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Some Recent Advances in Answer Set
Programming (from the Perspective of NLP)

Marcello Balduccini

College of Computing and Informatics
Drexel University

marcello.balduccini@gmail.com

1 Introduction

Answer Set Programming (ASP) [12, 13, 15, 8] is a logical language for knowledge
representation and reasoning that combines a non-monotonic nature, strong the-
oretical foundations, an intuitive semantics, and substantial expressive power.
The language has been successfully used for modeling a number of very diverse
domains (e.g. [7, 14]) and for capturing key reasoning tasks such as planning, di-
agnostics, learning and scheduling (e.g. [10, 5, 1]). All of this makes ASP a prime
candidate for use in the sophisticated knowledge representation and reasoning
tasks involved in Natural Language Processing (NLP).

In this note I will give an overview of some of my recent work on ASP that
I believe may be useful in the context of NLP.

2 Motivation

Reasoning about natural language involves various knowledge-intensive tasks.
Particularly challenging from this perspective are the extraction of semantic con-
tent from phrases (e.g. anaphora resolution) and the disambiguation of phrases
using world knowledge and commonsense knowledge. These two tasks are not
only challenging, but also heavily interconnected.

Consider the following collection of passages and proposed corresponding
reasoning:

– “John was walking his dog. He said hi.”
To conclude that “he” refers John, we can use knowledge about grammar,
stating that “he” normally refers to a human male. Additionally, the fact
that saying hi is a capability proper of humans, confirms the correctness of
the association.

– “John was walking his dog. He ran away after a rabbit”
This type of sentence is quite common especially in spoken English. Com-
monsense tells us that “he” here refers to John’s dog. A justification for this
is the everyday knowledge that running away after a rabbit is a behavior
common of dogs and other animals with hunting habits. Humans typically



do not run away after rabbits (although carefully capturing this last state-
ment appears to be a rather interesting and intricate modeling task in itself).
Although according to grammar rules “he” should be associated with John,
it is also typical for people, and especially pet owners, to refer to their pets
by “he” or “she.”

– “John and Frank entered the room. Frank left right away. He came out two
minutes later.”
In this case the difficulty in finding which object “he” refers to derives from
the fact that two human males are mentioned in approximately the same
locations of the passage. To properly link this occurrence of “he” to John,
one needs to follow the evolution of the domain described by the passage.
The phrase “came out two minutes later” appears to refer to the room that
John and Frank had initially entered. The second sentence states that Frank
has already left the room. So, John is the only other person of interest in
the passage who is left in the room, and thus it is reasonable to assume that
“he” refers to him.

– “Andrea and Frank entered the room, but he left empty-handed.”
To reason about this sentence, it is useful to recall that, in English, Andrea
is both a male and a female name. Reasoning by cases, one can observe
that, if Andrea is a man, then the occurrence of “he” in the sentence is
ambiguous. On the other hand, if Andrea is a female, then it can be concluded
without ambiguity that “he” refers to Frank. Under the assumption that the
speaker or writer crafted the sentence in such a way as to convey the relevant
information in an unambiguous way, then it is reasonable to assume that “he”
refers to Frank. Moreover, one can conclude that Andrea is a woman. This
information can be stored and used later in reasoning about other parts of
the passage.

– “Andrea cannot be the one who took the computer from that room. Andrea
and Frank did enter the room, but he left empty-handed.”
Let us suppose that this passage is in the context of an investigation aimed
at determining who stole a computer from a room. The first sentence focuses
the discussion on Andrea and on Andrea’s innocence. Let us reason again by
cases on the possible associations of “he” – Andrea and Frank. Under both
possible associations, no grammar rules are violated, as long as Andrea is
a man. If “he” refers to Frank, however, the first and the second sentences
appear to have no logical connection, while their construction suggests that
indeed some link exists. On the other hand, if “he” refers to Andrea, then
the link is clear: the first sentence claims Andrea’s innocence, and the second
sentence offers evidence in support of the claim. Similarly to the previous ex-
ample, the second case appears to be preferred based on the commonsensical
assumption that the speaker or writer crafted the passage in such a way as
to convey the relevant information in an unambiguous and economical way.

