
Separating network control from routers with Software
Defined Networking

Shpëtim Latifi
South East European University

Bul. Ilindenska 335
Tetovo, FYR of Macedonia

 sh.latifi@seeu.edu.mk

 Arjan Durresi
 IUPUI

 723 W. Michigan St., SL 280M
 Indianapolis, IN 46202, USA
 durresi@cs.iupui.edu

 Betim Cico
 South East European University

 Bul. Ilindenska 335
 Tetovo, FYR of Macedonia

 b.cico@seeu.edu.mk

ABSTRACT
Data networks have become increasingly complex nowadays.
Even though technologies like Ethernet, IP protocol and packet
forwarding is rather simple, control mechanisms like
middleboxes, Access Control Lists (ACLs), firewalls, traffic
engineering, VLANs, etc. have largely contributed to increasing
their complexity. Primarily this is due to the lack of basic
principles in networking. Networking still remains vertically
integrated, where hardware comes with its proprietary software
and is not open to innovation.
Software-Defined Networks (SDN) instead decouple the data
plane (which is and should remain the job of the physical routers)
and control plane. The control plane in SDN is removed from the
routers and switches, and instead is done in the edge of the
network, thus allowing for third party software, open interface to
devices regardless of hardware type and vendor, and easier
management of networks. SDN is a new design model in
networks rather than a new technology. It is a set of abstractions
for the control plane rather than implementation mechanisms;
SDN in essence offers the possibility to network programmers
and third party app writers build anything they want on top of
both router chips (data plane) and the Network operating system
(now through OpenFlow, but it may be something else as well) in
the control plane, as well as on top of the Network Operating
system due to the open interface it introduces.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Packet-switching
Networks; C.2.2 [Network Protocols]: Routing protocols

General Terms
Design, Theory, Management, Reliability

Keywords
Software-Defined Networks, abstractions, control plane, packet
forwarding

1. INTRODUCTION

Software Defined Networking is not a revolutionary technology,
it’s an organizing principle in data networks. The rationale behind
SDN is more important than its design. In 2008 the SDN elements
like the Network Operating System (NOX) and OpenFlow switch
interface were defined[4,5,14]. In 2011 the Open Networking
Foundation was founded and now it has over 90 companies,
among which Google, Cisco, Dell, IBM, Intel, Facebook,
Verizon, Arista, Brocade, etc. [3]. Google publicly announced
that they will use SDN for their interconnecting their data centers
in 2012. SDN is now commercial and in production, although not
so widely.

In order to explain SDN and the rationale behind it, it is important
to draw a comparison between networks and software systems. A
software system is a modular system based on abstractions to
solve problems. A modular systems allows for code reuse, change
implementation and separate functions. To solve a problem we
then should come up with abstractions, which is turn means to
decompose the problem into its basic components, and then each
components needs to have its own abstraction. These abstractions
require an implementation to solve one specific task. Based on the
complexity or the hardness of the task, it may again require to go
back the step one, until the implementations solve tasks that are
easy to implement.

In data networking there are two planes: data plane, which
processes packets with local forwarding state. The forwarding
decision here is done based on the forwarding state compared to
packet header.

The second plane in data networking is the control plane. It puts
the forwarding state in the networking device, based on many
possibilities and implementations. It can be computed using
distributed or centralized algorithm, manually configured, etc, but
regardless of this, it is a completely different function as opposed
to the forwarding plane[1,6,7].

The abstractions that we have for the data plane are basically
known to every network engineer or even computer scientist.

BCI'13 September 19-21, Thessaloniki, Greece. Copyright © 2013 for the individual papers by the papers' authors.
Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.

59

Figure 1. Abstractions and layering of data plane as a reason
for Internet success

They are known as the protocol suites and the layering system
used in data networking, namely TCP/IP. This layering model has
been very successful in decomposing the problem in its basic
components, and each implementation in this model solves a
specific task. Applications are built on reliable end-to-end
transport, built on best effort global packet delivery (network
layer), which in turn is again build on best effort local packet
delivery (link layer) on top of physical delivery of bits. Each
layer is separate on top on the layer below[7].

