
Using UIMA to Structure an Open Platform for
Textual Entailment

Tae-Gil Noh and Sebastian Padó

Department of Computational Linguistics
Heidelberg University

69120 Heidelberg, Germany
{noh, pado}@cl.uni-heidelberg.de

Abstract. EXCITEMENT is a novel, open software platform for Tex-
tual Entailment (TE) which uses the UIMA framework. This paper dis-
cusses the design considerations regarding the roles of UIMA within EX-
CITEMENT Open Platform (EOP). We focus on two points: a) how to
best design the representation of entailment problems within UIMA CAS
and its type system. b) the integration and usage of UIMA components
among non-UIMA components.

Keywords: Textual Entailment, UIMA type system, UIMA application

1 Introduction

Textual Entailment (TE) captures a common sense notion of inference and ex-
presses it as a relation between two natural language texts. It is defined as
follows: A Text (T) entails a Hypothesis (H), if a typical human reading of T
would infer that H is most likely true [4]. Consider the following example:

T: That was the 1908 Tunguska event in Siberia, known as the Tunguska mete-
orite fall.

H1: A shooting star fell in Russia in 1908.
H2: Tunguska fell to Siberia in 1908.

The text (T) entails the first hypothesis (H1), since a typical human reader
of T would (arguably) believe that H1 is true. In contrast, T does not entail H2.
Nor does H1 entail T, that is, entailment is a directed relation.

The promise of TE lies in its potential to subsume the semantic process-
ing needs of many NLP applications, offering a uniform, theory-independent
semantic processing paradigm. Software for the Recognition of Textual Entail-
ment (RTE) have been used to build proof-of-concept versions of various tasks,
including Question Answering, Machine Translation Evaluation, Information Vi-
sualization, etc. [1, 7].

As a consequence of the theory-independence of TE, there are many different
strategies to build RTE systems [1]. This has led to a practical problem of
fragmentation: Various systems exist, and some have been made available as

open-source systems, but there is little to no interoperability between them, since
the systems are, as a rule, designed to implement one specific algorithm to solve
RTE. The problems is complicated by the fact that RTE systems generally rely
on tightly integrated components such as linguistic analysis tools and knowledge
resources. Thus, when a researcher wants to develop a new RTE algorithm, they
often need to invest major effort to build a novel system from scratch: Many of
the components already exist – but just not in a usable form.

EXCITEMENT open platform (EOP) has been developed to address those
problems. It is a suite of textual inference components which can be combined
into complete textual inference systems. The platform aims to become a common
development platform for RTE researchers, and we hope that it can establish
itself in the RTE community in a similar way to MOSES [6] in Machine Trans-
lation.

Compared to Machine Translation, however, a major challenge is that seman-
tic processing typically depends on linguistic analysis as well as large knowledge
sources, which is a direct source of the reusability problems mentioned above. In
this paper, we focus on the architectural side of the platform which was designed
with the explicit goal of improving component re-usability. We have adopted
UIMA (Unstructured Information Management applications) and UIMA CAS
(Common Analysis Structure) as the central building blocks for data represen-
tation and preprocessing within EOP.

One interesting aspect is that our adoption of UIMA has been partial and
parallel. By partial, we mean that there are two groups of sharable components
within EOP: the “core” components and the “LAP” components (see Section 2).
We have adopted UIMA only for LAPs; however, we use UIMA CAS as one of
the standard data containers, even in non-UIMA components. Parallel refers to
the fact that we allow non-UIMA components to be integrated into our LAPs
transparently.

2 EXCITEMENT: An Open Platform for Textual
Entailment Systems

RTE systems traditionally rely on self-defined input types, pre-processing (lin-
guistic annotation) representations, and resources, tailored to a specific approach
to RTE. EXCITEMENT open platform (EOP) tries to alleviate this situation
by providing a generic platform for sharable RTE components. The platform has
the following requirements.

Reusing of existing software : The platform must permit easy integration
and re-using of existing softwares, including language processing tools, RTE
components, and knowledge resources.

Multilinguality : The platform is not tied to a specific language. Adding suites
for a new language in the future should not be restricted by the platform
design.