Whereas carefully crafted, written-language passages may require relatively
limited reasoning, everyday, colloquial language such as the one exemplified here
requires substantial reasoning for a proper understanding. For the success of



practical systems with natural language interfaces, I argue that everyday, collo-
quial language must be supported.

Overall, it appears that successfully reasoning about the semantic content of
sentences such as the ones shown above requires a sophisticated combination
of world knowledge, commonsense, and (commonsensical) information about
speaker’s/writer’s behavior and intentions. It is my belief that ASP and its
extensions can be useful in tackling such a task.

In the rest of this note I describe some extensions of ASP I authored or co-
authored, and which may be useful in capturing certain aspects of the reasoning
about natural language. For a thorough discussion on ASP and on its use for
knowledge representation, the reader is referred to the existing literature (e.g.
[8]).

3 CR-Prolog

CR-Prolog [6] is an extension of ASP that adds to the language constructs,
called consistency-restoring rules (cr-rules), designed to capture certain advanced
aspects of non-monotonic reasoning.

A central, well-known feature of languages for non-monotonic reasoning such
as ASP is that the the programmer can write “defeasible statements,” which
are normally true, but may not apply to certain cases, called exceptions. A
well-known example is that of the statement “birds normally fly.” While true
for most birds, this statement has exceptions, such as penguins and birds with
broken wings, and hence the use of the word “normally.”

In most languages for non-monotonic reasoning the exceptions must be ex-
plicitly listed. In the example above, if a new type of bird is discovered that does
not fly, suitable statements must be added to the system, saying that that type
of bird is an exception. If the exceptions are not added, the systems will apply
the default statement and conclude that the birds of the new type fly. From a
practical perspective, having to know in advance all the exceptions may be a
limiting factor in the development of autonomous systems, since there may not
be sufficient understanding of the problem domain for such a complete list. It
is worth observing that, in everyday reasoning, humans are typically capable of
postulating exceptions to defaults, especially when they observe phenomena that
contradict such defaults.

Cr-rules are an attempt to capture this capability, allowing a reasoner to
postulate exceptions to default statements, but only when strictly necessary.
Making such assumptions is considered strictly necessary when the reasoning
process is otherwise inconsistent. This is the case, for example, of a system given
observations that contradict its knowledge base. For instance, the cr-rule:

exception(H,A)
+
← human(H), animal(A), small(A).

can be used in combination with a default “normally, humans do not chase small
animals” to state that, under exceptional, unknown, circumstances, the default



can be violated. When inconsistencies arise in the knowledge base, the system
can then use the cr-rule to postulate exceptions to the default.

My co-authors and I demonstrated that cr-rules allow for elegantly capturing
types of non-monotonic reasoning that are otherwise difficult or impossible to
capture. We also showed that they can be used to formalize concisely diagnostic
reasoning and certain types of planning.

4 EZCSP

EZCSP [2] is an extension of ASP aimed at increasing performance and scala-
bility in certain – rather large – application domains.

To see how the ability to reason about numbers is important in reasoning
about natural language, consider the following passage: “The train left at 10.
A couple of hours later, we were having lunch in Paris.” To determine if “10”
refers to 10am or 10pm, one may reason as follows. Normally, “a couple of hours”
means two hours. Moreover, let us assume that it is common knowledge that in
Paris people have lunch between noon and 2pm. Hence, if we reason by cases, the
interpretation that “10” refers to “10am” sets the time of the speaker’s lunch in
Paris to noon. The interpretation that “10” refers to “10pm” sets the time of the
lunch to midnight. The second interpretation contradicts the custom of having
lunch between noon and 2pm, and thus the former interpretation is preferred.

This reasoning process relies on the ability to process effectively numerical
information. Although ASP allows in principle for natural and concise formal-
izations of many kinds of knowledge, in practical applications efficiency often
degrades quickly when dealing with numerical information and variables with
large domains. To overcome this limitation, I designed EZCSP to allow for the
use of constructs from constraint programming within ASP programs. For ex-
ample, the rule:

required(hour(T ) ≥ 12)← lunchtime(T ).

states that, if timestamp T refers to lunch time, then the hour of T must be
greater than or equal to 12.

