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ABSTRACT
There is a wide array of online photographic content that
is not geotagged. Algorithms for efficient and accurate ge-
ographical estimation of an image are needed to geolocate
these photos. This paper presents a general model for us-
ing both textual metadata and visual features of photos to
automatically place them on a world map.

1. INTRODUCTION AND MOTIVATION
The primary goal of the 2013 MediaEval placing task [3]

was to develop techniques for accurately predicting the geo-
location of a set of Flickr images in terms of latitude and
longitude. In addition, a secondary goal was to enhance pre-
dictions by estimating the error of the predicted location of
each image. The task organisers provided a set of approxi-
mately 8.5 million images with metadata and locations for
training, and a set of 262,000 images without geotags for
testing.

The motivation for the techniques we have developed for
the task was twofold; we firstly wanted to develop a tech-
nique that can operate using either the visual content or
the metadata, but which also seamlessly allowed blending of
information across modalities and allowed information from
external gazetteers to be incorporated. Secondly, we wanted
our technique to be scalable and efficient, with the aim of
being able to estimate the position of an image in well under
a second using standard desktop hardware.

2. OVERALL METHODOLOGY
The basic idea of our approach is that we estimate a con-

tinuous probability density function (PDF) over the surface
of the Earth from a number of features extracted from the
query image and/or its metadata. To estimate the PDF,
each feature provides a fixed size set of points (latitude,
longitude) which are then combined, and a kernel density
estimator can be used to estimate the probability density at
any arbitrary position. By finding the modes of the PDF we
create an estimate of the location of the photograph from
the position of the mode with the highest probability. By
fitting a univariate Gaussian over the support of the high-
est probability mode, we can estimate the accuracy of the
estimated geolocation as a function of the variance.
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In practice, density estimation and mode-finding can be
combined by applying the mean-shift algorithm. Mean-shift
has been used in the context of geolocation estimation in the
past; for example, Hays and Efros [4] used mean-shift on the
results of content-based image search to determine proba-
ble locations. Our approach differs from that of Hays and
Efros’s, because, whereas they only considered single (high
recall/low precision) content-based features, we consider the
fusion of multiple features from different modalities. In ad-
dition, Hays and Efros used the mean-shift algorithm for
coarse-grained location estimation, with a very large kernel
bandwidth, whilst in our technique, because of the way we
are using features we are able to use a much smaller kernel
bandwidth for fine-grained location estimation.

3. EXPERIMENTS
The implementation of our methodology was realised in

Java using OpenIMAJ1 [1] and Lucene2. For speed, we used
an approximate mean-shift implementation inspired by the
one in scikit-learn3. The approximations stem from using a
regular grid for determining the seed points from which to
seek modes (rather than using the actual data), and using
nearest-neighbours to assign data points to modes, rather
than actually assigning them to the mode they converge to.
A KD-Tree is used for efficient nearest neighbour lookup.

3.1 Features
The following features were used in our experiments. Each

feature provides a set of geographic points in response to a
query image:
Location Prior. A constant prior feature built by sampling
1000 geographical coordinates from the training data.
Tags. Every tag in the query image is associated with the
coordinates of the training images in which the tag appeared.
If a tag in the query was unseen in the training data, then
it contributes no points. Each tag is considered to be an
independent feature. No filtering of tags was performed.
PQ-CEDD. In order to provide a high-recall/low-precision
image search we indexed the provided CEDD features with
a product quantiser (18 products of 256 clusters) to enable
fast in-memory search of the complete training data using
the asymmetric distance computation method [5]. The lo-

1http://openimaj.org
2http://lucene.apache.org
3http://scikit-learn.org/stable/modules/
clustering.html#mean-shift



Table 1: Results of the five runs

Run 1 Run 2 Run 3 Run 4 Run 5

No. est. within 1km 53449 (20.55%) 891 (0.34%) 60190 (23.15%) 68050 (26.17%) 61631 (23.70%)
No. est. within 10km 81988 (31.53%) 1453 (0.56%) 98032 (37.70%) 106370 (40.9%) 100009 (38.47%)

No. est. within 100km 93838 (36.09%) 2711 (0.10%) 113937 (43.82%) 123233 (47.40%) 114986 (44.23%)
No. est. within 500km 109117 (41.97%) 9174 (3.52%) 132655 (51.02%) 139136 (53.51%) 129721 (49.89%)

No. est. within 1000km 122752 (47.21%) 19129 (7.36%) 147443 (56.71%) 151876 (58.41%) 141767 (54.53%)
Median error in km 1352.897154 6898.266561 451.8928271 254.4838372 540.109773

Linear correlation of error 0.1568 0.0594 0.3693 0.3721 0.0406

Table 2: The feature configuration for the run submissions.

Prior Tags PQ-CEDD SIFT-LSH

Run 1 X X X X
Run 2 X X X
Run 3 X X
Run 4 X X X
Run 5 X X X X

cations of the 100 top images to a query formed the point
set returned by the feature.
LSH-SIFT. High-precision (low recall) image content search
was performed using a variant of the approach we developed
in [2]. DoG-SIFT features were extracted from the images
and hashed using Locality Sensitive Hashing. A graph was
built with the images as the nodes, and edge weights were
based on the number of collisions. In order to perform a
query, the directly connected nodes to the query were de-
tected in the graph, and their geo-coordinates returned.

3.2 Runs
For all of our submitted runs, the methodology described

in Section 2 was applied. In all runs we used a flat ker-
nel with bandwidth of 0.01◦. All runs except for run #5
used a constant number of 1000 points per feature (effec-
tively making all features have a fixed weight); any feature
that produced more or less points was randomly and uni-
formly sub- or super-sampled to reach 1000 points. In total,
5 runs were submitted. The configurations are summarised
in Table 2. Notes about each run are listed below:
Runs 1-3: Provided data. The first three runs used fea-
tures extracted from the provided dataset only. No external
data was used.
Run 4: Text+Visual, bigger dataset. The fourth run
used features extracted from a larger dataset of approxi-
mately 46 million geotagged Flickr images we collected last
year. As with the provided data, only images with an accu-
racy of 16 were crawled. For the purposes of fair experimen-
tation, we removed all photos from the users who appeared
in the test set.
Run 5: Text+Visual, provided data with tag boost-
ing. The fifth run was the same as run 1, but we used
the GeoNames4 gazetteer to boost the weight of tag fea-
tures that were likely to belong to a specific geographic lo-
cation; any textual tag that could be matched against the
the GeoNames“name”or “alternate-name”field was boosted
by doubling its number of points from 1000 to 2000. Non
textual features, and tags that didn’t match remained at

4http://www.geonames.org

1000 points/feature.

3.3 Results, Discussion and Future Work
Our results are shown in Table 1. The first thing to note

is that visual features alone perform relatively poorly for ex-
actly predicting locations; this is be be expected as the vast
majority of images do not contain recognisable places. Inter-
estingly our first and fourth runs (text and visual) performed
worse than the third (text only). This was unexpected and
warrants further investigation as our experiments had in-
dicated that the visual features should help boost perfor-
mance. Run 4 indicates that using additional data helps
our approach. We’d expect our error estimation to improve
(higher correlation coefficient) as we become more accurate;
this trend can be seen to an extent, although run 5 is a def-
inite outlier. We had started to experiment with product-
quantised PCA VLAD encodings of SIFT features, temporal
features and query expansion of LSH-SIFT features, how-
ever we ran out of time to optimise and include these in
the runs. It will be interesting to investigate these further,
together with other features such as GIST in the future. It
would also be interesting to try some other approaches to
incorporating structured knowledge from GeoNames.
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