	
	

Entailment	 Decision	 	
Algorithm	 (EDA)	

Dynamic	 and	 Sta7c	
Components	

(Algorithms	 and	 Knowledge)	

Linguis7c	
Analysis	 Tools	

EXCITEMENT Platform
Linguistic Analysis

Pipeline (LAP)
Entailment Core(EC)

UIMA Components Java Components

Raw
entailment
problems

Decisions

Annotated
entailment
problems

Fig. 1: EXCITEMENT Architecture Overview

Component Independence : Components of EOP should be independent and
complete as they are. So they can be used by different RTE approaches. This
is also true for linguistic annotation pipelines and their components: An
annotation pipeline as a whole, or an individual component of the pipeline,
can be replaced with equivalent components.

Figure 1 visualizes the top level of the platform. At this level, the platform
can be grouped into two boxes: one is the Linguistic Analysis pipeline (LAP), and
the other is the Entailment Core (EC). Entailment problems are first analyzed in
the LAP, since almost all RTE algorithms require some level of linguistic anno-
tation (e.g., POS tagging, parsing, NER, or lemmatization). The annotated TE
problems are then passed to the EC box. In this box, the problems are analyzed
by Entailment Decision Algorithms (EDAs), which are the “core” algorithms
that make the entailment call and may in turn call other core components to
provide either algorithmic additions or knowledge. Finally, the EDA returns an
entailment decision.

It is relatively natural to think of the LAP in terms of UIMA, since the
typical computational linguistic analysis workflow corresponds well to UIMA’s
annotation pipeline concept. Each annotator in LAP adds some annotations,
and downstream annotators can use existing annotations and add richer anno-
tations. UIMA CAS and its type system are strong enough to represent any
data. UIMA AEs (Analysis Engines) are a good solution for encapsulating and
using annotator components. In Section 3, we describe the UIMA adoption in
the LAP in more detail.

For Entailment Core (EC) components, however, the situation is different. In
contrast to LAP, the functionalities of EC components are often not naturally
mapped as “annotation behavior”. To visualize this, let’s check the example in
Figure 2. The figure shows a conceptual search process of a RTE system that
is based on textual rewriting. In this example, the text is “Google bought Mo-
torola.”, and the system tries to determine hypothesis “Motorola is acquired by

bought

Google Motorola

acquired

Google Motorola

acquired

Motorola by

Google

is

A parse tree
(derived)

A parse tree
(derived)

Derived parse
trees

Fig. 2: Entailment as a search on possible rewritings

Google.” as an entailment. The example system gets a dependency parse tree of
the text, and starts the rewriting process. On each iteration, it generates possible
entailed sentences by querying knowledge bases. In the example, lexical knowl-
edge is used on the first rewriting (buy entails acquire), and syntactic knowledge
(change to passive voice) is used on the second derivation. The process will gen-
erate many derived candidates per iteration. The algorithm must employ a good
search strategy to find the best rewriting path from text (T) to hypothesis (H).

On this example, there are three major component types. One is the knowl-
edge component type that supports knowledge look-up, another is generation
of derived parse trees, and finally the decision algorithm itself drives the search
process and makes the entailment decision. Expressing behaviors of such com-
ponents in terms of annotations on the artifact, might be possible, but is very
hard and counter-intuitive.

Following this line of reasoning, we decided that the EC components are
better thought of as Java modules whose common behavior is defined by a set
of Java interfaces, data types, and contracts, and have defined them accord-
ingly in the EXCITEMENT open platform specification.1 More specifically, we
have defined a typology of components. They include a type for the top-level
EDA as well as (currently) five major component types: (1) a feature extractor
(get a T-H pair CAS, return a set of features for the T-H pair); (2) a seman-
tic distance calculator (get a T-H pair CAS, return semantic similarity); (3) a
lexical resource type (lexical relation database); (4) a syntactic resource type
(phrasal relation database); (5) an annotation component (dynamic enrichment
of entailment problems).

Although UIMA components are not suitable for conceptualizing inference
components, we decided to keep CAS as the data container even in the EC
components as far as possible to take advantage of the CAS objects created in
the LAP. Thus, various components (including EDAs) gets CAS (as JCas) as an
argument on their methods. Also note that LAP and EC boxes are independent:

1 Specification and architecture for EXCITEMENT open platform, http://excitement-
project.eu/index.php/results

CAS

language, channel, docId, collectionId, ...
Entailment Metadata

Text View

 That was ...

Subject of Analysis

Pos.
PR

Pos.
V

Token

Gov

dep.NSUBJ

...

...

...

POS
Annotations

Token
Annotations

Dependency
Annotations

Hypothesis View

 A shooting star ...

Subject of Analysis

Pos.
ART

Pos.
ADJ

Token

Dep Dep

dep.DET

Token

...

...