The new language makes it possible to represent and reason about numerical
information efficiently, while at the same time keeping the representations ele-
gant, concise and elaboration tolerant, as usual in ASP. Differently from other
languages that combine ASP and constraint programming (e.g. [11]), EZCSP
includes support for global constraints (a powerful type of construct from con-
straint programming), and both language and solver are designed to be indepen-
dent from the underlying ASP and constraint solvers chosen for the computation.

5 ASP{f}

One shortcoming of EZCSP is that it does not allow one to perform full-fledged
non-monotonic reasoning on numerical quantities. For example, one cannot easily



state that “in Paris, people normally have lunch between noon and 2pm” and
reason with evidence that “John had lunch at 3pm.”

This is due to the monotonic nature of the underlying constraint program-
ming constructs. A further shortcoming of EZCSP is that performance in the
presence of variables with large non-numerical domains still tends to be limited,
because constraint programming constructs mainly apply to numerical quanti-
ties. In fact, these limitations are shared by all the research attempts aimed at
hybridizing ASP and constraint programming. To overcome these issues, I have
developed a new language, called ASP{f} [3, 4], which adds to ASP the ability
to represent, and reason about, arbitrary (non-Herbrand) functions, including
but not limited to numerical functions. With ASP{f}, the default about lunch
time in Paris can be captured in a simple way by statements such as:

hour(T ) < 14← lunchtime(T ), not hour(T ) ≥ 14.

which intuitively states that “lunch ends at 2pm unless otherwise specified.” The
observation about John’s lunch time can be encoded by {lunchtime(t1), hour(t1) =
15}. In ASP{f}, this observation is sufficient to defeat the default.

In ASP{f} it is also possible to capture rather complex numerical calculations,
such as:

financially sound(C)←
revenue(C) > sum[employee(E, C) = salary(E)] + investments(C).

This rule states that company C is financially sound if its revenue is greater
than the sum of the salaries paid to the employees and of the investments made
by the company. Another example, demonstrating ASP{f}’s ability to deal with
non-numerical information, is the rule:

← siblings(P1, P2), first name(P1) = first name(P2), not exception(P1, P2).

which captures the commonsensical statement that two siblings shouldn’t have
the same first name. Rather than relying on constraint programming, the new
language includes “native” support for functions, and, differently from other
attempts in this direction (e.g. [9]), is crafted in such a way that state-of-the-art
inference engines for ASP can be extended to support ASP{f} with relatively
simple modifications.

6 Conclusions

In this note I have described some challenges of the task of reasoning about nat-
ural language that are relevant to ASP and to commonsense and non-monotonic
reasoning in general. I have also discussed recent extensions of ASP that I have
developed, and which I believe may be useful in tackling these tasks. Of course,
many other extensions of ASP exist, which can be useful for this endeavour. For
the reader’s convenience, a small selection of relevant works was cited in this
note.
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Three Lessons in Creating a Knowledge Base to Enable
Reasoning, Explanation and Dialog

Vinay K. Chaudhri, Nikhil Dinesh, and Daniela Inclezan

Artificial Intelligence Center,
SRI International, Menlo Park, CA, 94025

Abstract. Our work is driven by the hypothesis that for a program to answer
questions, explain the answers, and engage in a dialog just like a human does, it
must have an explicit representation of knowledge. Such explicit representations
occur naturally in many situations such as engineering designs created by engi-
neers, a software requirement created in unified modeling language or a process
flow diagram for a manufacturing process. Automated approaches based on nat-
ural language processing have progressed on tasks such as named entity recog-
nition, fact extraction and relation learning. Use of automated methods can be
problematic in situations where the conceptual distinctions used by humans for
reasoning are not directly expressed in natural language or when the representa-
tion must be used to drive a high fidelity simulation.
In this paper, we report on our effort to systematically curate a knowledge base
for substantial fraction of text in a biology textbook [26]. While this experience
and the process is interesting on its own, three aspects can be especially instruc-
tive for future development of knowledge bases by both manual and automatic
methods: (1) Consider imposing a simplifying abstract structure on natural lan-
guage sentences so that the surface form is closer to the target logical form to be
extracted. (2) Adopt an upper ontology that is strongly motivated and influenced
by natural language. (3) Develop a set of guidelines that captures how the con-
ceptual distinctions in the ontology may be realized in natural language. Since
the representation created by this process has been quite effective for answering
questions and producing explanations, it gives a concrete target for what infor-
mation should be extracted by the automated methods.

