
A Model-driven approach to NLP programming
with UIMA

Alessandro Di Bari, Alessandro Faraotti,
Carmela Gambardella, and Guido Vetere

IBM Center for Advanced Studies of Trento
Piazza Manci, 1 Povo di Trento

Abstract. In Natural Language Processing, more complex business use
cases and shorter delivery times drive a growing need of smoother, more
flexible and faster implementations. This trend also requires integrating
and orchestrating different functionalities delivered by services belong-
ing to different technological platforms. All these needs imply raising the
level of abstraction for NLP components development. In this paper we
present a Model Driven Architecture approach suitable to develop an
open and interoperable UIMA-based NLP stack. By decoupling UIMA
NLP models from other solution specific platforms and services, we ob-
tain major architectural improvements.

1 Introduction

As Natural Language Processing (NLP) approaches complex tasks such as Ques-
tion Answering or Dialog Management, the capability for NLP tools to seam-
lessly interoperate with other software services, such as knowledge bases or rules
engines, becomes crucial. Such level of integration may require linguistic models
to be shared among a variety of different platforms, each of which comes with
its own information representation language. Platforms like UIMA1 or GATE2

consist of middleware and tools for designing and pipelining NLP specific tasks,
including support for modeling data structures for text annotation, such as lex-
ical, morphological and syntactic features, which may be embedded in inter-
process communication protocols. However, while perfectly suited for annota-
tion purposes, NLP specific schema languages, such as the UIMA Type System,
fall short on fulfilling solution-level modeling needs. Model-Driven software Ar-
chitectures (MDA), on the other hand, are specifically aimed at tackling the
complexity of modern software infrastructures, with emphasis on the integration
and the orchestration of different technological platforms. The MDA approach
is based on providing formal descriptions (models) of requirements, interactions,
data structures, protocols, and many other aspects of the desired system, which
are automatically turned into technical resources, such as schemes and software
modules, by activating transformation rules.

1 http://uima.apache.org/
2 http://gate.ac.uk/



Based on this consideration, we adopted an MDA approach to develop a
“Watson ready”3, UIMA-based NLP stack for Italian, as part of the activity
of the newborn IBM Language & Knowledge Center for Advanced Studies of
Trento4. We wanted our stack to be as open and interoperable as possible, to
help users leveraging the availability of NLP resources and tools in the Open
Source / Open Data space. In addition, our stack aims at being independent
from language specific issues and domains, to facilitate its reuse across projects
and within our (multinational) Company. The basic idea was to design a highly
modularized general model including all the required structures, and to obtain
technical platform-specific resources from a suitable set of model-to-model trans-
formations. Also, we embraced the idea of abstracting semantic information away
from the UIMA Type System, as in [5] and in [7], and evaluated the benefit of
representing such kind of information by specific means. In sum, we looked at
UIMA as a well-suited platform for linguistic analysis, which allows the integra-
tion of analytic components into managed workflow pipelines, but regarded at
the UIMA Type System as a schema specification for that platform, rather than
as a general modeling language for any NLP-based solution.

Here we present an overview of the basic ideas behind our approach, introduce
our project, and discuss future directions. At the present stage of development,
we can share our vision on MDA positioning and motivation with respect to NLP
development (section 3), and we can report our first implementation experiences
(section 4). Finally, we outline some related topic and introduce future works.

2 Motivating Scenario

Natural Language based solutions may require the NLP stack to cooperate with
other components in a complex system. Such cooperation typically involves data
exchanges with reference to a shared information model. The picture 1 shows
the integration of an NLP stack with a Knowledge Base (e.g. an Ontology-based
Data Access System) and a Rule Engine.