The control plane on the other side doesn’t have abstractions. We
have a lot of mechanisms, which serve different goals. For
example routing (a family of algorithms), isolations (VLANs,
firewalls, traffic engineering, MPLS, etc.), but there is no
modularity. And the functionality is limited. The network control
plane is what happens when there is mechanisms without
abstractions. So there is too many mechanisms without enough
functionality. Each problem is solved individually and from
scratch. This is not the way problems should be solved. Instead
the problem should be first decomposed. That is the main reason
that has lead to a great success and acceptance of Software
Defined Networking[12,13].

SDN imposes a big change in the industry just like computer
industry was changed in the late 80es. At that time the computer
industry was based on specialized hardware, specialized OS and
specialized apps (usually all from one vendor, namely IBM). The
computer industry was vertically integrated, close proprietary and
relatively slow to innovations. With the microprocessor, an open
interface led to many operating systems and a huge number of
apps on top of these Operating systems. Hence, this industry
moved from closed and very difficult for innovations, vertically
integrated and proprietary, to horizontal, fast innovation and open.
Networking too has for a long time worked in a same way, based

on specialized hardware, software and features. SDN in essence
offers the possibility to network programmers and third party app
writers build anything they want on top of both router chips (data
plane) and the Network operating system (now through
OpenFlow, but it may be something else as well) in the control
plane, as well as on top of the Network Operating system due to
the open interface it introduces (the control program).

2. THE NETWORK CONTROL PLANE

The Control plane in a network should compute the forwarding
state under three constraints[1,7]:

1. The forwarding state should be consistent with specific low
level hardware/software,

2. It should be done based on entire network topology, and

3. It should be implemented in every router.

To take care of these constraints, network designers should define
specific abstraction for each problem component.

1.The compatibility with specific low level hardware/software
needs an abstraction for a general forwarding model that hides
the details of specific hardware/software;

2. Being able to make decisions based on entire network takes
another abstraction for the network state, hiding the mechanisms
to get it; and

3.Another abstraction that deals with the actual configuration of
each network device, so they are configured in a much easier and
straightforward way.

2.1 The Forwarding Model in SDN
For the forwarding abstraction, we want to hide details of the type
of hardware or software the decision in used at. The device itself
may by manufactured by any device manufacturer and still the
model should work in a same way. OpenFlow is the current
proposal for that[6,15]. It is a standard interface to a switch so we
can access the switch and we can store there flow entries through
this protocol. It is a general language which should be understood
by any switch. Conceptually this is a pretty easy and
straightforward concept, although its practical implementation of
design details (like header matching, allowed actions, etc.), may
not be so[8]. The forwarding abstraction (implemented through
the OpenFlow protocol) exploits the flow table in the routers and
populates them with simple rules (if header x, forward to port y,
etc.). It does a:

match + action,

in a similar way it is done today in networks. The set of actions in
OpenFlow is rather small (forward packet to specific or set of
ports, drop the packet, or send it to the control plane, and also
define bit rate at which packet will be forwarded. The most

60

interesting thing to look at with OpenFlow is rather the action part
of the function, because the desired goal here it to use a minimal
set of actions to be a good enough set of actions to do most work
on one hand, and offer the possibility to chip vendors to
implement it and program writers to offer special features that
makes them unique in the market, on the other hand. Eventually
the OpenFlow should offer protocol independence to build
different types of networks, like Ethernet, VLANs, MPLS, etc,
and new forwarding methods which are also backward compatible
and technology independent[17,18,19,22].

2.2 The Network State in SDN

In routing, we want to abstract the way how the distributed
algorithms get the global network state, and instead only give a
global network view, annotating things and information relevant
to the network administrator, like delay, capacity, error rate, etc,
so the network admin is able to program the switches the way
they desire. It is implemented through the Network Operating
System in SDN, which runs on servers on the network, and the
information flows in both ways, which means the servers get the
information about the network state by querying the switches to
create the global network view. Based on what policy we want to
implement in the switches, we do it in the opposite direction
(router configuration). The Network Operating System gets the
information from the network routers to create a global network
view, and then a control program implemented on top of the
Network Operating System implements policies about routing,
access control, traffic engineering, etc. This is a major change in
the networking paradigm, where the control program implements
the policies into the routers [1].

