
Desktop Gateway: Semantic Desktop Integration with
Cloud Services

 Aleksandar Kareski
 Faculty of Computer Science and

 Engineering
 Ss. Cyril and Methodius University
 Rugjer Boskovik 16, P.O. Box 393,

Skopje, FYR of Macedonia

a.kareski@gmail.com

 Milos Jovanovik
 Faculty of Computer Science and

 Engineering
 Ss. Cyril and Methodius University
 Rugjer Boskovik 16, P.O. Box 393,

Skopje, FYR of Macedonia

milos.jovanovik@finki.ukim.mk

 Dimitar Trajanov
 Faculty of Computer Science and

 Engineering
 Ss. Cyril and Methodius University
 Rugjer Boskovik 16, P.O. Box 393,

Skopje, FYR of Macedonia

dimitar.trajanov@finki.ukim.mk

ABSTRACT
With the development of IT technologies, the amount of
information that the user receives and the sources of
information which he or she uses, increased dramatically.
There is a need of an intelligent desktop application, which will
integrate different information sources from both the desktop
and the web. To address this problem, we present a solution for
a semantic desktop application, which relies on the use of
ontologies to annotate and organize data, extracted from any
application or website, into one environment. This paper gives
an overview of the semantic desktop paradigm and its
relevance to the knowledge management of the future. We also
show how the semantic desktop application can connect with
the cloud services for an enhanced user experience.

Keywords
Semantic desktop; personal information management; cloud
computing; enhanced user interface; social semantic desktop;
semantic web services

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval - information filtering, retrieval models, search
process.

1. INTRODUCTION
There are a lot of choices a user faces in today's computing
world; most of them are too complicated. There are hundreds
of features, dozens of user preferences, unresponsive programs,
inscrutable error messages, crowded toolbars, and general
disrespect for the safety of the user’s data. All of these are
problems which plague most of today's software.

On the other hand, in order to complete a given task, the user
has to open numerous applications and websites. The situation
within the organizations is even more complicated. The
employees have to switch between various systems, such as
HRM, CRM, ERP, etc. This frequent switching demotivates the
employees and has a significant impact on the organization.
Because of this, the user loses focus on his or hers task and
wastes precious time jumping through the applications in order
to find the information he or she is looking for. Additional time
is lost due to the registration and log-in requirements of
applications, as well as remembering many passwords for
various authentication systems. Our solution will simplify all of
this, by using one application to get all information that the
users need, and remembering only one password.

In this paper we will present a solution for integration of all
user sources of information, from both the desktop and the
Web, in one place. We call this solution Desktop Gateway.
With it, data from menu systems and applications is combined
into one solution, which interacts with the operating system and
gives the user an easy-to-use interface. It also provides a simple
and natural solution to the problems of information retrieval.
With just one click on a word or any on-screen text from any
application, the system will extract the relevant information
from the context and deliver it to the user.

The main goal of Desktop Gateway is to provide a client-side
connection with public and private services on both the desktop
and the Web. Its features will interpret the data and detect the
context, by using external ontologies. Based on the extracted
context, the user can use the possible actions on the Cloud
applications and other web services. The interface is simple and
easy to use, and is based on text search.

2. RELATED WORK
According to the constant development of computer software,
application development is now focused on user friendly
interfaces and applications which use dynamic and effective
methods to access the information from lots of data storages.

BCI'13 September 19-21, Thessaloniki, Greece. Copyright © 2013 for the individual papers by the papers' authors.
Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

162

Chris
Typewritten Text

GNOME Do1 is an intelligent launcher tool which makes
performing common tasks on the user’s computer simple and
efficient. It does not only allow the user to search for items in
his or hers desktop environment (e.g. applications, contacts,
bookmarks, files, music), it also allows him or her to specify
actions to perform on search results (e.g. run, open, email, chat,
play). GNOME Do provides instantaneous, action-oriented
desktop search results, which adapt to reflect the habits and
preferences of the user. Our solution uses a similar approach,
but it searches on both desktop and web resources. GNOME
Do provides the user with familiar graphical depictions of
search results, in contrast of other search tools which present
search results as flat, homogeneous lists. Our solution, Desktop
Gateway, focuses on good UI as well, and groups the search
results in several tabs, according to the search result type.

