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Abstract. OntoUML and OWL are ontology languages appropriated to 

different knowledge representation levels. In order to have better knowledge 

representation and reasoning capabilities in OWL ontologies, an Ontology 

Engineering should be used – which corresponds to the transformation of a 

conceptual model ontology language, such as OntoUML, to a computational 

ontology language, such as OWL. This paper aims to bridge the expressivity 

gap between these languages through a Model Driven Architecture automated 

transformation from OntoUML to OWL with SWRL rules that contributes to (i) 

make easier the OWL creation from OntoUML, (ii) eliminate the human errors 

in this process, (iii) improve the resultant OWL ontology semantics. 

1. Introduction 

In order to have better knowledge representation and reasoning capabilities in 

computational ontologies, like the ones represented with the Web Ontology Language 

(OWL), an Ontology Engineering with well-defined phases is defended in [Guizzardi 

2007]. In a conceptual modeling phase, highly-expressive languages should be used to 

create strongly axiomatized ontologies that approximate as well as possible to the ideal 

ontology of the domain. The focus of these languages is on representation adequacy, 

since the resulting specifications are intended to be used by humans in tasks such as 

communication, domain analysis and problem-solving [Guizzardi 2007]. Guizzardi 

proposed in [Guizzardi 2005] an ontologically well-founded profile of the Unified 

Modeling Language (UML), later named OntoUML, to be a language used in this step. 

OntoUML provides stereotypes based on the Unified Foundational Ontology (UFO) to 

capture domain knowledge and has been successfully applied in different domains like 

electrophysiology [Gonçalves et al. 2007], telecommunications [Barcelos et al. 2011] 

and oil and gas [Guizzardi et al. 2010]. 

 Once users have already agreed on a common conceptualization, versions of a 

reference ontology can be created as the objective of the Ontology Engineering (its last 

phase). These versions have been named in the literature lightweight ontologies. 

Contrary to reference ontologies, lightweight ontologies are not focused on 

130



  

representation adequacy but are designed with the focus on guaranteeing desirable 

computational properties [Guizzardi 2007]. An Example of a language suitable for 

lightweight ontologies is the Web Ontology Language (OWL). OWL is the standard 

language for knowledge representation and reasoning in the semantic web and in 

computational applications. The addition of rules written in Semantic Web Rule 

Language (SWRL), a Horn-like rule language, in OWL ontology improves its 

representation expressivity. 

 In order to achieve this objective, an intermediate phase is necessary in the 

Ontology Engineering: a phase to bridge the gap between the conceptual modeling of 

references ontologies and the coding of these ontologies in terms of specific lightweight 

ontology languages. Issues that should be addressed in such a phase are, for instance, 

determining how to deal with the difference in expressivity of the languages that should 

be used in each of these phases [Guizzardi 2007]. This paper aims to present an 

automated transformation from an OntoUML model to OWL ontology with SWRL 

rules, here named OntoUML2OWL+SWRL, which is inserted into this Ontology 

Engineering phase. 

 The OntoUML2OWL+SWRL is a Model Driven Architecture (MDA) 

transformation that contributes to the creation of OWL files with improved semantics to 

be used for knowledge representation and reasoning on computational applications. Two 

different OntoUML to OWL transformations already exists; however, 

OntoUML2OWL+SWRL differ from them in scope and complexity. 

 This paper is structured as follows: Section 2 presents the 

OntoUML2OWL+SWRL, including all conceptual considerations and limitations, and 

all the implementation technologies used. As related works, Section 3 presents the other 

OntoUML to OWL transformations and their relations to our transformation. Section 4 

presents some conclusions as well as future works.  Background information about 

OntoUML and OWL concepts is provided during the paper’s sections.  