An UIMA-based NLP pipeline produces an annotated text (step 1 in the pic-
ture 1) contained in an UIMA CAS (Common Annotation Structure). A wrapper
of the UIMA Type System defines all the operations needed for a consumer (the
Rule Engine in this case) in order to access the CAS and invoke the appropri-
ate operations within the cooperating subsystem when needed (see 4.2). When
developing and maintaining the solution, an Engineer builds a rule set (see step
3) in order to process linguistic structures and interact with a Knowledge Base
(step 4), which, in turn, uses the annotated text to store assertions as the result
of an Information Extraction process (step 5). In a separate flow, the Knowledge
Base can be queried by a User through a Question Answering System based on
a suitable query language (step 6). The integration of all components involved
is guaranteed by a common abstract model (Platform Independent Model) that
contains the overall conceptualization of the system. The transition from one

3 www.ibm.com/watson/
4 www.ibm.com/ibm/cas/



Fig. 1. Architectural sketch

platform specific data structure to another is handled by a set of Model-to-
Model transformations (steps 7 and 8 ). The figure also shows the link to legacy
(possibly huge) conceptual models, such as the KB ontology (step 9).

3 Model Driven Architecture for NLP

Model Driven Architecture (MDA) [6] is a development approach, strictly based
on formal specifications of information structures and behaviors, and their se-
mantics. MDA is managed by Object Management Group (OMG)5 based on
several modeling standard such as: Unified Modeling Language (UML)6, Meta-
Object Facility (MOF), XML Metadata Interchange (XMI) and others. MDA
supports Model Driven Development/Engineering (MDD, MDE).

The key idea behind MDA is to provide a higher level of abstraction so that
software can be fully designed independently from the underlying technological
platform. More formally, MDA defines three macro “modeling” layers:

– Computation Independent Model (CIM)
– Platform Independent Model (PIM)
– Platform Specific Model (PSM)

The first one can be related to a Business Process Model and does not nec-
essary imply the existence of a system that automates it. The PIM is a model
that is independent from any technical platform; the third (PSM) layer is the
actual implementation of the model with respect to a given technology and it is
automatically derived from the PIM. Notice that the PIM allows a comprehen-
sive representation of the structure and behavior of the system being developed.

5 http://omg.org/
6 http://www.uml.org/



The modeling language is typically UML or EMF7, but it could actually be any
other Domain Specic Language (DSL).

Developing powerful NLP tasks, such as Question Answering systems, re-
quires combining a great variety of analytic components, which is what UIMA
has been designed for. We consider UIMA the standard solution for document
workflow analysis. Within this framework, MDD tools can be effectively used to
better manage the UIMA Type System. In particular, we decided to look at it
as a PSM dedicated to text annotation. The motivation for leveraging MDD (in
the NLP field) can be summarized as follows:

– Formalization: MDA languages are well studied in logics and reasoning
mechanisms can be developed upon. [1]

– Expressiveness: MOF meta-modeling allow great and well-founded expres-
siveness [4], including modeling behaviors.

– Support: The availability of tools, including diagramming and code gener-
ation, improves software life-cycle and team collaboration.

In particular, with respect to our architecture, we modeled UIMA annota-
tions by defining classes rather than just (data) types, so that a consumer is able
to invoke operations designed for those objects. Access to UIMA annotation is
then achieved by means of automatically generated wrappers. Another motiva-
tion for a model driven approach was the need to represent complex linguistic
data, and exploit existing tooling and resources for generating training data for
a statistical parser.

In sum, we tried to exploit the maturity and flexibility of MDD tools while
keeping up the power of UIMA as a framework for component integration,
pipeline execution, and workflow management in general. As the PIM language,
we chose EMF because it is already integrated with UIMA and provides pow-
erful and mature model driven features. Once also the code is generated (by
UIMA JCASgen), the type system correspond to an implementation of a (busi-
ness) domain model, limited to the structural aspects (as opposed to behavioral
aspects).

At PIM level, we also have to represent those properties that, once trans-
formed against a target model, give specific characteristics on that model. For
instance, in order to generate the UIMA Type System (PSM) starting from the
PIM, we have to represent on the source model whether a class (that is a root
in a hierarchy on the PIM model) will be generated as an UIMA annotation or
not (UIMA TOP). Here we have taken two possible scenarios into account:

– Having an UML PIM, this specification is easily accomplished by using an
UML profile8. Profiles define stereotypes that can be further structured with
custom properties. This way, we have a generic ”Unstructured Information”
profile that at least, encompasses an Annotation stereotype; thus a class
that is thought to become an annotation will be simply ”marked” with this
stereotype.