Enso2 is a language-based interface, which performs actions
based on the commands typed in by the user. It has its own set
of commands that can help the user accomplish specific types
of tasks, in any application and the OS. For example, selected
text (numbers) can be calculated inside Notepad, with the
‘calculate’ command. The result of the calculation is
automatically added back into Notepad. This hot-key launching
concept is also used within our solution, where we use it to get
text and images from any desktop application for further
processing.

The OpenCalais3 web service allows automatic annotation of
content with rich semantic metadata [1], including entities such
as people, companies, events and facts. It analyses the content
using methods such as natural language processing and
machine learning, in order to discover the entities, events and
facts within the text. The metadata returned as a response from
the web service is an RDF construct which is centrally stored.
The metadata gives the user the possibility of building maps,
networks or graphs by linking documents to people, geographic
places and companies. We use OpenCalais within our solution
for determining the context of the input data.

Babylon-Enterprise4 gives the users a one-click access to
enterprise information from ERP, CRM, HRM and other
information systems, and allows them to drill-down to the data
in its source application. It works within any Windows
application, and enables both online and offline access to
information. Similar to Babylon, our solution uses a private
information system, but also uses public web resources as
sources of information.

The Gnowsis semantic desktop project [11] aims to develop a
semantic desktop environment which supports P2P data
management based on desktop services. Gnowsis uses
ontologies for expressing semantic associations and uses RDF
for data modeling. Within our solution we use a similar
approach, but we are concentrated on external ontologies and
cloud services. However, the emphasis of Gnowsis is more on
the flexible integration of a large number of applications, than
on the organization and manipulation of data, which is a focus
used in our approach.

1 http://cooperteam.net/
2 http://www.humanized.com/enso/
3 http://www.opencalais.com/
4 http://www.babylon-enterprise.com/

One of the main projects which use the integration approach is
the Haystack [10] system developed by the Computer Science
and Artificial Intelligence lab at MIT. Haystack aims to create,
manipulate, and visualize arbitrary RDF data, in a
comprehensive platform. For visualization, it uses an
ontological / agent approach, where user interfaces and views
are constructed by agents using predefined ontologies. The user
manages his or hers personal information at most suitable way.
It integrates many applications like text processors, email
clients, image manipulation applications, and instant
messaging. A complete semantic environment is created from
the user interface, all the way to the database. A disadvantage
of the system is the performance problem.

Stuff I’ve Seen [6] is based on a simple, but powerful idea –
people usually want to find information which they have
already seen; therefore, it provides an indexed space that
includes not only the information on the user laptop, but also
on web pages he or she visited [2]. A similar concept is used by
our solution, which caches the search results. This increases the
speed of the search for information and data which are
frequently looked up.

The Universal Labeler [8] is a unified scheme for labeling all
kinds of personal information, e.g., electronic documents, paper
documents, email messages or web references. The hierarchy
of subprojects and tasks is displayed in a window that not only
manages the UL, but also gives direct access to other
applications (e.g., email or calendar). This hierarchy is created
by a drag-and-link operation, in such a way that users drag
only a fragment of a document to the hierarchy, and the
remaining information is hyperlinked to that fragment. Each
node can own planning-oriented properties or behaviors, such
as remind me by or due dates, that will be displayed, for
example, in the user’s calendar. A hierarchy provides a view
over the user’s personal information. The UL approach does
not attempt, however, to manage the storage of information
items, like we do.

Semanta [13], [9] is a prototype application for semantic email
and represents an add-on for email agents. The SMail model is
encapsulated in the semantic email ontologies. The connection
between these ontologies and the semantic desktop ontologies
is a step forward to emerging desktop and email information.
Semanta uses these ontologies to enhance email messages with
semantics. Message annotations can be automatically executed
by a speech extraction web service, or manually, by the use of a
wizard. Metadata are transported together with the email
contents with the help of RDF MIME extensions of the email
header. Defining such models with formal work patterns
enables formal semantics for email collaboration.