2. The OntoUML2OWL+SWRL Transformation 

The OntoUML2OWL+SWRL transformation was created as a Model Driven 

Architecture (MDA) transformation [Miller and Mukerji 2003]. This transformation is 

done in the M2 level (the metamodel level), which makes it reusable, as each specific 

transformation in the M1 level (the domain model level) is an instance of the generic 

M2 transformations. The conceptual ontology model can be seen as a Computational 

Independent Model (CIM), while the OWL with SWRL rules model can be seen as a 

Platform Independent Model (PIM). Further transformations can be created from the 

PIM (the OWL) to code - a possible Platform Specific Model (PSM). OntoUML 

metamodel is presented in [Guizzardi 2005], and a MOF-Based OWL metamodel can be 

found in http://www.w3.org/2007/OWL/wiki/MOF-Based_Metamodel. 

 OntoUML2OWL+SWRL accomplish the following objectives: (i) make easier 

the OWL files creation from OntoUML models, (ii) eliminate the human errors in this 

process, and (iii) improve the resultant OWL ontology semantics. 

 The conceptual transformation’ considerations are presented in section 2.1, 

while the implementation tools and languages are presented in section 2.2. 
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2.1. The Conceptual Transformation’s Design 

An intrinsic characteristic of transformation from high expressive modeling languages 

to computational ones (that must be decidable, tractable, etc.) is the loss of expressivity. 

These losses are presented as limitations during this section. We can cite, as a first 

example, the incapacity of this transformation to represent OntoUML’s existential 

dependencies (specific instance dependence). Although OWL can represent existential 

dependencies, in order to allow this representation, the classes’ instances must be 

known. As no instances are represented in OntoUML models, the transformation cannot 

create the resulting OWL with the existential restrictions. 

 The design considerations about OntoUML2OWL+SWRL transformation are 

described in this section. Our intention here is to hide as much as possible the resulting 

code and present just the ideas. 

Classes: We have taken as a development premise the separation of the models’ 

concepts with the metamodel’s ones for class transformation. That is, in 

OntoUML2OWL+SWRL the generated OWL file contains only domain classes, for 

example, applying the transformation to a Genealogy OntoUML model, the resulting 

OWL will have just classes with Genealogy concepts, like Mother, Father and 

Offspring. It will not have OntoUML metamodel’s concepts like Kind, Role, etc. This 

decision simplifies the generated OWL and makes it simpler to the users (humans or 

machines). 

 In classes’ transformation, the OntoUML classes are directly translated to OWL 

classes. Even though the simplicity of this transformation, OntoUML’s metamodel 

restrictions are considered in this step. Disjoint concepts and Phases-partitions (a 

special kind of generalization sets), explained hereafter, are examples of these 

considerations. 

Disjoint Concepts: One of UFO’s meta-properties is the identity principle, which is 

related to the nature of an object. For example, a Student is a Person, as they have the 

same identity principle, but they can never be a Horse, as these entities have different 

identity principle. The entities that provide identity principles are named Substance 

Sortals (stereotyped in OntoUML as Kinds, Quantities or Collectives). Mixins 

(Categories, Role Mixins or Mixins, in OntoUML) are the entities that aggregate objects 

of different identity principles. An example of Mixin is the concept “Animal”, as it 

aggregate instances of the classes Person and Horse. In contrast with Sortals and Mixins, 

Moments (Modes and Relators) are entities that inhere in, and, therefore, are 

existentially dependent of, another entity. These entities’ restrictions are considered in 

the OntoUML’s metamodel, as can be seen in Figure 1 below. 

 

Figure 1 - Fragment of the OntoUML's metamodel 
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 The disjoint entities are implemented in OntoUML2OWL+SWRL by the 

following considerations (top-level entities are entities that are not generalized by 

others): (a) all Substance Sortals are disjoint from each other; (b) all top-level Moments 

are disjoint from each other; (c) top-level Moments are disjoint from Substance Sortals 

and from top-level Mixin Class types. 

Generalization Sets: OntoUML have two generalization sets’ meta-properties: 

isCovering and isDisjoint, both of Boolean type. These meta-properties were considered 

in this transformation as follows:  

 isCovering = true: the generalized class is equivalent to all complete set. 

 isDisjoint = true: the generalizing classes are marked disjoint from each other. 

 Figure 2 presents as an example: (a) an OntoUML generalization set, (b) the 

resultant OWL class taxonomy, (c) the OWL Class’ Person definition, and (d) the OWL 

Class Man’s definition. 