Keywords: knowledge representation, ontologies, automated reasoning, concep-
tual models, knowledge acquisition from text

1 Introduction

Classical approach to achieving intelligent behavior has been driven by the knowledge
representation hypothesis proposed by Smith [27]: Any mechanically embodied intelli-
gent process will be comprised of structural ingredients that (a) we as external observers
naturally take to represent a propositional account of the knowledge that the overall pro-
cess exhibits, and (b) independent of such external semantic attribution, play a formal
but causal and essential role in engendering the behavior that manifests that knowledge.
In the context of this framework, an intelligent program requires a formal representa-
tion of knowledge that can be manipulated by an automated reasoner with the goal that



2 Three Lessons in Creating a Knowledge Base

it will enable a variety of tasks including answering questions, producing explanations
and engaging in a dialog.

There are some domains such as engineering, manufacturing, and finance where
structured representations are routinely created and are a part and parcel of a routine
workflow. Automated methods based on natural language processing (NLP) techniques
are quite effective at creating some limited forms of structured representations such as
named entity extraction [21] and relation extraction [7].

We have recently completed a substantial knowledge engineering effort that has
resulted in a knowledge base called KB Bio 101 that represents a significant fraction
of an introductory college-level biology textbook [11, 10]. We have used KB Bio 101
as part of a prototype of intelligent textbook called Inquire that is designed to help
students in learning better [8]. Inquire answers questions [10], gives explanations and
engages in dialog through natural language generation [1].

In this paper, we describe three specific aspects of the knowledge engineering pro-
cess and discuss the lessons that can be drawn from this effort which can inspire the
development of a new breed of manual as well as automated knowledge acquisition
methods. These lessons are: (1) re-formulating sentences as universal truths so that the
surface form of knowledge is closer to the knowledge to be extracted (2) using a lin-
guistically motivated ontology into which the knowledge is extracted (3) using a set of
guidelines that define how various conceptual distinctions are expressed in natural lan-
guage. These three techniques were instrumental in creating KB Bio 101 that enabled
Inquire to answer students questions and led to learning gains as have been reported in a
previous paper [8]. We have organized the paper by first discussing the techniques that
we used in creating the knowledge representation followed by a discussion on how these
can be instructive for future manual, automated as well as semi-automated knowledge
acquisition methods.

2 Reformulating Input Sentences

A textbook is written for pedagogical purposes. Therefore, the authors adopt a style
of writing which is varied, interesting, and that tells a story. This invariably involves
first introducing concepts at an abstract level, and later adding more details, and in
some cases, contradicting and/or overriding the information that has been previously
introduced.

In contrast, an automated reasoning system needs to encode knowledge only once,
and in a succinct manner, using sentences in a formal language. While the axioms can
be arbitrarily complex, in practice, there are frequently occurring axiom patterns, for
example, axioms to represent necessary and sufficient properties of a concept, cardinal-
ity constrains, subclass and disjointness statements, etc. For the purpose of the current
discussion, we will work with one such axiom pattern known as universal truth: a set of
facts that are true for all instances of a concept.

To determine what should be represented from a textbook, a knowledge encoder
must gather all the sentences that describe that concept. In general, a sentence will
mention more than one concept. To determine which concept a sentence actually refers
to, the encoder reformulates that sentence as a universal truth. A sentence may result in
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more than one universal truth. In our current process, the encoders work at the level of
a single chapter. Once the sentences in a chapter have been reformulated as universal
truths, they can be sorted on the concept so that we now have available all the sentences
that describe a particular concept which can then be used for representation. This pro-
cess deals with the pedagogical style of the textbook by collecting information about a
concept in one place in a similar surface syntax.

