) 96–111

3. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. In: WWW. (2011) 635–644

4. Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pat-
tern matching over RDF data streams. In: DEBS. (2012) 58–68

5. Rinne, M., Nuutila, E., Törmä, S.: Instans: High-performance event processing
with standard rdf and sparql. In: ISWC (Posters & Demos). (2012)

6. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Querying rdf
streams with c-sparql. SIGMOD Record 39(1) (2010) 20–26

7. Zhang, Y., Duc, P., Corcho, O., Calbimonte, J.P.: SRBench: A Streaming RDF/S-
PARQL Benchmark. In: ISWC. (2012) 641–657

8. Le-Phuoc, D., Dao-Tran, M., Pham, M.D., Boncz, P., Eiter, T., Fink, M.: Linked
stream data processing engines: Facts and figures. In: ISWC. (2012) 300–312

9. Balduini, M., Celino, I., Dell’Aglio, D., Valle, E.D., Huang, Y., il Lee, T.K., Kim,
S.H., Tresp, V.: Bottari: An augmented reality mobile application to deliver per-
sonalized and location-based recommendations by continuous analysis of social
media streams. J. Web Sem. 16 (2012) 33–41

10. Quoc, H.N.M., Serrano, M., Le-Phuoc, D., Hauswirth, M.: Super stream collider–
linked stream mashups for everyone. In: Proceedings of the Semantic Web Chal-
lenge co-located with ISWC2012, Boston, MA, US (2012)

11. Srivastava, U., Widom, J.: Flexible time management in data stream systems. In:
PODS, New York, New York, USA (2004) 263