 

Figure 2 – Transformation of Generalization Sets 

 In OntoUML, Phases-partitions are a special type of generalization sets 

composed of classes stereotyped as Phases. As a particularity, they have always the true 

value for isDisjoint and isCovering. This particularity is considered in 

OntoUML2OWL+SWRL transformation. 

Associations: OWL distinguishes between two main categories of associations, called 

properties: Object properties, that link individuals to individuals, and DataType 

properties, that link individuals to data values [Hitzler et al. 2012]. In 

OntoUML2OWL+SWRL, OntoUML associations are mapped to Object properties (here 

discussed), while DataTypes are mapped to Data properties (discussed later in this 

section). 

 Differently from OntoUML, which do not have directed associations, OWL 

properties are directed binary relations. This implies the necessity to create two object 

properties for each OntoUML association: a direct one and its inverse. As a design 

choice, we have named the inverse relation with the same direct relation’s name 

prefixed with “INV.”. This decision was taken because the generation of improved 

inverse names (for example: “drives” and “is driven by”) would require language 

processing and it would be different in every natural language (English, French, etc.). 

 OntoUML associations always have a source class and a target class. Source and 

Target classes are considered in the transformation in order to create, respectively, the 

domain and range of an OWL object property. The nomenclature of generated OWL 
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object property is also related to these classes, as the reading direction is not a feature of 

OntoUML metamodel, i.e., it is just a visual resource and cannot be read from the 

OntoUML model to the OWL ontology. In order to produce the desired OWL object 

property name, the name of the OntoUML model must be given from the source class to 

the target one. Figure 3 illustrate the results of correct and incorrect associations. 

 

Figure 3 - Association representation 

 When no name is assigned to an association, the association’s OntoUML 

stereotype is used to create its name using the following nomenclature: 

“AssociationStereotype.SourceClassName.TargetClassName”.  An example of a relation 

named this way can be found in the SWRL rule found in Figure 4. 

 Every object property is asserted as Equivalent Class of the class that it is 

related, except in the case when the cardinality’s lower bound is zero (explained in 

Cardinalities). Disjointness of object properties is also considered as relations with 

different stereotypes are set as disjoint from each other (associations with the same 

stereotype are not set as disjoint from each other, as one can be a specialization of 

other). OntoUML’s Material and Part-whole relations are separately explained as their 

transformations have particularities. 

Material Relations: In OntoUML, Material relations are the ones that depend on a 

Relator to exists, i.e., the Material relations are derived relations that need a truth maker 

to exist. Figure 4 (A) presents a Material relation (“drives”) that is derived from the 

existence of the Relator License. 

 

Figure 4 - SWRL resultant from Material relations 

 To each Material relation that exists in an OntoUML model a SWRL rule is 

created. This rule aims to represent the Material relation’s derivation from the Relator. 

 Every SWRL rule created in this transformation is in accordance with 

Description Logic (DL) safe-rules [Motik et al. 2005], guaranteeing reasoning 

decidability. 

Part-whole Relations: Differently to other associations, Part-whole relations are 

transformed to OWL sub-object properties of an object property with the name of its 

stereotype. This is done in order to better represent its meta-properties (called 

characteristics in OWL). 

134



  

 According to UFO, part-whole relations (stereotyped as componentOf, 

memberOf, subCollectionOf and subQuantityOf in OntoUML) are always irreflexive 

and asymmetric – a characteristic that is considered in OntoUML2OWL+SWRL. 

 Part-whole relations’ different types have different transitivity relations, as can 

be seen in [Guizzardi 2005]. subCollectionOf and subQuantityOf are transitive; 

memberOf is intransitivity (it is never transitive); componentOf is non-transitivity, i.e., 

there are cases when it is transitive and other cases when it is not. Figure 5 represent the 

transitivity cases considered in OntoUML2OWL+SWRL (empty stereotypes are left to 

indicate that the pattern can occur with the following functional complex stereotypes: 

Kind, Subkind, Role or Phase). 