7 http://www.eclipse.org/modeling/emf/
8 http://www.omg.org/spec/#M&M



– Having an EMF PIM (such as our current implementation), we can represent
the same thing as an EMF annotation. Therefore, (we apologize for the words
conflict) we will have a class annotated as Annotation.

In any case, a class stereotyped as Annotation on the PIM will take the role of
a generic annotation for document analysis, independently from the underlying
framework.

The main benefit of our approach is the ability to represent NLP objects
independently from any particular implementation: we are using different (gen-
erated) PSMs (that are better explained in section 4) all deriving from the
starting (PIM) model, as shown in the picture 2.

Fig. 2. Mdd for NLP: different abstraction layers

These benefits have certainly a price, that is essentially represented by the
cost of developing the necessary transformations. However, following basic as-
sumptions of the MDD approach, we estimate that those cost are well paying
back, especially when heterogeneous components have to be integrated, devel-
opment is managed iteratively, and models are subject to high volatility.

4 Model Driven Implementation Aspects

In order to better clear up how we are leveraging the Model Driven approach,
we list here the artifacts (PSMs and code) we are generating through appropriate
transformations that we have developed.
Starting from our “application” model:

– UIMA type system (we modified the existing transformation from EMF in
order to avoid any further modification on the UIMA type system)

– EMF wrapper of UIMA type system
– this wrapper also acts as the input for creating the model for the Rule engine

as explained below

Starting from (our) models of common standard data for parser training such as
CONLL, PENN and others we generated all necessary (OpenNLP-specific) data
for training the parser on:



– Tokenization
– Named Entities
– Part of Speech tagging
– Chunking
– Parsing

To represent the model (PIM), we use the Eclipse Modeling Framework9

(EMF), which represents a de facto Java-based standard for meta-modeling. In-
formally, we may say EMF represents a subset of UML (the structural part)
with very precise semantics for code generation. In the future, we could move
this representation to a profiled UML, as mentioned above (see section 3). Fur-
thermore, EMF offers very powerful generation features. Summarizing, in the
current implementation we use EMF in two ways:

1. A language to represent the model
2. A PIM model to generate different target PSM

4.1 NLP Parser

The NLP Parser component is implemented using Apache OpenNLP10 and
UIMA11; it is based on a UIMA Type System built from the Syntax and the
Abstract models using the UIMA transformation utility. The training corpora
for the parser has to be provided in a specific format required by OpenNLP.
Since the data that we had available for training were in standard formats such
as PENN12, CONLL13 and others, some transformations were required. Ecore
models have been created for the purpose of representing source formats. Fur-
thermore, some simple JET14 transformations has been developed in order to
generate our corpora (in specific OpenNLP formats)

Compared to other solutions, this makes our infrastructure extremely flexible:
should the parser be replaced or the data formats changed, the only operation
we will have to make is to modify the JET template accordingly.

4.2 Type System EMF Wrapper

As anticipated in 2, in the higher layers of our architecture, we have a Rule
Engine that acts as a reasoner on annotation objects coming from the UIMA
pipeline. We wanted this layer to be able to call operations implemented on those
objects (as explained in section 3) and those objects always implementing the ex-
act interfaces of the (Ecore) PIM model. Given these requirements, we developed
a transformation that generates a wrapper of the UIMA type system and that

9 http://www.eclipse.org/modeling/emf/
10 http://opennlp.apache.org/
11 http://uima.apache.org/
12 http://www.cis.upenn.edu/~treebank/
13 http://ilk.uvt.nl/conll/#dataformat
14 http://www.eclipse.org/modeling/m2t/?project=jet



fully reflects the starting PIM model, including operations. Once implemented,
the code will be kept up also against future re-generations, thanks to merging
capabilities of this transformation. Thus, as shown in figure 1, the Rule Engine
“consumes” instances of this wrapper, and still can access the underlying UIMA
annotation. We considered the possibility of directly adding these operations on
classes generated by UIMA (via JCAS generation utility) but this would not be
consistent with our model-driven approach since those operations would not be
part of a general, system-wide model.

