
CSE Framework: A UIMA-based Distributed System for
Configuration Space Exploration

Elmer Garduno1, Zi Yang2, Avner Maiberg2, Collin McCormack3, Yan Fang4, and Eric Nyberg2

1 Sinnia, elmerg@sinnia.com
2 Carnegie Mellon University, {ziy, amaiberg, ehn}@cs.cmu.edu

3 Boeing Company, collin.w.mccormack@boeing.com
4 Oracle Corporation, yan.fang@oracle.com

Abstract. To efficiently build data analysis and knowledge discovery pipelines, researchers

and developers tend to leverage available services and existing components by plugging them

into different phases of the pipelines, and then spend hours to days seeking the right compo-

nents and configurations that optimize the system performance. In this paper, we introduce

the CSE framework , a distributed system for a parallel experimentation test bed based on

UIMA and uimaFIT, which is general and flexible to configure and powerful enough to sift

through thousands option combinations to determine which represent the best system con-

figuration.

1 Introduction

To efficiently build data analysis and knowledge discovery “pipelines”, researchers and develop-

ers tend to leverage available services and existing components by plugging them into different

phases of the pipelines [1], and then spend hours, seeking for the components and configurations

that optimize the system performance. The Unstructured Information Management Architecture

(UIMA) [3] provides a general framework for defining common types in the information system

(type system), designing pipeline phases (CPE descriptor), and further configuring the compo-

nents (AE descriptor) without changing the component logic. However there is no easy way to

configure and execute a large set of combinations without repeated executions, while evaluating

the performance of each component and configuration.

To fully leverage existing components, it must be possible to automatically explore the space

of system configurations and determine the optimal combination of tools and parameter settings

for a new task. We refer to this problem as configuration space exploration, which can be formally

defined as a constraint optimization problem. A particular information processing task is defined

by a configuration space, which consists of mt components that define each of the n phases with

corresponding configurations. Given a limited total resource capacity C and input set S, configu-
ration space exploration (CSE) aims to find the trace (a combination of configured components)

within the space that achieves the highest expected performance without exceeding C total cost.

Details on the mathematical definition and proposed greedy solutions can be found in [6].

In this paper, we introduce the CSE framework implementation, a distributed system for paral-

lel experimentation test bed based on UIMA and uimaFIT [4]. In addition, we highlight the results

from two case studies where we applied the CSE framework to the task of building biomedical

question answering systems.

Fig. 1. Example YAML-based pipeline descriptors

2 Framework Architecture

We highlight some features of the implementation in this section. Source code, examples, docu-

mentation, and other resources are publicly available on GitHub5. To benefit developers who are

already familiar with UIMA framework, we have developed a CSE tutorial in alignment with the

examples in the official UIMA tutorial.

Declarative descriptors. To leverage the CSE framework, users need to specify how the

components should be organized in the pipeline, which values need to be specified for each com-

ponent configuration, which is the input set, and what measurement metrics should to be applied.

Analogous to a typical UIMA CPE descriptor, components, configurations, and collection read-

ers in the CSE framework are declared in extended configuration descriptors which are based on

the YAML format. An example of the main pipeline descriptor and a component descriptor are

shown in Figure 1.

Architecture. Each pipeline can contain an arbitrary number of AnalysisEngines declared by

using the class keyword or by inheriting configuration options from other components by name.

Combinations of components are configured using an options block and parameter combinations

within a component are configured on a cross-opts block. To take full advantage of the CSE

framework capabilities, users inherit from a cse.phase, a CAS multiplier that provides, option

multiplexing, intermediate resource persistence and resource management for long running com-

ponents. The architecture also supports grouping options into sub-pipelines as a convenient way

of reducing the configuration space for combinations whose performance is already known.

Evaluation. Unlike a traditional scientific workflow management system, CSE emphasizes

the evaluation of component performance, based on user-specified evaluation metrics and gold-

standard outputs at each phase. In addition the framework keeps track of the performance of all the

executed traces, this allows inter-component evaluation and automatic tracking of performance

improvements through time.

Automatic data persistence. To support further error analysis and reproduction of experi-

mental results, intermediate data (CASes) and evaluation results are kept in a repository accessi-

ble from any trace at any point during the experiment. To prevent duplicate execution of traces the

system keeps track of all the execution traces an recovers those CASes whose predecessors have

5 http://oaqa.github.io/

Table 1. Case study result

Comp # Conf # Trace # Exec
DocMAP PsgMAP

Max Median Min Max Median Min

Participants ∼1,000 ∼1,000 92 ∼1,000 .5439 .3083 .0198 .1486 .0345 .0007

CSE 13 32 2700 190,680 .5648 .4770 .1087 .1773 .1603 .0311

already been executed. Also the overall results from experiments are kept in a historical database

to allow researchers to keep track of the performance improvements along time.

Configurable selection and pruning. If gold-standard data is provided for a certain phase,

then components up to that phase can be evaluated. Given the measured cost of executing the

components provided, components can be ranked, selected or pruned for evaluation and opti-

mization of subsequent phases. The component ranking strategy can be configured by the user;

several heuristic strategies are implemented in the open source software.