 

Figure 5 - Transitivity cases considered in OntoUML2OWL+SWRL 

 Four different generic SWRL rules can be created to represent the transitivity 

cases from Figure 5. These rules are added to the resultant OWL ontology when its 

specific case occurs. For example, every time the transitivity case (A) from Figure 5 can 

occur (the sum of componentOf is greater than 1), the following SWRL rule is created: 

componentOf (?x, ?y), componentOf (?y, ?z), differentFrom (?x, ?y), differentFrom (?x, 

?z), differentFrom (?y, ?z) -> componentOf (?x, ?z). 

 It is important to note that SWRL rules acts over instances, while the object 

properties’ characteristics are defined in a higher level in OWL. If we just mark, for 

example, subCollectionOf as irreflexive, asymmetric and transitive, this will result in an 

error. As in the SWRL rules we are stating that the transitivity occurs only in different 

elements (by using the differentFrom operator), this error does not occurs. 

 An important limitation on OntoUML part-whole relations representation is 

about its metaproperties isEssential and isInseparable, which cannot be represented in 

OWL as they represent the existential dependence between parts and wholes. 

DataTypes: Direct and structured DataTypes, with and without asserted cardinality, are 

treated in our transformation, as presented in Figure 6. These DataTypes are mapped to 

OWL’s DataType properties. 

 

Figure 6 - Example of considered different representations of DataTypes 
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 The transformation supports the following OWL DataTypes: unsigned int, 

unsigned byte, double, String, normalized string, Boolean, hex binary, Integer (int), 

short, byte, unsigned long. If the provided DataType is not one of these, the 

transformation creates it as a Literal. Hidden cardinality is mapped to “exaclty one” 

concept in OWL. Attributes from the same class are set as disjoint from each other. 

 Applying the OntoUML2OWL+SWRL transformation to the model presented in 

Figure 6 we have the following object properties presented in Figure 7. 

 

Figure 7 – OntoUML’s DataTypes transformation to OWL Data Properties 

 DataTypes are created with the following nomenclature: “Class.AttributeName”. 

In case of a structured DataType, it is created with the following nomenclature 

“Class.AtributeName.StructuredDatatypeAtributeName”. 

Cardinalities: Different cardinalities imply different transformations, as can be seen in 

Figure 8. This holds for object properties as well as to DataType properties. 

 

Figure 8 – Cardinality transformation 

 As can be seen in Figure 8, there’s a transformation limitation to represent 

cardinalities with lower bound equal to zero, since the assertion “has min 0” would 

provoke an inconsistency. This happens because in OWL all elements “have min 0” 

properties with any other element, hence, OWL assumes that any instance of a class may 

have zero or more values for a particular property since a restriction was not added 

[Patel-Schneider et al. 2004].  

 In fact, properties (associations and attributes) with minimum cardinality 0 

(optional properties) are not desirable in OntoUML models as they usually hide an 

entity’s role. For example, an association “Person drives 0..* Car” hides the Person’s 

role Driver. As stated in [Guizzardi 2005], the representation of optional cardinality 

constraints leads to unsound models with undesirable consequences in terms of clarity.  
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2.2. Transformation Implementation Technologies 

The Ontology Lightweight Editor (OLED), currently in its version 0.8, is more than just 

an OntoUML editor - it is full framework for development of OntoUML ontologies. It 

provides: (a) a model editor , (b) a syntactical validation, (c) an OntoUML to OWL 

transformation, (d) a validation environment, which provides semantic validation 

realized as anti-pattern identification and treatment, and as a visual simulation through 

an Alloy transformation [Sales et al. 2012]. OLED is a free tool available for download 

at: https://code.google.com/p/ontouml-lightweight-editor/. 

 We have taken as a requisite to the development of the OntoUML2OWL+SWRL 

that the generated OWL file must open in Protégé 4.3. This decision was taken due to 

the fact that the Protégé is the most used tool for creation of OWL ontologies - it can be 

helpful to developers to view the OWL resultant from the transformation. 

 We have used as implementation language Java and, in order to do the 

translation, we have used The OWL API (http://owlapi.sourceforge.net/), an open source 

API that allows the developer to easily create OWL files. 