Let us now illustrate this process by taking two example sentences (numbered I and
II) in Table 1.

Textbook Sentence Universal Truth Concept Plan
I. A chemical
signal is detected
when the signaling
molecule binds to
a receptor protein
located at the cells
surface or inside
the cell.

During signal re-
ception, the signal-
ing molecule binds
to a receptor pro-
tein located at the
cells surface or in-
side the cell.

Signal-Reception Signal-Reception− subevent→
Attach
Attach − base →
Receptor-Protein
Attach− object→ Molecule
. . .

II. The binding
of the signaling
molecule changes
the receptor pro-
tein in some
way, initiating
the process of
transduction.

During signal re-
ception, the bind-
ing of the signal
molecule changes
the receptor protein
in some way.

Signal-Reception Signal-Reception− subevent→
Bind
Attach − base →
Receptor-Protein1

Attach − result →
Receptor-Protein2

Receptor-Protein1 −
has-state→ Receptor-Protein2

During cell signal-
ing, the binding
of the signaling
molecule inititates
the process of
transduction.

Cell-Signaling Cell-Signaling − subevent →
Signal-Reception
Cell-Signaling − subevent →
Signal-Transduction
Signal-Reception −
next-event →
Signal-Transduction

Table 1: Procedure for creating KB content from sentences

2.1 From Sentences to Universal Truths

Syntactically, a universal truth (or a UT) is a statement of the form: (a) Every X Y (b)
In X, Y (c) During X, Y. In these statements, X is a noun phrase denoting a concept
and Y is a clause or verb phrase denoting information that is true about the concept.
The concept (X) may not be directly mentioned in the sentence and it might be inferred
from the context and the teacher’s understanding of biology.

The universal truth associated with sentence I has the form – “During X, Y”, where
the concept “X” is “signal reception”. The phrase “signal reception” is not directly men-
tioned in the sentence, but is inferred from the phrase “a chemical signal is detected”
based on the context in which the sentence appears in the textbook.
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2.2 From Universal Truths to Knowledge Representation Plans

When formalized in logic, each universal truth leads to an existential rule, ie, a rule
whose antecedent has one variable that is universally quantified, and whose consequent
has one or more variables which are existentially quantified. Each universal truth is
converted to a plan: which is a set of literals that would appear in the consequent of
the existential rule suggested above. The plan for a universal truth is made by taking
into account the plans for all its superclasses and dependent concepts. For example, the
plan for Cell-Signaling would take into account the plan for Signal-Reception, which is
a step of Cell-Signaling.

Consider the first universal truth in Table 1 – “During signal reception, the signaling
molecule binds to a receptor protein located at the cell’s surface or inside the cell”. A
portion of the plan for this universal truth is shown in the fourth column and this can be
understood as follows:

– Signal-Reception − subevent → Attach – One of the steps of signal reception is
an “attach” or “bind” event.

– Attach−object→ Molecule – The object (ie, the entity that undergoes attachment)
of the attach event is a molecule.

– Attach − base → Receptor-Protein – The base (ie, the entity that the object at-
tached to) is a receptor protein.

– We omit the remaining literals, which show the “signaling” role of the molecule
and the location of the protein.

Taken together, these literals can be understood as – “one of the steps of signal
reception is the attachment of a molecule to a receptor protein”. The event Attach and
the relations object and base are provided by the upper ontology called the Component
Library (CLIB) which we will discuss in more detail in the next section.

The plans for a knowledge base are similar to design specification or a pseudo code
for a program. Writing the plans first helps an encoder to think through the overall
design of the representation before entering it into the knowledge base.

