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ABSTRACT

We submitted a system composed of 26 subsystems as the
required run. 13 subsystems are based on Acoustic Key-
word Spotting and 13 on DTW. All of them were using
three state phoneme posteriors as input. The underlaying
phoneme posterior estimators were both in-language (Czech,
English) and out-of-language (other 12 languages). We also
performed unsupervised adaptation of the artificial neural
network (ANN) on the target data and fusion based on bi-
nary logistic regression.

1. MOTIVATION

Our motivation was to use many (mostly) out-of-target-
languages systems which can be combined by fusion at the
detection level. The goal was to re-use as many trained
systems available at BUT as possible. Please bear in mind
that reusing all these systems (so-called Atomic Systems)
lead to several inconsistencies among them — for example
feature extraction and sizes of the ANN.

We performed unsupervised adaptation of ANN on the
target data (utterances). Our goal was also to test combina-
tion two approaches in the query-by-example task — Acous-
tic Keyword Spotting (AKWS) and Dynamic Time Warping
(DTW). We also explored system calibration with respect to
the TWV metric.

2. ATOMIC SYSTEMS

All our subsystems use ANN to estimate per-frame phone-
state probabilities (so-called posteriorgrams). The subsys-
tems based on DTW use the posteriorgrams as features
for calculating distances between query and test segment
frames. The subsystems based on AKWS uses the phone-
state posteriors as HMM output probabilities. We re-use
ANNSs, which were trained for different projects as acous-
tic models for phone or LVCSR recognizers. One DTW
and one AKWS system were built for each of the 13 ANNs
trained on the following datasets: 3x Speechdat (Czech,
Hungarian and Russian; monolingual LCRC systems [5]),
1x BABEL (Cantonese, Pashto, Tagalog, Turkish; multi-
lingual stacked-bottleneck system [4]), 1x SWS2012 (Me-
diaEval SWS2012 development data; multilingual stacked-
bottleneck system [7]), 8x GlobalPhone (Czech, English,
German, Portuguese, Russian, Spanish, Turkish, Vietnamese;
monolingual stacked-bottleneck systems [8, 3].
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3. ACOUSTIC KEYWORD SPOTTING

The Acoustic Keyword Spotting (AKWS) systems follow
our paper [6]. We build an HMM for each query. For
each frame, the detection score is calculated as the log-
likelihood ratio between 1) staying in a background HMM
(free phoneme loop) and 2) escaping from it through the
query HMM.

For standard keyword spotting tasks (in-language task
and textual input), the query model is built using a pro-
nunciation dictionary. In SWS task, however, we need to
generate the phoneme sequence for each of the query acous-
tic examples — query-to-text step. This is achieved by
decoding each example using free phoneme loop. We cut-off
initial and final silence labels (if present) and omit queries
having less than three non-silence phones, as these short
queries could generate huge amounts of false alarms. We
experimented with phoneme insertion penalty in the query-
to-text step with the conclusion that it has no significant
impact and set it to —1 consistently.

4. DYNAMIC TIME WARPING

In our implementation, we follow the standard query-by-
example recipe — subsequence DTW. Single DTW is run
for each combination of query and test segment, where the
query is allowed to start at any frame of the test segment.
When selecting the locally optimal path in the standard
DTW algorithm, transition from the smallest accumulated
distance is chosen. In our implementation, we compare the
accumulated distances (including the current local distance)
normalized by the corresponding path lengths on-the-fly.
This is to avoid the preference for shorter paths. As the
distance metric, we used the usual negative logarithm of the
dot product of phone-state posterior vectors.

In our late submission, we further improved the DTW
systems by applying VAD to cut off the initial and the final
silence from the query examples. As can be seen in Table 1,
it improved the overall system by 10% relative.

5. DETECTION SCORE POST-PROCESSING

For both DTW and AKWS systems, the local maxima
of frame-by-frame detection scores are selected as candidate
detections. For overlapping detections, only the best scoring
ones are preserved. There might be significant differences
between the score distributions corresponding to the differ-
ent queries and it is important to normalize (calibrate) the
scores for each query to allow for a single common threshold
maximizing the TWV metric. We adopted a new normaliza-
tion approach, m-norm, which is motivated by the observa-
tion that score distributions have very long tails towards the



small scores, which significantly differ in shape from query
to query. In m-norm, for each query, score corresponding to
the mod (maximum) of the score histogram (denoted SM) is
found for each query and subtracted from the original scores
— all mods are thus aligned to 0. The scores are further di-
vided by standard deviation estimated only on scores larger
than SM, to unify the terms’ variances.