Personal information application (PIA) [2] is an ontology-
based framework consisting of three loosely-coupled layers:
the application layer, the domain layer, and the resource layer.
The first layer supports directly the specific user’s activities,
such as travel planning to attend a conference. The ontology
that models the application provides a view over the ontologies
at the domain level. Those ontologies are not specialized to
meet the requirements of a particular user, but are standardized
and engineered to meet wide use requirements in applications
such as air travel, hotel booking, or event registration. At the
resource layer, they have addressed the organization of data
including the use of file descriptions and domain ontologies as
annotations and the extensive use of data associations. The

163

extensive annotation and the associations among data create a
network of data and metadata that can be traversed using the
concept of semantic navigation and lend itself well to the
formulation of expressive database-like queries. The
specification of a PIA is performed using a tool called the PIA
designer, with which the users define the displays, the queries,
and the channels. User studies were conducted to evaluate the
prototype of the PIA designer by computer science majors
(albeit with limited knowledge of data modeling or query
languages) and received positive feedback. It was, however,
recognized by the participants that queries and channels are
more suitable for expert users than for casual users. Our
solution also uses layered architecture which is extended with
the cloud applications and external web services.

Semantic Sky [14] presents a software platform developed
using semantic web technologies, which provides the users
with a unified and simple composite approach to the different
services they use, with a simple flow of information from one
infrastructure to another. The system is able to automatically
discover the context in which the users are working, and offer
them the actions that can be used within the context. The users
can completely focus on their tasks in their work environment,
and get relevant information and possible actions in that
context. This system automates the execution of the users’
tasks, which leads to improvements in their productivity,
information exchange and efficiency. Unlike Semantic Sky,
Desktop Gateway is focused on the advanced interface for
desktop and web integration by using external services for
semantic annotation.

3. OUR APPROACH
Desktop Gateway is a semantic desktop application with a
strong focus on integration. Besides data from desktop
applications and folder hierarchy, it also integrates data from
the web. It uses an advanced user interface which interacts with
the OS and provides a pleasant user experience. The desktop
application is enhanced with the functions of the operating
system, semantic web services and external web services. The
context from the various sources is combined and analyzed
within the application, before the end result is presented to the
user. For each entity which is recognized in the context, a list
of possible actions is suggested to the user. Depending on the
type of the entity and the context, various actions are available.

The application is based on four main components: a source of
information, semantic resource entities, types of the semantic
resource entities, and proposed actions for the entities. Besides
the main components, the application uses semantically
annotated web services on the Cloud which were developed on
our university, the OpenCalais semantic web service and lots of
other external web services. The concept of the application is in
accordance to the conclusions of the overview of the Semantic
desktop paradigm by Sauermann, Bernardi and Dengel [12].

The application uses two types of sources of information:
public and private. Social networks, desktop user data, e-mail
accounts, web calendars and other private sources on the web
and on the users PCs are used as private sources of information.
Public sources of information include web encyclopedias, word
translators, geographical maps, etc. This component is

extensible with other sources, but the integration depends on
the API of the new source. Using the Social Semantic Desktop
approach by Decker and Frank [4], the current version of this
system incorporates the private services of Facebook, Gmail,
Google Calendar, public services such as Geonames,
Wikipedia and Microsoft Translator, as well as the public
semantic search web service Open Calais and private
semantically annotated web services within the Semantic Sky
cloud. The folders and files structure on the desktop computer
is also used as private source of information.

The semantic resource entities are the core component of the
application. They are created according to the context which is
identified from the corresponding services and sources of
information. The semantic web services from the Semantic Sky
system help in the process of determining the context of the
input text and determine the type of the resource entities by
semantic search in the ontology, which is also situated on the
Cloud. Semantically annotated RDF data types from the web
service are then processed through the application. The
OpenCalais semantic service also helps in determining the
context of the search string by using its OWL ontology. The
web service returns RDF data which contains information
about the RDF resource type of the objects that are recognized
with the semantic search of the text. RDF data is then
processed in our application for determining the type of the
recognized objects and adding actions to those objects. Every
object has a relevance index which determines the relevance of
the object in the sentence, and a social tag which shows the
categories that are related to the object. Other services return
basic types of resource entities, such as person, contact
information, hyperlinks, places, etc., which are directly used in
the appropriate module. Based on the semantic type of these
resources, the candidate actions are found. The actions are
actual web or REST-based services from the service repository
of the application, or their composition.

There are two types of actions in the application: public and
private. Public actions are performed on resource entities which
are recognized with the public services - Wikipedia, Google
Maps, Microsoft translator, etc., and they use public web
services (open a link in the browser, show a place on the map,
show textual information, translate a sentence, etc.). Private
actions use semantic web services from the Semantic Sky
system for the specific objects. According to the type of the
objects different semantically annotated actions can be evoked
on the Semantic Sky cloud (SaaS – software as a service).
Other private actions which are used with the basic types of
resource entities are sending email, writing a message on a
Facebook wall, viewing calendar event details, etc.