Figure 2. The Control Plane running on the edge, separately
from the Data Plane in a SDN

2.3 Router Configuration in SDN

The control program needs to install the policies and flow entries
intro each router in the network. But the control program needs to
just express desired behavior, and not be responsible for specific
statements. Another abstraction deals with writes of specific
statements in routers. Rather than the control program dealing
with the actual full network topology, it only deals with a virtual
layer created on top of the full global network topology. This way
each part of the problem is decomposed in a clean way, and each
abstraction deals with its own task. That is, the control program
expresses the desire for some specific network configuration on
one or more routers, and the specification virtualization layer does
the actual mechanics of implementing it on the actual routers in
the network.

The SDN’s achievement is not to eliminate complexity because
the layers and the network operating system are still very complex
and complicated. Its achievement however is to simplify the
interface to the control program so that it has a simple job to
specify what we want to do with the network. The hard part is the
reusable code, and once it is done right, it will be used by any
network programmer without the concern of knowing the details
of its implementation. That part is implemented in the operating
system and the control program, which is the reusable code. The
comparison here is with programming languages and compilers.
The programmer needs not to know how the compiler is
implemented, not should be familiar with the instruction set,
because in programming those two problems have been decoupled
a long time ago. This is something that has not yet been done in
networks, and that is the major goal SDN accomplishes in the data
networking field [5,11,13,15].

3. APPLICATIONS OF SDN

In today’s networks we can easily says that topology is policy,
meaning the actual physical location of routers, firewalls, etc.
dictates how effective the network is, how well the ACLs work,
what our broadcast domains are, etc. When networks are moved
to the cloud, we usually want to keep same policies, but very few
networks operators have an abstract expression of network policy,
rather they have a network topology. SDN allows to specify a
logical topology to the cloud. The cloud then ignores the physical
topology and follows the logical topology based on the policy
read based on the topology initially.

The function is evaluated on an abstract network and only the
compiler needs to know the actual physical network topology.
The major changes that SDN brings to the networking world in
general is not the easier network management (which comes as a
result of it), but rather primarily decouples the data plane from the
control plane. They are now the same in terms of vendor, and
place where they are implemented. This changes the business
model in networking (hardware bought separately from software,

DATA PLANE

Packet
forwarding

Packet
forwarding

Packet
forwarding

Packet
forwarding

CONTROL PLANE

LOGICAL MAP OF NETWORK

Routing
Traffic

engineering Mobility

Network Operating System

61

which can be third party). But it also brings a clean interface
which allows for much easier implementation of testing of
networks in the split architecture.

3.1 Simplified Network Troubleshooting

SDN allows for implementation of control function in the edge of
the network, instead of in the routers, where it actually is, and the
core only deals with delivering packets end-to-end. The core may
easily remain legacy hardware and the network operators need not
to know at all the one is implementing SDN from the own edge of
the network. So it simplifies network troubleshooting and also
there are no disruption periods during network convergence, due
to the fact the one policy is implemented per specific flow, and
each packet will be carried either by an old state, or by a new
state. In traditional routing packets may well be lost during
network convergence, or loops may appear. In SDN the
expressions are high level and easily checked and corrected.

3.2 Network customization

The SDN gives an extra benefit to the network operators to more
easily customize their networks based on their needs. The
policies, traffic engineering, monitoring and security is easier to
implement after getting a network state quickly from the Network
Operating Systems, and moving the network to a virtual
environment without much effort is perhaps the greatest benefit in
this specific scenario. An example would be to improve load
balancing in a network with many servers in different locations
connected though a backbone. The load balancer used in networks
today chooses a lightly loaded server to do the job. But since
servers are in different location, the load balancer does not take
into account to choose the lightly loaded path too. Ideally we
would like to choose both, for a best result. SDN not only gives
the possibility to do this, but more importantly, because the
control plane now resides on the edge, it can be written by anyone
and is vendor independent, it can be done in a very short period of
time and tested in real time.