2.3 From Plans to Knowledge Representation

The plans are entered into the KB using a graphical interface called concept maps [12].
Figure 1 shows the concept map for Signal-Reception; the white color denotes that it is
universally quantified, while all other concepts are existentially quantified. The concept
map can be read as the following existential rule: “Every signal reception event has a
subevent in which a molecule attaches to a receptor protein, resulting in a change in the
state of the protein”.

There are several side-benefits of reformulating these sentences as universal truths:
(1) The sentence form is closer to the actual logical form that will be represented in the
knowledge base, making the task of creating the concept graphs much easier (2) uni-
versal truths aid in developing a consensus understanding of the content of the textbook
(3) They help the encoder in thinking through which concepts should the knowledge be
associated with.
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Fig. 1: Concept Map for Signal Reception

3 Linguistically Motivated Upper Ontology

Wordnet is by far the most commonly used resource in natural language processing
for reasoning about entailments [22]. One of the reasons for the success of Wordnet is
that it is linguistically motivated and it encodes knowledge at the level of words. This
ensures good coverage and makes it easy for people to understand what it should or
should not contain. Wordnet is, however, not an ontology and has several limitations
when it comes to supporting automated reasoning [16].

Component Library (or CLIB) is a linguistically motivated ontology designed to
support representation of knowledge for automated reasoning [3]. CLIB adopts four
simple upper level distinctions: entities (things that are), events (things that happen),
relations (associations between things) and roles ways in which entities participate in
events.

For the purpose of this discussion, we will focus on the taxonomy of physical ac-
tions where action is a subclass of Event. The reason for focusing on actions is to illus-
trate how the library of actions is grounded in language and helps us assess coverage
in a manner similar to assessing coverage for Wordnet, and yet, defines the actions to
support automated reasoning, explanation generation and dialog.

In the original version of CLIB [3], the Action has 42 direct subclasses and a total of
147 subclasses in all. Examples of direct subclasses include Attach, Impair, Move, and
Store. Other subclasses include Move-Through which is a subclass of Move, and Break
which is a subclass of Damage which is a subclass of Impair. These subclasses were
developed by consulting lexical resources, such as Wordnet [22], Longman Dictionary
of Contemporary English [30] and Roget’s thesaurus [20].

We will now discuss how this linguistic grounding of the ontology helped us address
the following two problems in our recent effort to represent knowledge from a biology
textbook: (a) ensuring that we have an adequate coverage of actions that occur in the
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textbook (b) developing guidelines that inform an encoder which action from the library
should be used to model a verb appearing in a sentence.

3.1 Ensuring Coverage

To check whether CLIB had adequate coverage to support all the process representa-
tions that we will need to create for the textbook, we analyzed the verbs appearing in the
textbook. We investigated whether and how their meaning could be represented using
CLIB actions and determined what new action classes should be added to CLIB when
no pre-existing classes matching its meaning was found.

The main body of the biology textbook Campbell Biology consists of 30,346 sen-
tences. We extracted all the verbs appearing in these sentences which gave us a list of
2,870 verbs. The actual number of verbs is smaller, as some of the identified verbs are
in fact just different forms of the same verb (e.g., is and were, two forms of the verb to
be, were counted as different verbs). Next, we stemmed verbs based on their frequency,
which ranged from 1 to 18,407. The sixteen verbs with a frequency higher than 400 can
be seen in Table 2. There were 800 verbs with a frequency greater or equal to ten.

Verb Frequency Verb Frequency Verb Frequency Verb Frequency
18,407 to be 860 to produce 629 to make 460 to increase
3,805 to have 708 to include 528 to cause 451 to grow
1,433 to call 658 to form 499 to develop 429 to become
936 to use 646 to occur 488 to do 413 to help

Table 2: Textbook Verbs with a Frequency Higher than 400

We analyzed all the verbs with frequency greater than 10 to check whether their
meaning was adequately represented using some action in CLIB. As a result of this
exercise, we identified whether a new action class should be added or we should extend
the meaning of an existing action class.