On Figure 1 we depict the process of interaction with the
applications and the operating system, the gathering of
information from various sources, the method of context
extraction and the execution of the proposed actions. On the
left side of the picture, the process of activation of the
application and retrieving the selected text through the
Clipboard of the OS is shown. In the middle, the process of
context extraction, with the help of the sources of information
on both the desktop and on the web, is presented. In the bottom
of the picture, the applicable actions for the identified data and
context are shown.

164

Figure 1. Interaction with the applications and the operating system.

4. IMPLEMENTATION DETAI
The development of the application was divided in a few
phases. The first phase was the development of a desktop
application which interacts with the operating system. Tools for
fetching text from any active window or part of the OS and
module for copying the selected text from the Clipboard were
implemented in this phase. In the second phase, a connection
was established with the external sources of information (social
networks, email, encyclopedias, the Cloud, etc.) by
implementing APIs and web service references. The last phase
was a generalization of all of the compone
semantic desktop application. An intuitive and user
was created to fit all modules on a separate tab.

Desktop Gateway runs on a Windows OS and is implemented
with the Microsoft.NET platform; it uses the win32.dll,
kernel32.dll and user32.dll libraries for OS interaction. SOAP
and REST web services are used for gathering data and
executing actions.

The application is divided in 3 layers:

• Communication layer – In this layer the web service

interfaces are situated, as well as the internal and external
API classes. This layer is used to improve the data transfer
(gathering and sending data) between the desktop
application, on one side, and the Cloud services, web
services and other external resources on the other side.
The communication layer is based on the Semantic
desktop collaboration infrastructure by Decker

• Controller layer - This layer is responsible for parsing the
data gathered in the communication layer into structured
objects, which are recognized from the social tags of the
RDF data. The context of the search text is determined by
the RDF resource data which is processed in the
application. Structured object are presented to
graphical interface layer and saved in the local cache for
further use. The context of the data is the foundation of the
Semantic Desktop [7].

Interaction with the applications and the operating system.

IMPLEMENTATION DETAILS
The development of the application was divided in a few

first phase was the development of a desktop
application which interacts with the operating system. Tools for
fetching text from any active window or part of the OS and
module for copying the selected text from the Clipboard were

. In the second phase, a connection
was established with the external sources of information (social
networks, email, encyclopedias, the Cloud, etc.) by
implementing APIs and web service references. The last phase
was a generalization of all of the components in a social
semantic desktop application. An intuitive and user-friendly UI
was created to fit all modules on a separate tab.

Desktop Gateway runs on a Windows OS and is implemented
with the Microsoft.NET platform; it uses the win32.dll,

and user32.dll libraries for OS interaction. SOAP
and REST web services are used for gathering data and

In this layer the web service
internal and external

API classes. This layer is used to improve the data transfer
(gathering and sending data) between the desktop
application, on one side, and the Cloud services, web
services and other external resources on the other side.

ation layer is based on the Semantic
desktop collaboration infrastructure by Decker [3].

This layer is responsible for parsing the
d in the communication layer into structured

, which are recognized from the social tags of the
RDF data. The context of the search text is determined by
the RDF resource data which is processed in the

Structured object are presented to the
graphical interface layer and saved in the local cache for
further use. The context of the data is the foundation of the

• Graphical interface layer

information to the end user and receives the user input. It
uses its advanced GUI to interact easily with the user. It is
hotkey-activated and works in background when it is not
being used. Search results are divided int
sorted by the type of the data.

Part of the search results are saved in the cache, which stores
data in a local MS SQL database. The cache speeds up the
process of data searching for the common search queries.
While external services need a few seconds to retrieve data,
cached information are loaded immediately.

The interaction of the Desktop Gateway with the sources of
information is accomplished with external APIs. Every source
of information has a library which is referenced in the so
code of the project. These libraries are used as interface for the
physical connection with the remote servers. Such libraries
implemented in the project are CalaisDotNet for the Open
Calais API, Facebook API for Facebook, Google.GData for the
Google contacts, Google Calendar and Google Maps,
Geonames API for geographical landmarks, the Microsoft
Translator SOAP web service, and the Wikipedia SOAP web
service reference. A specialized API was built for the
interaction with the web services from the Sema
system. The OAuth standard is used for private API
authentication of the users. With this, the user doesn’t have to
enter passwords for every private source of information which
he or she uses, every time the application is started. Passwords
are safely stored and encrypted.

