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ABSTRACT
This paper describes an audio keyword detection system de-
veloped at the Chinese University of Hong Kong (CUHK) for
the spoken web search (SWS) task of MediaEval 2013. The
system was built only on the provided unlabeled data, and
each query term was represented by only one query exam-
ple (from the basic set for required runs). This system was
designed following the posteriorgram-based template match-
ing framework, which used a tokenizer to convert the speech
data into posteriorgrams, and then applied dynamic time
warping (DTW) for keyword detection. The main features
of the system are: 1) a new approach of tokenizer con-
struction based on Gaussian component clustering (GCC)
and 2) query expansion based on the technique called pitch
synchronous overlap and add (PSOLA). The MTWV and
ATWV of our system on the SWS2013 Evaluation set are
0.306 and 0.304.

1. INTRODUCTION
The spoken web search (SWS) task of MediaEval 2013 aims at

detecting the keyword occurrences in a set of spoken documents
using audio keyword queries in a language-independent fashion.
The spoken documents involves about 20 hours of unlabeled speech
data from 9 languages. More details about the task description can
be found in [1]. The focus of our work was on a completely un-
supervised setting, i.e., only the unlabeled data from the spoken
documents was used in the system development. For each query
term, only one audio example was used in our system.

Our system follows the posteriorgram-based template matching
framework [2]. New methods have been developed for tokenizer
construction and query expansion. In addition, it was found that
score normalization brought significant improvement.

2. SYSTEM DESCRIPTION

2.1 System Overview
Fig. 1 gives the overall architecture of our system. It involves

offline process and online process. The offline process (marked by
the dashed window in Fig. 1) is to build the system from the spo-
ken documents. It is divided into the stages of feature extraction,
tokenizer construction, and posteriorgram generation. The offline
process results in a speech tokenizer and the posteriorgrams of the
spoken documents.
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The online process is to perform the detection task given an input
query. It involves query expansion, query posteriorgram genera-
tion, DTW detection and score normalization. The query expansion
is based on the PSOLA [3] technique, which modifies the duration
of the original query example and generates a number of query ex-
amples of different lengths. We refer to the original query examples
and the generated query examples as the expanded query set. Af-
ter converting the expanded query set into posteriorgrams, DTW
detection is applied to get the raw scores. DTW is performed with
a sliding window on the log-inner-product distance matrix of the
posteriorgrams of the query set and the spoken documents. Details
of the DTW detection in our system can be found in [5]. Lastly
mean and variance normalization is applied to the raw scores to
obtain the final detection score.

In practice, when the query example was very short, the returned
hits would contain many false alarms. A duration threshold of 0.35
second was applied to the input queries. If the duration of a query
example (after silence removal) was less than the threshold, the
system rejected this query example and did not return any results.

2.2 Feature Extraction
Our system used 39-dimensional MFCC features. The MFCC

features were processed with voice activity detection (VAD), mean
and variance normalization (MVN) on the utterance level. Vocal
tract length normalization (VTLN) was then used to alleviate the
influence of speaker variation. The warping factors were deter-
mined with a maximum-likelihood grid search using a GMM with
256 components. The usefulness of VTLN for this task was exper-
imentally demonstrated in our previous paper [6].

2.3 Tokenizer Construction
The tokenizer was used to generate posteriorgrams. It was trained

from the unlabeled data of the spoken documents. We used a new
Gaussian component clustering (GCC) approach to find phoneme-
like units, and modeled the corresponding context-dependent states
by a 5-layer neural network. The posteriorgrams were composed
of the state posterior probabilities produced by the neural network.

The GCC approach involved 4 steps. First, a GMM with 4096
components was estimated. Second, unsupervised phoneme seg-
mentation was performed on the spoken documents. Third, each
speech segment was represented by a Gaussian posterior vector,
which is computed by averaging the frame-level Gaussian poste-
rior probabilities. Stacking the Gaussian posterior vectors, we ob-
tained a Gaussian-by-segment data matrix, which is denoted by X.
Finally, we computed the similarity matrix W of the Gaussian com-
ponents as W = XXT , and apply spectral clustering on the simi-
larity matrix to find 150 clusters of Gaussian components. Details
of the GCC approach can be found in [4].