6. FUSION

Normalized scores from the individual subsystems were
fused similarly to [1]. The scores from different subsystems
are first aligned in time and then linearly combined. The
fusion weights (and the default score for a subsystem with
no detection at the given time) are trained to minimize cross-
entropy (or binary logistic regression) objective.

7. RESULTS

Approach eval MTWV eval RT dev MTWV dov RT
AKWSDTW-vad (late) 0.3776(0.4835) 0.177 0.4373(0.5310) 0.181
DTW-vad (notsub) 0.3557(0.4585) 0.166 0.4199(0.5153) 0.170
AKWS 0.3041(0.4165) 0.011 0.3644(0.4713) 0.011
AKWSDTW 0.2969(0.4081) 0.276 0.3710(0.4719) 0.281
AKWSDTW-treefus 0.2787(0.3934) 0.276 0.3560(0.4622) 0.281
AKWSDTW-notarlang 0.2562(0.3685) 0.213 0.3237(0.4264) 0.216
AKWS-notarlang 0.2778(0.3840) 0.009 0.3285(0.4351) 0.009

Table 1: Results for the approaches in Mazimum TWYV,
with Upper Bound (UB) TWYV in parenthesis. RT - real-time
factor for search step (per second of query). The indexing
step RT is 1.996 for all systems except *-notarlang where
the RT factor is 1.545. (notsub) means not submitted, (late)
means late submission. The highest memory consumption
(high level water mark) is 210MB with DTW systems. The
experiments were run on a hybrid cluster with average CPU
Intel(R) Xeon(R) CPU X5670 @ 3GHz.

8. LESSONSLEARNED

8.1 NN adaptation

We have experimented with three types of NN adaptation
using BABEL system NN. This network was initially trained
with 4 independent softmax non-linearities in the output
layer — one softmax per language (Cantonese, Pashto, Taga-
log, Turkish). The original network had 1065 phoneme-state
outputs (355 phonemes for all the 4 languages). We decoded
SWS-dev data [2] using free phoneme loop phone recognizer
based on this network and we found, that 37 out of 355
were never activated. We also filtered out 95 phonemes hav-
ing less occurrences than 10 seconds in total. We ended up
with 220 “active” phonemes — denoted as orig. Next, we used
this orig network to label the SWS-dev data again. Using
this labeling, we 1) adapted (re-trained) the original NN on
SWS-dev data (denoted as adapt) and 2) we completely re-
trained the NN using the SWS-dev data (denoted as rifs).
In the stacked bottleneck NN hierarchy, only the merger was
adapted in adapt case.

In terms of MTWV (UBTWYV), our results on SWS dev
with BABEL AKWS subsystem are as follows : orig 0.0443
(0.1154), adapt 0.0569 (0.1355), and ¢rfs 0.0769 (0.1630).

8.2 Calibration

As the TWV metric was set to drastically penalize false
alarms [2], the proper calibration and good choice of global
threshold was very important this year. We experimented
with two approaches for score normalization. First, we have
experimented with z-norm that worked well for the last year
SWS evaluations [9].

Next, we tried to calibrate the scores using binary lo-
gistic regression, where the input to the logistic regression

was a vector of z-normed scores augmented with different
per-term side-information scores [1] — denoted as z-norm-
sideinfo. The best tested side information, which signifi-
cantly improved MTWYV, was the logarithm of the number of
detections of a particular term. This indicates that z-norm is
not sufficient to properly normalize score distributions over
different queries.

Finally, we tested m-norm (see section 5), which we found
to be superior to z-norm-sideinfo. Furthermore, the addi-
tional side information based calibration resulted in no fur-
ther MTWYV improvements.

In terms of MTWV (UBTWYV), our results are: raw 0.000
(0.1012), z-norm 0.0330 (0.1434), z-norm-sideinfo 0.0603
(0.1436), m-norm 0.0769 (0.1611).

9. CONCLUSION

We successfully built a QbE system making use of a high
number of already trained phoneme posterior estimators and
applied unsupervised adaptation of ANNs. DTW with ap-
plication of VAD (VAD is really important) is still superior
to AKWS approach. On the other hand, AKWS is level-of-
magnitude faster compared to DTW. Adaptation of ANN is
also important, so it makes sense to take as much as possible
“black-boxed” phoneme posterior estimators, label the tar-
get data and train a new ANN. Finally, we found m-norm
calibration is promising in the area of high FA rates and
non-posterior scores.
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