5. WINDOWS API INTERACT
The Windows OS has a lot of functions that are available in the
Windows API, which allow direct interaction with the OS and
executing OS-level commands.

The Desktop Gateway application interacts with the
system and with the applications which are installed on it. It
works in background and is activated by hotkeys. Global hooks

Interaction with the applications and the operating system.

face layer – Presents the extracted
information to the end user and receives the user input. It
uses its advanced GUI to interact easily with the user. It is

activated and works in background when it is not
being used. Search results are divided into separate tabs,
sorted by the type of the data.

Part of the search results are saved in the cache, which stores
data in a local MS SQL database. The cache speeds up the
process of data searching for the common search queries.

d a few seconds to retrieve data,
cached information are loaded immediately.

The interaction of the Desktop Gateway with the sources of
information is accomplished with external APIs. Every source
of information has a library which is referenced in the source
code of the project. These libraries are used as interface for the
physical connection with the remote servers. Such libraries
implemented in the project are CalaisDotNet for the Open
Calais API, Facebook API for Facebook, Google.GData for the

contacts, Google Calendar and Google Maps,
Geonames API for geographical landmarks, the Microsoft
Translator SOAP web service, and the Wikipedia SOAP web
service reference. A specialized API was built for the
interaction with the web services from the Semantic Sky
system. The OAuth standard is used for private API
authentication of the users. With this, the user doesn’t have to
enter passwords for every private source of information which
he or she uses, every time the application is started. Passwords

safely stored and encrypted.

WINDOWS API INTERACTION
The Windows OS has a lot of functions that are available in the
Windows API, which allow direct interaction with the OS and

level commands.

The Desktop Gateway application interacts with the operating
system and with the applications which are installed on it. It
works in background and is activated by hotkeys. Global hooks

165

are used to detect hotkeys, to get the selected text from
clipboard, and to activate the application window. The
SetWindowsHookEx and CallNextHookEx functions from the
user32.dll library are used to set the hook on the application
initialization, and get the next activation of the hook.

System hook libraries allow keyboard and mouse activity
detection, even when the application in which they are
implemented works in the background or has no user interface.
They throw the KeyEventArgs and MouseEventArgs .NET
exceptions, which help acquire the needed information.

The hooks allow the application to work in the background and
wait to be activated on a click of a hotkey. They also allow the
selected text form the active window to be copied to the
clipboard. When the application is activated, objects from the
clipboard are copied in the application by the functions in the
System.Windows.Forms.Clipboard class. The clipboard acts as
a bridge between the processes. The data from any application
is easily transferred to the Desktop Gateway application. The
application gathers two types of information; the selected text
and the surrounding text of the currently active window. This
information helps in the process of determining the context of
the data.

Many PC users use context menus for fast navigation through
the windows. Our application has an integrated context men
which copies the path from the selected file or folder. The
name of the window from which clipboard object originated is
taken with GetWindowText function from the Win32
user32.dll library. The path and the name of the window are
used in the process of understanding the context of the data.

Figure

are used to detect hotkeys, to get the selected text from
clipboard, and to activate the application window. The

owsHookEx and CallNextHookEx functions from the
user32.dll library are used to set the hook on the application
initialization, and get the next activation of the hook.

System hook libraries allow keyboard and mouse activity
ation in which they are

or has no user interface.
EventArgs and MouseEventArgs .NET

exceptions, which help acquire the needed information.

The hooks allow the application to work in the background and
wait to be activated on a click of a hotkey. They also allow the
selected text form the active window to be copied to the
clipboard. When the application is activated, objects from the
clipboard are copied in the application by the functions in the

Windows.Forms.Clipboard class. The clipboard acts as
a bridge between the processes. The data from any application
is easily transferred to the Desktop Gateway application. The
application gathers two types of information; the selected text

ding text of the currently active window. This
information helps in the process of determining the context of

Many PC users use context menus for fast navigation through
the windows. Our application has an integrated context menu

the path from the selected file or folder. The
name of the window from which clipboard object originated is
taken with GetWindowText function from the Win32
user32.dll library. The path and the name of the window are

e context of the data.