Each cluster of Gaussian components was viewed as the acoustic



Figure 1: System Framework

model of a discovered unit. These acoustic models were refined by
an iterative process [6], and updated to context-dependent models
with 1198 states. These states were then modeled by a deep neu-
ral network, which had 3 hidden layers with 1000 units per layer.
The input layer corresponds to a context window of 9 successive
frames. The outputs of the neural network were the state posterior
probabilities and used to construct the posteriorgrams.

2.4 Query Expansion
Query expansion aimed at generating variable length examples,

so as to cover larger duration variation of the query term. The
PSOLA technique was implemented for this purpose. PSOLA is
able to perform time-scale modifications while preserving the spec-
tral characteristics as much as possible. The implementation in-
volved three steps. First, pitch epochs were detected by an autocor-
relation method. Second, the periodic waveform cycles identified
by the pitch marks were duplicated or eliminated according to the
time-scaling factors. Finally, the overlap-and-add algorithm was
used to synthesize the new speech example. In the system, two
time-scaling factors were used: 0.7 and 1.3. For a query exam-
ple with duration L, we had one generated example with duration
0.7×L and another with duration 1.3×L. Therefore the expanded
query set would have three examples for each term. Given a query
term and an utterance in the spoken documents, the detection score
was the maximum value among the scores provided by the three
examples.

2.5 Score Normalization
Let dq,t denote the DTW alignment distance between the qth

query on the tth hit region. The corresponding raw detection score
was computed by

sq,t = exp(−dq,t/β), (1)

where the scaling factor β was set to 5. To calibrate the scores of
different query terms, a simple 0/1 normalization was used. The
normalization was performed as

ŝq,t = (sq,t − µq)/δq, (2)

where µq and δ2q are the mean and variance of the top 400 raw
scores for the qth query.

3. PERFORMANCE AND ANALYSIS
Table 1 lists the performances of our systems with different con-

figurations. System No. 3 is our submitted system for this task.
All these three systems belong to the required run condition de-
fined in [1]. From Table 1, we have observed severe performance
degradation (≥ 5%) from the Dev query set to the Eval query set.
This may be due to the mismatch between the Dev set and Eval
set. Another observation is that the use of query expansion indeed
brings improvements (≥ 2%) for both the Dev set and the Eval set.

We think this improvement is quite encouraging. And more experi-
ments and analysis will be done to claim the usefulness of the query
expansion in the future work. The final observation is that the use
of score normalization brings two considerable benefits. First, it
brings about 7.7% MTWV gain on Dev set, and 7.0% on Eval set.
This is different from our observation in the previous work [5]. We
suspect this is related to the nonlinear transformation in (1) and the
large size of the spoken documents. Second, score normalization
seemed to make the decision threshold quite stable, so that the gap
between MTWV and ATWV on Eval set becomes very small.

Table 1: System Configurations and Performances.
The basic system is without query expansion and
score normalization.

System No. 1 2 3

Basic System
√ √ √

Query Expansion
√ √

Score Normalization
√

Dev Query Set (MTWV) 0.263 0.290 0.367
Eval Query Set (MTWV) 0.216 0.236 0.306
Dev Query Set (ATWV) – – 0.367
Eval Query Set (ATWV) – – 0.304

4. HARDWARE, MEMORY, AND CPU TIME
All the experiments were performed on a computer with Intel i7-

3770K CPU (3.50GHz, 4 cores), 32GB RAM and 1T hard drive. In
the online process, all the posteriorgrams of the spoken documents
were stored in the memory. This accelerated the online detection,
but involved very high memory cost (>10GB). The computation
cost in the online process was mainly caused by DTW detection.
The searching speed factor of the system No.3 was about 0.018.
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