Distributed architecture. We have extended the CSE framework implementation to execute

the task set in parallel on a distributed system using JMS. The components and configurations

are deployed into the cluster beforehand. The execution, fault tolerance and bookkeeping are

managed by a master server. In addition we leverage the UIMA-AS capabilities to execute specific

configurations in parallel as separate services directly from the pipeline.

3 Building biomedical QA Systems via CSE

As a case study, we apply the CSE framework to the problem of building effective biomedical

question answering (BioQA) on two different tasks.

In one case, we employ the topic set and benchmarks, including gold-standard answers and

evaluation metrics, from the question answering task of the TREC Genomics Track 2006, as

well as commonly-used tools, resources, and algorithms cited by participants. The implemented

components, benchmarks, task-specific evaluation methods are included in domain-specific layer

named BioQA, which was plugged into the BaseQA framework.

The configuration space was explored with the CSE framework, automatically yielding an op-

timal configuration of the given components which outperformed published results for the same

task. We compare the settings and results for the experiment with the official TREC 2006 Ge-

nomics test results for the participating systems in Table 1. We can see that the best system de-

rived automatically by the proposed CSE framework can outperform the best participating system

in terms of both DocMAP and PsgMAP, with fewer, more basic components. This experiments

ran on a 40 node cluster during 24 hours allowing the execution on 200K components over 2,700

execution traces. More detailed analysis can be found in [6].

We also used the CSE framework to automatically configure a different type of biomedical

question answering system for the QA4MRE (Question Answering for Machine Reading Evalu-

ation) task at CLEF. The CSE framework identified a better combination, which achieved 59.6%

performance gain over the original pipeline. Details can be found in the working note paper [5].

4 Related Work

Previous work has been done on this area, in particular DKPro Lab [2] a flexible lightweight

framework for parameter sweep experiments and the U-Compare [7] framework, an evaluation

platform for running tools on text targets and compare components, that generates statistics and

instance-based visualizations of outputs.

One of the main advantages of the CSE framework is that it allows the exploration of very

large configuration spaces by distributing the experiments over a cluster of workers and collecting

the statistics on a centralized way. Another advantage on the CSE framework is that configurations

can have arbitrary nesting levels as long as they form a DAG by using sub-pipelines. Also results

can be compared end-to-end at a global level to understand overall performance trends on time.

One area where CSE could take advantage of the aforementioned frameworks is on having a

graphical UI for pipeline configuration, better visualization tools for combinatorial and instance-

based comparison and a more expressive language for workflow definition.

5 Conclusion & Future Work

In this paper, we present a UIMA-based distributed system to solve a common problem in rapid

domain adaptation, referred to as Configuration Space Exploration. It features declarative descrip-

tors, evaluations, automatic data persistence, global resource caching, configurable configuration

selection and pruning, and distributed architecture. As a case study, we applied the CSE frame-

work to build a biomedical question answering system, which incorporated the benchmark from

TREC Genomics QA task, and the results showed the effectiveness of the CSE framework system.

We are planning to adapt the system to a wide variety of interesting information processing

problems to facilitate rapid domain adaption and system building and evaluation of the commu-

nity. For educational purpose, we are also interested in adopt the CSE framework as an experiment

platform to teach students the principled ways to design, implement and evaluate an information

system.

Acknowledgement. We thanks Leonid Boystov, Di Wang, Jack Montgomery, Alkesh Patel, Rui

Liu, Ana Cristina Mendes, Kartik Mandaville, Tom Vu, Naoki Orii, and Eric Riebling for the

contribution to the design and development of the system and valued suggestions to the paper.

References

1. D. Ferrucci et al. Towards the Open Advancement of Question Answering Systems. Technical report,

IBM Research, Armonk, New York, 2009.
2. R. E. de Castilho and I. Gurevych. A lightweight framework for reproducible parameter sweeping in

information retrieval. In Proceedings of the DESIRE’11 workshop, New York, NY, USA, Oct. 2011.
3. D. Ferrucci and A. Lally. UIMA: an architectural approach to unstructured information processing in the

corporate research environment. Nat. Lang. Eng., 10(3-4), Sept. 2004.
4. P. Ogren and S. Bethard. Building test suites for UIMA components. In Proceedings of the (SETQA-NLP

2009) workshop, Boulder, Colorado, June 2009. Association for Computational Linguistics.
5. A. Patel, Z. Yang, E. Nyberg, and T. Mitamura. Building an optimal QA system automatically using

configuration space exploration for QA4MRE’13 tasks. In Proceedings of CLEF 2013, 2013.
6. Z. Yang, E. Garduno, Y. Fang, A. Maiberg, C. McCormack, and E. Nyberg. Building optimal infor-

mation systems automatically: Configuration space exploration for biomedical information systems. In

Proceedings of the CIKM’13, 2013.
7. K. Yoshinobu, W. Baumgartner, L. McCrohon, S. Ananiadou, K. Cohen, L. Hunter, and J. Tsujii. U-

Compare: share and compare text mining tools with UIMA. Bioinformatics, 25(15):1997–1998, 2009.

in press.