3.3 Third Party Apps in Networking

 Also, network operators may hire third party people to develop
special features for their networks, as well as remove unneeded
features from routers. Removing some unused features from
routers arguably increases their reliability of routers.

SDN offers a chance to increase the rate of innovation by moving
the operation in software, standards will follow the software
deployment instead of other way around. Another great
opportunity here is experience, technology and innovation
between vendors, universities and researchers.

As of now, there are already different domains where SDN has
been or is under implementation, including data centers (Google

for example), public clouds, university campus networks, cell
phone backhauls [16,17,18,19,20,21], but also in enterprise Wi-Fi
environments and home networks . There are already over 15
vendors offering SDN products, and probably the number will
grow, including new jobs in this field.

SDN is an opportunity to program the network infrastructure in an
easier way, by offering network wide visibility as well as direct
control through OpenFlow.

Another significant advantage in SDN is that OpenFlow offers the
ability to innovate on top of the low level interface that today’s
controllers provide, by increasing the level of abstraction. Today’s
controllers do not have a complete network wide view primarily
for scaling purposes, whereas in SDN the control program has a
complete network wide view, and it can actually use the
virtualized information they need for the network state. It is hard
to compose different tasks in today’s networks (like monitoring,
access control and routing).

4. Programming in SDN

SDN and OpenFlow have made possible to program the network.
In a SDN there is a logically centralized controller and an
arbitrary number of switches under its control. The controller by
default is a smart and slow device, as opposed to the fast and
dumb switches in the network, which only manage packets (based
on the policy coming from the controller). The controller pushes
the policies to switches through the OpenFlow API.

There are three aspects which dictate the way how SDN are
programmed: 1. The data plane abstraction is very simple and the
architecture is centralized with direct control over it. 2. The
programming interface of OpenFlow API is relatively low-level
with a number of limitations. The functionality when
programming through OpenFlow is limited and tied to hardware,
and the programmer needs to manage the resources explicitly,
which in routers are scarce (similar to doing register allocation in
Assembly language coding). 3. Probably the most difficult thing
with OpenFlow programming is when combining different
modules at the same time (like routing, monitoring, load
balancing, etc.). The programmer would be able to do this much
easily in a high programming language.

 A new programming language, called Frenetic has been
developed, allowing for network programming at a higher level
of abstraction. Frenetic is a SQL-like query language, which
allows composition of different modules possibly at the same time
[11]. The following example illustrates how traffic statistics ban
be collected:

62

Select(bytes)*
Where(in:1 & scrport:25)*
GroupBy([dstip])*
Every(30)
Figure 3. Count number of bytes with TCP port 25 coming in
port 1, grouped by destination IP address every 30 seconds.

#Repeating between two ports of a repeater
def repeater():
rules=[Rule(in:2, [out:1]),
 Rule(in:1, [out:2])]
register(rules)
Figure 4. A repeater forwarding traffic from one port to
another

#Monitoring web traffic
def traffic_monitor():
q = (Select (bytes)*
Where (in:1 & srcport:25) *
Every (45))
q >> print
Figure 5. A traffic monitor colleting incoming traffic data
from port 1 with TCP port 25 every 45 seconds

#The previous modules composed into one in Frenetic
def main():
repeater()
traffic_monitor()
Figure 6. Composition of two modules in Frenetic

Figure 6 illustrates how composition of modules can be done in
Frenetic, something which is not possible directly through
OpenFlow interface.

5. Future Work

SDN is a new set of abstraction with many unanswered questions
related to practical implementations. The issues of mobility,
security and privacy will have to be addressed in the future, as
new control programs emerge on top of existing physical
infrastructures. The third party apps developed by different
network programmers will have to be fully validated and checked
for security holes before they are implemented in actual networks.
But SDN also allows for rapid prototyping at software speeds, not
having to wait for vendors to come up with new features in
networks. This is where we will focus our research work in the
future. We will try to implement new routing policies in existing
network environments using SDN and Frenetic in a real network,
thus adding extra features to our network that the actual routers do
not have. We will also focus on mobility, as most network devices
nowadays are mobile.