6. USE CASE
Most of the applications today have complicated interfaces
with hundreds of features, which makes their use rather
difficult. The users have to navigate through complex menus,
links and pages to find the information or actions they need.
The goal of our approach is developing
gather personal and relevant results to the search string as
simply as possible. Our application
interface which connects the operating system and the open
applications with the Desktop Gateway. It is based on a simple
text search with no additional features and options. Using the
global hooks, the user doesn’t even have to write the text. The
selected text from any window is copied to the search box with
a click on a hotkey. Just like
powerful feature is its single click activation. Additional
advantage to the application is the semantic data, which helps
the process of context extraction.
ontologies determines the type and the con
text. The data is then processed through the layers of the
application and the result is
classified by its type in different tabs, where the user can look
into it and use the available actions. Because it run
background, it can be activated whenever the user needs it

Detected resource entities have a list of specific associated
actions. Depending on the type of the resource entity (person,
place, subject etc.), different actions are available. Some of
actions are shown in Figure 2. The available actions allow an
email to be sent to the persons detected in the context, with an
optional attachment, or to write to the detected person’s
Facebook wall. For the detected geographic places, a short
information summary is displayed and a link to a Wikipedia
article is provided, for additional info.
displayed on a Google Maps window within the application.

Figure 2. Actions associated with the selected object.

Most of the applications today have complicated interfaces
with hundreds of features, which makes their use rather
difficult. The users have to navigate through complex menus,
links and pages to find the information or actions they need.

is developing an application that will
gather personal and relevant results to the search string as

Our application has a very intuitive user
interface which connects the operating system and the open

p Gateway. It is based on a simple
text search with no additional features and options. Using the
global hooks, the user doesn’t even have to write the text. The
selected text from any window is copied to the search box with
a click on a hotkey. Just like Babylon Enterprise, the most
powerful feature is its single click activation. Additional
advantage to the application is the semantic data, which helps
the process of context extraction. RDF data from the external
ontologies determines the type and the context of the search

processed through the layers of the
application and the result is structured objects which are
classified by its type in different tabs, where the user can look
into it and use the available actions. Because it runs in the
background, it can be activated whenever the user needs it

Detected resource entities have a list of specific associated
actions. Depending on the type of the resource entity (person,
place, subject etc.), different actions are available. Some of the

2. The available actions allow an
email to be sent to the persons detected in the context, with an
optional attachment, or to write to the detected person’s
Facebook wall. For the detected geographic places, a short

ion summary is displayed and a link to a Wikipedia
article is provided, for additional info. The places are also
displayed on a Google Maps window within the application.

166

Figure 3. Screenshot of the application.

The files and folder which are detected can be opened directly
in the folder in which they are situated. After starting the
application, the user can login at the private sources of
information he or she wants to use. The use of OAuth allows
the user to enter them only once. The user credentials are
securely saved and encrypted. When the application is active,
the user can simply enter the text he or she wants processed in
the text box. When the application is inactive, the user can
select a text anywhere on the OS working environment and use
the hot key to activate the application..

Figure 3 shows the activation of Desktop Gateway and
capturing text from a Notepad window. After processing the
text, the results are shown in a Wikipedia tab, with a short
description and a map of the detected and identified country.

The Desktop Gateway application uses the benefits of the
applications with advanced user interface like GNOME Do and
Humanized Enso, it enhances the data with semantic
annotations from the OpenCalais service and integrates a large
number of web services into a single user friendly solution.

7. CONCLUSION
The basic idea of this paper was to bring the benefit of the
semantic web technologies to the desktop, enabling people to
use their desktop computers like a personal Semantic Web,
where applications are integrated, and ideas are connected
through ontologies. The enhanced desktop experience intends
to bring all personal and relevant information, from both the
desktop and the web, together into one familiar environment.

The Semantic Desktop paradigm intends to connect the
Semantic Web with the users which work on their desktop
computers. It allows ideas and knowledge to be saved and
shared with others. It has a potential to bring in a new style of
interaction in the personal computers which is not possible with
the conventional technologies. In such knowledge-based
environment, the desktop is defined in relation with the user
and not with the hardware, operating system, applications and
protocols which are used. However, more parameters are
needed for shaping the semantic desktop to fit the needs of an
individual user.

This paper is presenting a solution which is an interaction of
many active research fields, like the semantic web, semantic
desktop, web services cloud computing, which will result with
a web based infrastructure for collaboration through the
desktop PC. The application should accomplish reduction of
the searching- and filtering-time and provide easier access to
vital information.