...

Pos.
NN

Token

Gov

pairId, goldAnswer, text, hypothesis
Entailment Pair

Dep

dep.
AMOD

Token

Fig. 3: CAS representation of a Text-Hypothesis pair

as long as the CAS holds correct data, the EC components does not care which
pipeline has generated the data.

3 Details on the UIMA usage in EXCITEMENT

3.1 CAS for Entailment Problems

The input to any RTE system is a set of entailment problems, typically Text-
Hypothesis pairs, each of which is represented in one CAS. Figure 3 shows a
pictorial example of the CAS data structure for the example pair (T, H1) from
Section 1. It contains the two text fragments (in two views) and their annotations
(here, POS tags and dependencies), as well as global data such as generic meta-
data (e.g., language) and entailment-specific metadata (e.g., the gold-standard
answer).

On the level of the CAS representation, we had to address two points: one
is the representation of entailment problems in terms of CASes, the other one is
the type definitions.

Regarding the first point, general practice in text analysis use cases is to
have one UIMA CAS corresponding to one document. This suggests representing
both text and hypothesis (including, if available, their document context) as

separate CASes. However, we decided to store complete entailment problems as
individual CASes, where each CAS has two named views (one view for text, the
other for hypothesis). This approach has two major advantages: first of all, this
enables us to represent cross-annotations between texts and hypotheses, notably
alignments, which can be added by annotators. Second, this enables us to define a
straightforward extension from “simple” entailment problems (one text and one
hypothesis) to “complex” entailment problems (one text and multiple hypotheses
or vice versa, as in the “RTE search” task [2]).

Regarding the second point, we adopted the DKPro type system [5], which
was designed with language independence in mind. It provides types for mor-
phological information, POS tags, dependency structure, named entities, and
co-reference, etc. We extended the DKPro type system with the types necessary
to define textual entailment-specific annotation. This involved types for mark-
ing stretches of text as texts and hypotheses, respectively, as well as storing
correspondence information between texts and hypotheses, pair IDs, gold labels,
and some meta data. We also added types for linguistic annotation that are
not exclusively entailment-specific, but were not covered yet by DKPro. This
included annotation for polarity, reference of temporal expressions, word and
phrase alignments, and semantic role labels.

Details about the newly defined types can be found in the platform specifi-
cation, and the type definition files are part of the platform code distribution.

3.2 Wrapping the Linguistic Annotation Pipeline

One decision that may be surprising at the first glance is that we defined our
own top-level Java interface for users of the LAP that hides UIMA’s own run-
time access methods. This interface dictates the common capabilities that all
pipelines of LAP should provide.

The reason for this decision is twofold and pragmatic in nature, making
transitioning to and using the EOP as easy as possible for developers.

The first aspect is the learning curve. We would like to avoid the need for
Entailment Core developers to deeply understand UIMA AEs and Aggregated
Analysis Engines (AAEs). We feel that a deep understanding of these points
requires substantial effort but is not really to the point, since many EC developers
will only want to use pre-existing LAPs. By making the UIMA aspect of the LAP
transparent to the Entailment Core, EC developers do not need to know how the
LAP works internally beyond knowledge of the (fairly minimal) LAP interface.
Of course, the EC developers still need to understand UIMA CAS very well.

The second aspect is migration cost. If the LAP pipelines were nothing but
UIMA AEs, all analysis pipelines of existing RTE systems would have to be
deeply refactored, which comes at a considerable cost. Our approach allows such
analysis pipelines to be kept largely intact and merely surrounded by a wrapper
that provides the requires functionality and converts their output into valid
UIMA CASes according to the EOP’s specification.

Nevertheless, there are good reasons to encourage the use of AE-based LAPs:
AE-based components are generally much more flexible, and they are very easy to

assemble into AAE pipelines. Therefore, we encourage AE-based LAP develop-
ment by providing ready-to-use code that implements our LAP interface, taking
a list of AEs as input. Thus, if the individual components are already present
as AEs, the implementation effort to assemble them into a LAP is near zero.
In this sense, we see our LAP interface as a thin wrapper above UIMA with
the purpose of enabling peaceful co-existence between UIMA and non-UIMA
pipelines. In the long run, we also hope to provide some new AEs back to the
UIMA community.

4 Some Open Issues

In this section, we discuss two open questions that we are facing in future work.