4.3 Rule Engine

As far as the Rule Engine is concerned, we chose IBM Operational Decision
Manager (ODM)15. ODM rules have to be written against a specific model,
called Business Object Model (BOM), that allows a user-friendly business rule
editing; ODM provides tools to set up a natural language vocabulary: users can
use it to write business rules in a pseudo-natural language. Once defined, the
rules are executed on a BOM-related Java implementation named Execution
Object Model (XOM). We obtained the BOM by reverse engineering the XOM,
and the XOM directly from Java classes (implementing the type system wrapper)
generated from our PIM (EMF) model. Therefore, the BOM model can be seen
as just another manifestation of our PIM model.

4.4 Knowledge Base

Our architecture is backed by a Knowledge Base Management System which
stores and reasons on information extracted from many sources. Leveraging on
the Knowledge Model included in the PIM, we were able to integrate an external
pre-existing system, named ONDA (Ontology Based Data Access) [3]. ONDA
supports Ontology Based Data Access (OBDA) on OWL2-QL (16), by ensuring
sound and complete conjunctive query answering with the same efficiency a scal-
ability of a traditional database [2]. Because the ONDA underlying Knowledge
Model was already designed with EMF, we simply adopted it in order to be in-
cluded in the PIM. This way, reasoning and query answering services have been
included in the PIM model as operations available to all other components (i.e.
the Rule Engine).

5 Conclusion and future works

We have outlined here an innovative approach to NLP development, based on
the idea of setting UIMA as the target platform in a Model-Driven development
process. A major benefit of this approach consists in giving NLP models a greater
value, especially in terms of generality, usability, and interoperability.

15 http://www-03.ibm.com/software/products/us/en/odm/
16 http://www.w3.org/TR/owl2-profiles/



While developing this idea, we understood that a suitable Model-Driven ma-
chinery for NLP should be supported by specific design patterns for concrete
models. In particular, the model we have developed has been abstracted both
from morphosyntactic specificity and from semantic aspects. The former (in-
cluding part-of-speech classes, genders, numbers, verbal tenses, etc) may signif-
icantly vary among different languages; the latter (including concepts like per-
sons, events, places, etc) are related to specific application domains. By decou-
pling these layers, we achieved a lightweight “generic” UIMA type system[7], we
designed a powerful generic model for morphosyntactic features, and we managed
ontological information with proper expressive means. Refining and extending
this model is part of our future plans.

We implemented a first prototype of a Knowledge Base query system based
on the Eclipse Modeling Framework (EMF). For the future, we are considering
the possibility of representing the model in UML, in order to have a greater
representational power (such as modeling sequence diagrams).

The work presented here is still at an early stage. More work is needed to
complete the linguistic model, for instance in the area of argument structures,
such as verbal frames. From an implementation standpoint, our priority is to
consolidate, improve and extend the set of Model-to-Model transformations, and
to further exploit MDD tools.

References

1. A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. A formal framework for
reasoning on uml class diagrams. In Proceedings of the 13th International Sym-
posium on Foundations of Intelligent Systems, ISMIS ’02, pages 503–513, London,
UK, UK, 2002. Springer-Verlag.

2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Dl-lite:
Tractable description logics for ontologies. In AAAI, volume 5, pages 602–607,
2005.

3. P. Cangialosi, C. Consoli, A. Faraotti, and G. Vetere. Accessing data through
ontologies with onda. In Proceedings of the 2010 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON ’10, pages 13–26, Riverton,
NJ, USA, 2010. IBM Corp.

4. Liliana Favre. A formal foundation for metamodeling. In F. Kordon and Y. Ker-
marrec, editors, Reliable Software Technologies Ada-Europe 2009, volume 5570 of
Lecture Notes in Computer Science, pages 177–191. Springer Berlin Heidelberg,
2009.

5. D. Ferrucci, J W. Murdock, and C. Welty. Overview of component services for
knowledge integration in uima (aka suki). Technical report, IBM Research Report
RC24074, 2006.

6. J. Miller and J. Mukerji. Mda guide version 1.0.1. Technical report, Object Man-
agement Group (OMG), 2003.

7. K. Verspoor, W. Baumgartner Jr, C. Roeder, and L. Hunter. Abstracting the types
away from a UIMA type system. From Form to Meaning: Processing Texts Auto-
matically. Tübingen:Narr, pages 249–256, 2009.