6. Conclusions

Networking over the years has been vertically integrated, where
hardware comes with its proprietary software and is not open to
innovation.
Software-Defined Networks (SDN) instead decouple the data
plane (which is and should remain the job of the physical routers)
and control plane. The control plane in SDN is removed from the
routers and switches, and instead is done in the edge of the
network, thus allowing for third party software, open interface to
devices regardless of hardware type and vendor, and easier
management of networks. SDN is a new design model in
networks rather than a new technology. It is a set of abstractions
for the control plane rather than implementation mechanisms.

SDN is merely a set of abstractions for the control plane. It is not
a set of mechanisms. It involves a computing function and the
Network Operating System deals with the distribution of state.

SDN in essence offers the possibility to network programmers
and third party app writers build anything they want on top of
both router chips (data plane) and the Network operating system
(now through OpenFlow, but it may be something else as well) in
the control plane, as well as on top of the Network Operating
system due to the open interface it introduces.

7. REFERENCES

[1] M. Casado, M. Freedman, J. Pettit, J. Luo, N. McKeown, S.
Shenker. Ethane: Taking Control of the Enterprise. In
Sigcomm 2007.

[2] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, J. van
der Merwe. The Case for Separating Routing from Routers.
In FDNA 2004.

[3] Members of the Open Networking Foundation.
https://www.opennetworking.org/membership/members

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, J. Turner. OpenFlow:
Enabling Innovation in Campus Networks. In CCR 2008.

[5] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N.
McKeown, S. Shenker. NOX: Towards an Operating
System for Networks. In CCR 2008

[6] M. Casado. What OpenFlow is (and more importantly, what
it’s not). http://networkheresy.com/2011/06/05/what-
openflow-is-and-more-importantly-what-its-not/

[7] M. Casado, T. Koponen, S. Shenker, A. Tootoonchian.
Fabric: A Retrospective on Evolving SDN. In HotSDN 2012

[8] M. Casado. The Scaling Implications of SDN.
http://networkheresy.com/2011/06/08/the-scaling-
implications-of-sdn/

[9] S. H. Yaganeh, A. Tootoonchian, Y. Ganjali. On the
Scalability of Software-Defined Networking. In IEEE
Communications Magazine Feb 2013.

[10] N. Foster, M. J. Freedman, A. Guha, R. Harrison, N. P.
Katta, C. Monsanto, J. Reich, M. Reitblatt, J. Rexford, C.
Schlesinger, A. Story, D. Walker. Languages for Software-

63

http://yuba.stanford.edu/~casado/ethane-sigcomm07.pdf�
http://www.cs.princeton.edu/~jrex/papers/rcp.pdf�
http://www.openflow.org/documents/openflow-wp-latest.pdf�
http://www.openflow.org/documents/openflow-wp-latest.pdf�
http://www.openflow.org/documents/openflow-wp-latest.pdf�
http://yuba.stanford.edu/~casado/nox-ccr-final.pdf�
http://yuba.stanford.edu/~casado/nox-ccr-final.pdf�
http://yuba.stanford.edu/~casado/nox-ccr-final.pdf�
http://networkheresy.wordpress.com/2011/06/05/what-openflow-is-and-more-importantly-what-its-not/�
http://networkheresy.wordpress.com/2011/06/05/what-openflow-is-and-more-importantly-what-its-not/�
http://conferences.sigcomm.org/sigcomm/2012/paper/hotsdn/p85.pdf�
http://networkheresy.wordpress.com/2011/06/08/the-scaling-implications-of-sdn/�
http://www.nec-labs.com/~lume/sdn-reading-list.html�
http://www.nec-labs.com/~lume/sdn-reading-list.html�
http://www.nec-labs.com/~lume/sdn-reading-list.html�
http://frenetic-lang.org/publications/overview-ieeecoms13.pdf�

Defined Networks. In IEEE Communication Magazine Feb
2013.