CAS in non-UIMA environments. There is considerable number of best-practice
strategies for handling CAS objects (reset the data structure instead of creating
a new one; use a CAS pool instead of generating multiple CASes, etc). When
a CAS is used in an UIMA context (i.e., in the LAP), it is not hard to guide
the developers to follow these rules. However, with CAS being used as a general
data container throughout the EOP, developers also often encounter CAS (JCas)
objects outside specific UIMA contexts, and we have found it harder to guide
the developers towards “proper usage”.

For example, one part of the EXCITEMENT project is concerned with the
construction of Entailment Graphs [3], structured knowledge repositories whose
vertices are statements and whose edges indicate entailment relations. Since the
standard data structure for annotations is JCas, the graph developers tend to
add one JCas for each node. This is not problematic for small graphs, but once
the graph gets bigger, this can be problematic; CAS is a very large data structure,
and its creation and deletion take some time. We are still trying to establish best
practices for using CASes in non-UIMA EOP environment.

Annotation Styles: Hidden dependencies. One of the EOP design requirement
was the clear separation of LAP and EC. This has been fairly well achieved, at
least on a technical level.

However, it is clear that there are still implicit dependencies between linguis-
tic analysis tools and entailment core components. Consider the case of syntactic
knowledge components such as DIRT-style paraphrase rules in the Entailment
Core. Such components store entailment rules as pairs of partial dependency
trees which have typically been extracted from large corpora. If the corpus used
for rule induction was parsed with a different parser than the current entailment
problem, then matching the sentence against the rule base will result in missing
rules, due to differences in the analysis style. Note that this implicit dependency
does not break the UIMA pipeline, since it does not involve the use of a novel
type system, but rather differences in the interpretation of shared types. We are
currently investigating what type of “style differences” can be observed from
actual annotators.

5 Conclusion

In this paper, we have provided an overview of the EXCITEMENT open plat-
form architecture and its adoption of UIMA. We have adopted and adapted
UIMA CAS and the DKPro type system as a flexible, language-independent
data container for Textual Entailment problems. UIMA also provides the back-
bone for platform’s LAP components. There are several open issues that is to
be resolved in the future, but the EXCITEMENT project has already profited
substantially from the use of the abstractions that UIMA offers as well as the
integration of existing components from UIMA communities.

The first version of EXCITEMENT open platform has been finished2 with
three fully running RTE systems integrated with all core components and an-
notation pipelines. The platform currently supports three languages (German,
Italian and English), and is also shipped with various tools and resources for
TE researchers. We believe that the platform will become a valuable tool for
researchers and users of Textual Entailment.

Acknowledgment. This work was supported by the EC-funded project EXCITE-
MENT (FP7 ICT-287923).

References

1. Androutsopoulos, I., Malakasiotis, P.: A Survey of Paraphrasing and Textual En-
tailment Methods. Journal of Artificial Intelligence Research 38 (2010) 135–187

2. Bentivogli, L., Magnini, B., Dagan, I., Trang Dang, H., Giampiccolo, D.: The fifth
PASCAL recognising textual entailment challenge. In: Proceedings of the TAC 2009
Workshop on Textual Entailment, Gaithersburg, MD (2009)

3. Berant, J., Dagan, I., Goldberger, J.: Learning entailment relations by global graph
structure optimization. Computational Linguistics 38(1) (2012) 73–111

4. Dagan, I., Glickman, O., Magnini, B.: The PASCAL Recognising Textual Entail-
ment Challenge. In: Proceedings of the First PASCAL Challenges Workshop on
Recognising Textual Entailment, Southampton, UK (2005)

5. Gurevych, I., Mühlhäuser, M., Müller, C., Steimle, J., Weimer, M., Zesch, T.:
Darmstadt knowledge processing repository based on UIMA. In: Proceedings of
the First Workshop on Unstructured Information Management Architecture at the
Conference of the Society for Computational Linguistics and Language Technology,
Tübingen, Germany (2007)

6. Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N.,
Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A.,
Herbst, E.: Moses: Open source toolkit for statistical machine translation. In:
Proceedings of the 45th Annual Meeting of the Association for Computational Lin-
guistics, Prague, Czech Republic (2007) 177–180

7. Sammons, M., Vydiswaran, V., Roth, D.: Recognizing textual entailment. In Bikel,
D.M., Zitouni, I., eds.: Multilingual Natural Language Applications: From Theory
to Practice. Prentice Hall (2012)

2 The platform has been released under an open source license, and all
codes and resources can be freely accessed via the project repository.
http://hltfbk.github.io/Excitement-Open-Platform/project-info.html