 As a usability issue, it is important to mention that, for 

OntoUML2OWL+SWRL, it is not obligatory that the OntoUML models to be created 

directly on OLED. The models can be created on professional tools like Sparx Systems 

Enterprise Architect or at Astah and exported as an XMI file and them imported in 

OLED. 

 OntoUML2OWL+SWRL code is open and can be found inside OLED’s project. 

3. Other OntoUML to OWL Transformations 

The first identified initiative to create an OWL ontology with SWRL rules codification 

from an OntoUML model were made in [Zamborlini et al. 2008]. Although this 

transformation has been used to create an application based on an heart’s 

electrophysiology ontology [Gonçalves et al. 2007], no automated transformation was 

created from the OntoUML model to the OWL, i.e., the OWL ontology was created 

manually. 

 Two other OntoUML to OWL transformations already exists (none of them 

considers SWRL rules), both implemented at the Ontology Lightweight Editor (OLED). 

In this section we are going to discuss the conceptual aspects of these two different 

transformations: the OLED’s Simple Transformation (Section 3.1) and the Temporal 

Transformation (Section 3.2).  

 In order to exemplify the differences between the transformations, we are going 

to consider the following OntoUML model, presented in Figure 9. This simple 

OntoUML model does not intent to represent the world as it is: it is just a syntactical 

valid model with simple concepts in order to be used as a valid input for the 

transformations presented in this paper. This diagram states that every Person has 

Headache and that Persons can be Drivers. To be a Driver the Person has to be related 

with one License that is related with one or more Cars. The Protégé 4.3 software 

(http://protege.stanford.edu/) was used to visualize the generated OWL ontologies. 
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Figure 9 - Simple OntoUML model used as example 

3.1. OLED`s Simple Transformation 

The OLED’s Simple Transformation, implemented by researcher Antognoni 

Albuquerque, was the first transformation from OntoUML to OWL that (similarly to the 

transformation proposed in this paper) did not included OntoUML stereotypes in the 

resultant OWL file. OLED’s Simple Transformation treats the following cases in a 

different manner then we do: generalization set meta-properties and disjoint classes 

based on OntoUML stereotypes. It does not, however, treats: part-whole relations’ meta-

properties (nonetheless the user can create them using annotations in the OntoUML 

model) and transitivity, material relations’ derivations, and structured DataTypes (it 

does treats simple DataTypes, creating OWL data properties). Another important design 

difference from this transformation to OntoUML2OWL+SWRL is the fact that it creates 

the OWL axioms as “subClassOf” instead of “EquivalentClasses”. OLED’s Simple 

Transformation does not consider temporal aspects. 

 Figure 10 represents, for the example model presented in Figure 9, the OLED’s 

simple transformation for: (a) the class taxonomy, (b) the Object property taxonomy and 

(c) the License class description. 

 

Figure 10 – OLED’s Simple Transformation results 

 Considering the available transformations, the OLED’s Simple Transformation 

is by far the most similar transformation to OntoUML2OWL+SWRL as both do not 

consider temporal aspects and as both do not intent to represent OntoUML or UFO (the 

foundational ontology which OntoUML is grounded) concepts in the generated OWL 

file. Yet, still comparing both transformations, OLED’s Simple Transformation lacks in 

expressivity in comparison to OntoUML2OWL+SWRL as the latter considers more 

OntoUML restrictions when creating the OWL result. 

3.2. Temporal Transformation 

Similarly to this paper, [Zamborlini 2011] proposes alternatives for an OntoUML to 

OWL transformation concerned in to represent ontologies in an epistemological level 

language representing all ontological distinctions in order to guarantee the model 

quality. However, [Zamborlini 2011] has focus on temporal questions in the 

transformation process, while only static world is considered in the 

OntoUML2OWL+SWRL Transformation. Zamborlini’s transformation is called here 

Temporal Transformation and it is also available in OLED. 
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 The Temporal Transformation has two different approaches to consider temporal 

aspects of OntoUML in OWL. These approaches are (a) the Reification and (b) the 

Worm View. 

a) Reification Transformation 

Reification can be understood as the objectification of something so one can refer to it, 

qualify it and quantify it.  