[11] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J.
Rexford, A. Story, D. Walker. Frenetic: A Network
Programming Language. In ICFP 2011.

[12] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker.
Composing Software-Defined Networks. In NSDI 2013.

[13] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, D.
Walker. Abstractions for Network Update. In Sigcomm
2012.

[14] B. Lantz, B. Heller, N. McKeown. A Network in a Laptop:
Rapid Prototyping for Software-Defined Networks. In
HotNets 2010.

[15] M. Canini, D. Venzano, P. Perešini, D. Kostić, J. Rexford. A
NICE Way to Test OpenFlow Applications. In NSDI 2012.

[16] H. Kim, N. Feamster. Improving Network Management with
Software Defined Networking. In IEEE Communications
Magazine Feb 2013.

[17] A. Nayak, A. Reimers, N. Feamster, R. Clark. Resonance:
Dynamic Access Control in Enterprise Networks. In WREN
2009.

[18] A. Tavakoli, M. Casado, T. Koponen, S. Shenker. Applying
NOX to the Datacenter. In HotNets 2009.

[19] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, R.
Johari. Plug-n-Serve: Load-balancing Web Traffic using
OpenFlow. In Sigcomm 2009 Demo.

[20] M. Bansal, J. Mehlman, S. Katti, P. Levis. OpenRadio: A
Programmable Wireless Dataplane. In HotSDN 2012.

[21] L. E. Li, Z. Morley Mao, J. Rexford. Towards Software-
Defined Cellular Networks. In EWSDN 2012.

[22] List of OpenFlow Software Projects
http://yuba.stanford.edu/~casado/of-sw.html

64

http://www.cs.princeton.edu/~jrex/papers/icfp11.pdf�
http://www.cs.princeton.edu/~jrex/papers/icfp11.pdf�
http://www.cs.princeton.edu/~jrex/papers/icfp11.pdf�
http://www.cs.princeton.edu/~jrex/papers/nsdi13.pdf�
http://www.cs.cornell.edu/~jnfoster/papers/frenetic-consistent-updates.pdf�
http://klamath.stanford.edu/~nickm/papers/a19-lantz.pdf�
http://klamath.stanford.edu/~nickm/papers/a19-lantz.pdf�
http://klamath.stanford.edu/~nickm/papers/a19-lantz.pdf�
http://www.cs.princeton.edu/~jrex/papers/nice12.pdf�
http://www.cs.princeton.edu/~jrex/papers/nice12.pdf�
http://www.cs.princeton.edu/~jrex/papers/nice12.pdf�
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06461195�
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06461195�
http://www.cs.princeton.edu/courses/archive/fall10/cos561/papers/Resonance.pdf�
http://www.cs.princeton.edu/courses/archive/fall10/cos561/papers/Resonance.pdf�
http://www.cs.princeton.edu/courses/archive/fall10/cos561/papers/Resonance.pdf�
http://conferences.sigcomm.org/hotnets/2009/papers/hotnets2009-final103.pdf�
http://conferences.sigcomm.org/hotnets/2009/papers/hotnets2009-final103.pdf�
http://conferences.sigcomm.org/hotnets/2009/papers/hotnets2009-final103.pdf�
http://conferences.sigcomm.org/sigcomm/2009/demos/sigcomm-pd-2009-final26.pdf�
http://conferences.sigcomm.org/sigcomm/2009/demos/sigcomm-pd-2009-final26.pdf�
http://conferences.sigcomm.org/sigcomm/2012/paper/hotsdn/p109.pdf�
http://conferences.sigcomm.org/sigcomm/2012/paper/hotsdn/p109.pdf�
http://conferences.sigcomm.org/sigcomm/2012/paper/hotsdn/p109.pdf�
http://www.cs.princeton.edu/~jrex/papers/ewsdn12.pdf�
http://www.cs.princeton.edu/~jrex/papers/ewsdn12.pdf�

	[22] List of OpenFlow Software Projects http://yuba.stanford.edu/~casado/of-sw.html