There is bright future for the Semantic Desktop and the
Semantic Web. More and more resources are annotated
semantically on the web, but also on the user PCs. This
contributes to the growing number of new project which use
semantic metadata and the growth of the use of ontologies. The
use of better ontologies will produce more accurate and
relevant results to our application.

The Desktop Gateway application intends to bring the
Semantic Web and the benefits of the semantic web
technologies to individuals working on their desktop

167

computers. It allows them to work more seamless on their PCs,
saving valuable time in context switching between applications.

We believe that the Desktop Gateway also has a bright future
in which it should be constantly updated. Possibilities of
upgrading with new sources of information are almost
indefinite. Upgrading of the search algorithm and parallel
threads for gathering information will help for faster access to
the search results. Another aspect that should be reviewed is
the upgrade of actions and better interaction between the search
results for enhanced user experience, by adding more
ontologies. The heterogeneity of knowledge models and
ontologies can be solved by representation of the knowledge
with named graphs in Nepomuk Representation Language [14].

REFERENCES

[1] Alergus, E. A. 2011. Using OpenCalais API in the context
of Linked Data, Faculty of Computer Science, Distributed
Systems, Romania Babylon Enterprise.

[2] Cruz, I.F., and Xiao, H. 2008. A Layered Framework
Supporting Personal Information Integration and
Application Design for the Semantic Desktop. The
International Journal on Very Large Data Bases, vol. 17,
no. 6, pp. 1385 – 1406.

[3] Decker, S. 2006. The Social Semantic Desktop: Next
Generation Collaboration Infrastructure. Information
Services and Use. vol. 26, no. 2.

[4] Decker, S., and Frank, M. 2007. The Social Semantic
Desktop. In Proceedings of I-Semantics 2007.

[5] Dourish, P, Edwards, W. K., Lamarca, A., Lamping, J.,
Petersen, K., Salisbury, M., Terry, D. B., and Thornton, J.
2000. Extending Document Management Systemswith
User-specific Active Properties. ACM Transaction of
Information System.

[6] Dumais, S., Cutrell, E., Cadiz, J.J., Jancke, G., Sarin, R.,
and Robbins, D.C. 2003. Stuff I've Seen: A System for
Personal Information Retrieval and Re-Use. Proceedings
of the 26th annual international ACM SIGIR conference
on Research and development in informaion retrieval, pp.
72-79. ACM.

[7] Heath, T., Motta, E., and Dzbor, M. 2005. Context as
Foundation for a Semantic Desktop. 4th International
Semantic Web Conference.

[8] Jones, W, Bruce, H., Foxley, A., and Munat, C.F., 2006.
Planning Personal Projects and Organizing Personal
Information. Annual Meeting of the American
Associationfor Information Science and Technology.

[9] Moller, K., and Decker, S. 2005. Harvesting Desktop Data
for Semantic Blogging. Proceedings of the first Semantic
Desktop Workshop, at the 4th International Semantic Web
Conference.

[10] Quan, D., Huynh, D., and Karger, D.R. 2003. Haystack: A
Platform for Authoring End User Semantic Web
Applications. International Semantic Web Conference.

[11] Sauermann, L., Grimnes, G.A., Kiesel, M., Fluit, C.,
Maus, H., Heim, D., Nadeem, D., Horak, B., and Dengel,
A. 2006. Semantic Desktop 2.0: The Gnowsis Experience.
In Proceedings of the International Semantic Web
Conference.

[12] Sauermann, L., Bernardi, A., and Dengel, A.. 2005.
Overview and Outlook on the Semantic Desktop. In
Proceedings of the 1st Workshop on The Semantic
Desktop at the International Semantic Web Conference.

[13] Scerri, S., Handschuh, S., аnd Decker, S. 2008. Semantic
Email as a Communication Medium for the Social
Semantic Desktop. European Semantic Web Conference.

[14] Sintek, M., Van Elst, L., Scerri, S., аnd Handschuh, S.
2007. Distributed Knowledge Representation on the
Social Semantic Desktop: Named Graphs, Views and
Roles in NRL. European Semantic Web Conference,
Innsbruck, Austria.

[15] Trajanov, D., Stojanov, R., Jovanovik, M., Zdraveski, V.,
Ristoski, P., Georgiev, M., аnd Filiposka, S. 2012.
Semantic Sky: a Platform for Cloud Service Integration
based on Semantic Web Technologies. Proceedings of the
8th International Conference on Semantic Systems, pp
109-116, ACM.

168

