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ABSTRACT
This paper describes the experiments conducted for spoken
web search (SWS) at MediaEval 2013 evaluations. A con-
ventional approach is to train a multi-layer perceptron using
high resource languages and then use it in the low resource
scenario. However, phone posteriorgrams have been found
to under-perform when the language they were trained on
differs from the target language.

In this paper, we use bottle-neck features derived from
MLP to generate Gaussian posteriorgrams. We also use a
variant of dynamic time warping (DTW) based technique
which exploits the redundancy in speech signal and thus
averages the successive Gaussian posteriorgrams to reduce
the length of the spoken query and spoken reference.

1. INTRODUCTION
Gaussian and phone posteriorgrams are a popular feature

representation for query-by-example spoken term detection
(QbE-STD). Gaussian posteriorgrams are typically trained
in an unsupervised manner often referred to as zero-resource
scenario, whereas, phone posteriorgrams are obtained by
training a multi-layer perceptron (MLP) in a supervised
manner. For low/zero resource languages, an MLP is trained
on high resource languages and then it is used in the low re-
source scenario. However, phone posteriorgrams have been
found to under-perform when the language they were trained
on differs from the target language. These MLP classifier
outputs, though capture acoustic phonetic properties of a
speech signal, are not sufficient as a feature representation.
This is because the language used for training MLP is not
enough to capture the complete acoustic characteristics of
the multi-lingual data. To utilize this complimentary infor-
mation captured, we derive features from an MLP for ob-
taining Gaussian posteriorgrams. A similar kind of feature
representation has been explored in paper [1] for a better
search performance.

An alternative representation for phone posteriorgrams
are the articulatory features (AFs). AFs are a better repre-
sentation as they are more language universal than phones.

This paper describes the experiments conducted for spo-
ken web search (SWS) at MediaEval 2013 [2]. The primary
focus of this work is to explore the use of bottle-neck (BN)
features for QbE-STD derived from phone and AF MLPs.

Copyright is held by the author/owner(s).
MediaEval 2013 Workshop, October 18-19, 2013, Barcelona, Spain

2. FEATURE EXTRACTION
We use a three step process to generate the features for

QbE-STD: (a) Extracting speech parameters such as fre-
quency domain linear prediction (FDLP) [3](b) Train a phone
or AF MLP and extract the bottle-neck features for each of
the speech parameters, and (c) Compute Gaussian posteri-
orgrams using speech parameters in combination with the
derived BN features.

In [4], we show that Gaussian posteriorgrams computed
from FDLP perform better than those obtained from short-
time spectral analysis such as Mel-frequency cepstral coeffi-
cients. In this paper, we use FDLP as the acoustic parame-
ters of the speech signal.

A 25 ms window length with 10 ms shift was considered
to extract 13 dimensional features along with delta and ac-
celeration coefficients for FDLP. An all-pole model of order
160 poles/sec and 37 filter banks are considered to extract
FDLP.

2.1 Phone and AF Bottle-Neck Features
In this paper, we train phone and AF MLPs using labelled

Telugu database (≈ 24 hours) consisting of 49 phones [5].
MLP is trained to obtain 49 dimensional phone posterior-
grams and 23 dimensional articulatory features (AFs) using
39 dimensional FDLP features.

Table 1: Articulatory Features
Articulatory Property Classes # bits

Voicing ±voicing 1
Vowel length short, long, diphthong 3
Vowel height high, mid, low 3

Vowel frontness front, central, back 3
Lip rounding ±rounding 1

Manner of stop, fricative, affricative 5
articulation nasal, approximant

Place of velar, alveolar, palatal, 5
articulation labial, dental
Aspiration ±aspiration 1

Silence ±silence 1

The articulatory features (AFs) used in this work repre-
sent the characteristics of speech production process, which
include vowel properties, place of articulation, manner of
articulation, etc. We modified the AFs described in [6] to
suit the training data available. We use nine different artic-
ulatory properties as shown in Table 1. Each articulatory
property is further divided into sub classes resulting in a 23



dimensional AF vector.

Table 2: Architecture of the MLPs trained to derive
bottle-neck features

Architecture
PH MLP 39L 120N 13L 120N 49S
AF MLP 39L 120N 13L 120N 23S

Table 2, shows the architectures used to build phone and
AF MLPs. The integer values in the MLP architecture in-
dicate the number of nodes, and L (linear), N (non-linear)
and S (sigmoid) represent the activation functions in each
of the layers.

3. EXPERIMENTS AND RESULTS
Gaussian posteriorgrams are computed by training a Gaus-

sian mixture model (GMM) on the spoken data and the pos-
terior probability obtained from each Gaussian is used to
represent the speech parameters. The number of Gaussians
represent the approximate number of acoustic units present
in the spoken data. We computed Gaussian posteriorgrams
as described in [7]. We trained the Gaussian mixture models
(GMM) using 128 Gaussians. Before performing the DTW
search we removed the Gaussian posteriorgrams correspond-
ing to silence regions as described in [8]. All the experiments
were conducted on a HPC cluster with HP SL230s compute
nodes. Each HP SL230s node is equipped with two Intel
E5-2640 processors with 12 cores each

We used a variant of DTW-based approach, referred to as
non-segmental DTW (NS-DTW), for obtaining the search
results [4]. NS-DTW is similar to that of the DTW-based
search given in [7] but differs in the local constraints. Table
3 show the maximum term weighted values (MTWV) ob-
tained by using each of the features. From Table 3, it can
be seen that the use of bottle-neck features has improved
the performance of the system. To perform the search our
algorithm requires approximately 10 GB of memory.

Table 3: MTWV using Gaussian posteriorgrams
computed from various features

Feats. dev eval
FDLP 0.1652 0.1557
PH-BN 0.2491 0.2133
AF-BN 0.2627 0.2122

FDLP + PH-BN 0.2741 0.2492
FDLP + AF-BN 0.2765 0.2413

To improve the computational performance, we reduce the
query and reference Gaussian posteriorgrams vectors before
performing search. Given a reduction factor α ∈ N, a win-
dow of size α is considered over the posteriorgram features
and a mean is computed. The window is then shifted by
α and another mean vector is computed. The posterior-
gram vectors are replaced with the reduced number of pos-
teriorgram features during this process. The averaging of
Gaussian posteriorgrams also reduce the amount of memory
required to compute the similarity matrix. In a conven-
tional approach the space complexity required to compute
the similarity matrix between a query and reference is of
order O(mnd2) where m,n are the length of reference and
query and d is the dimension of the feature vector. The

averaging of Gaussian posteriorgrams will reduce the space

complexity to an order of O(mnd
2

α2 ) .

Table 4: Evaluation using FNS-DTW for various val-
ues of α

α
dev eval

MTWV RT (10−4) MTWV RT (10−4)
1 0.2765 16.55 0.2413 15.67
2 0.2530 4.21 0.2236 4.16
3 0.2252 1.92 0.1995 1.85
4 0.2043 1.11 0.1773 1.11

Table 4 show the MTWV and the runtime factor (RT)
for various values of α using FDLP + AF-BN features. The
results show an improvement in speed at the cost of the
search accuracy. We have considered α = 2 as an optimum
value based on MTWV and the speed improvements.

4. CONCLUSIONS
In this work we have used the bottle-neck features ob-

tained from phone and articulatory MLPs. We have shown
that these BN features perform better than the conventional
Gaussian posteriorgrams computed from FDLP. This moti-
vates us to build models using high resource languages and
use it in the low resource scenario.
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