 The focus in this transformation is the ontological difference between Objects 

and Moments, in which mutable information of individuals are reified. Then, the 

reification covers different types of moments. In this way, every others entities are 

mapped as Objects. 

 Applying the Reification Transformation to the OntoUML example model 

presented in Figure 9 we can see (a) the class taxonomy, (b) the Object property 

taxonomy and (c) the License class description in Figure 11. 

 

Figure 11 - Temporal Reification Transformation results 

b) Worm Views Transformations 

The OLED tool implements three different Worm View temporal considerations over 

OWL, they are called A0, A1 and A2. 

 In this approach individuals are considered spatiotemporal worms whose 

temporal parts are worm slices, in a way that individuals are composed by temporal 

parts and individual concept that maps him. The OWL base structure to represent this 

approach is divided in two different levels, the static one, called the Individual Concept 

Level (ICL), and the dynamic one, called the Time Slice Level (TSL). These three 

implementations are: 

A0: Rigid concepts are represented in ICL; other concepts, relations, attributes in TSL. 

A1: Rigid concepts, necessary and immutable attributes, and relations that implies in 

mutual existential dependency are represented on the ICL, and concepts, relations that 

not implies in mutual existential dependency and attributes not necessary and immutable 

simultaneously, on the TSL. 
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A2: Rigid concepts, necessary and immutable attributes, and relations that implies in 

existential dependency are represented on the ICL, and concepts, relations that not 

implies in existential dependency and attributes not necessary and immutable 

simultaneously, on the TSL. 

 As can be noticed, the Temporal Transformation has huge different 

considerations from OntoUML2OWL+SWRL because it is focused in the representation 

of temporal aspects. These transformations present a more expressive OWL as a result, 

but to do this it mix domain concepts with OntoUML and UFO concepts (see Figure 11) 

which demands that the OWL user (a person or a computational application) has this 

previous knowledge in order to understand and manipulate the output of the 

transformation. OntoUML2OWL+SWRL have as premise that just domain concepts are 

created in the OWL, resulting in a comprehensive OWL file. 

4. Conclusions 

This paper presents a Model Driven Architecture automated transformation from 

OntoUML to OWL with SWRL rules, named OntoUML2OWL+SWRL, that contributes 

to (i) make easier the OWL creation from OntoUML, (ii) eliminate the human errors in 

this process, (iii) improve the resultant OWL ontology semantics. This transformation is 

placed between two phases of an Ontology Engineering as it bridges the gap between 

two classes of languages with different purposes: (i) OntoUML, on one hand, is a well-

founded ontology representation language focused on representation adequacy 

regardless of the consequent computational costs, which is not actually a problem since 

OntoUML models are targeted at human users; and (ii) on the other hand, OWL, a 

lightweight representation language with adequate computational properties. 

 Although two other OntoUML to OWL transformation exists (namely, the 

Simple OLED’s transformation and the Temporal Transformation) 

OntoUML2OWL+SWRL have different transformation scope and it is placed between 

them in complexity. Differently from the other existent transformation, 

OntoUML2OWL+SWRL also create SWRL rules for representation of Mediations and 

Part-whole relations. 

 The conceptual transformation’s design was presented with limitations and other 

implications inherent to these kinds of transformations. OntoUML2OWL+SWRL is 

implemented in OLED, a framework for OntoUML, and its code is open and fully 

available. 

 As the required OWL expressivity can be different depending on its application, 

the implementation of a parameterized transformation, where the user can choose which 

features the resulting OWL can have, is a future work. Also, transformation for specific 

OWL profiles can be created. As visual diagramming languages (including here 

OntoUML) are not always able to capture all relevant restrictions of a domain, they are 

usually incremented with restriction rules in Object Constraint Language (OCL). The 

coupling of an OCL to SWRL transformation to OntoUML2OWL+SWRL is desired. 

The DataType transformation can be improved in the future considering extensions to 

UFO presented in [Albuquerque and Guizzardi 2013], where the notion Semantic 

Reference Spaces to are employed to improve the ontological foundations concerning 

value spaces. 
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