We identified 21 new action classes that should be added to CLIB. While adding
these classes, we used the principle of correspondence, ie, in many cases pairs of actions
go together and both should be present in the action library. For example, the initial
version of CLIB contained a class called Attach referring to an asymmetric attachment
of one entity to another, but there was no class for a symmetric attachment between two
entities. We remedied this problem by introducing the class Bind, which corresponds
to Attach. We introduced the class Expel as a counterpart of Take-In, where Expel and
Take-In are the subclasses of Move-Out-Of and Move-Into, respectively. Other newly
introduced classes (e.g., Kill) refine the range of one of the relations in their superclasses
(e.g., Kill is a subclass of Destroying a living entity).

The remaining proposed action classes specify the manner in which an action is
performed. For instance, Fly, Run, Swim, Crawl, Hop, and Climb were added as new
subclasses of Locomotion. Alternatively, manner could be described via one or more
relations defined on action classes. This second option would avoid possible problems
related to an increased size of the CLIB action hierarchy and the need to re-organize it.

Finally, one example of an existing action class whose meaning should be extended
is Support. Initially, this action class was defined as “to prevent from falling,” whereas
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for use in the domain of biology it is useful to extend its meaning by adding the expres-
sion “or provides some other kind of structural support.”

The discussion in this section illustrates how grounding the ontology in natural
language text helped assess its coverage in relation to the knowledge that needs to be
modeled, and informed us how the library should be extended.

3.2 Choosing an Action Class

When a knowledge encoder is representing a sentence that describes some process
knowledge, a choice needs to be made on which action class to use. This choice needs
to be systematic so that it is consistent across the representation of different processes
across the book as well as consistent across multiple encoders. We approached this
problem by systematically analyzing how different verbs should be mapped to actions
in CLIB.

For the purpose of this analysis, we limited ourselves to the 800 verbs that had a
frequency greater than or equal to ten. We analyzed these verbs based on their usage
in the textbook, starting with the most frequent ones. For each verb, we selected a
maximum of 30 sentences that contained it drawn from different parts of the textbook
to ensure that we were considering representative usage. Two challenges we faced in
this exercise are as follows.

1. A large number of verbs have (obviously) multiple meanings, depending on the
context in which they were used. So, we must deal with different senses when
choosing an appropriate CLIB action.

2. The specification of CLIB actions contains definitions and examples related to com-
mon sense domains, which are not always helpful when dealing with specialized
knowledge from the domain of biology. For instance, the CLIB action Support is
defined as “to put an object in a state that prevents it from falling;” the use of this
CLIB event is illustrated by the sentence:

(1) Tom supported the roof with a heavy beam.

However, the use of the verb support in biological descriptions can also refer to a
state that prevents something from changing its shape:

(2) Intermediate filaments support cell shape.

To address the above challenges we first developed a procedure for identifying an
action class by considering one fourth of the selected verbs, and then tested the proce-
dure on the remaining verbs. We expressed this procedure as a set of guidelines for en-
coding verbs using CLIB actions. In this process, we realized that frequently-occurring
verbs, especially those with a frequency greater than 400, tended not to describe an ac-
tual action taking place and therefore did not require an event to capture their meaning.
This was generally not the case with lower frequency verbs. We have extensive set of
guidelines to handle verbs with frequency greater than 10. For the present discussion,
we illustrate the procedure by considering several examples.
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Example 1. Textbook Sentence: The groove is the part of the protein that recognizes
and binds to the target molecules on bacterial walls.

Corresponding Universal Truth(s): The protein binds at the groove with the target
molecules, which are situated on the bacterial walls.

Encoding: The encoder needs to choose a CLIB action class to represent the verb binds.
CLIB contains an action class, Attach, for asymmetrical attachments. We check that the
sentence describes an asymmetrical attachment by verifying that the reverse sentence
– “The target molecules on the bacterial walls attach to the protein” – does not make
sense. To represent this process, we will use the action class Attach and assign values
to the participant relations for it as follows: object = protein, site = groove, and base
= target molecules on bacterial walls. We will discuss the procedure for choosing the
relations in the next section.

Example 2 (Guidelines for the Verb to cross). When analyzing sentences containing the
verb to cross, we first determined that such sentences normally translate into UTs of one
of the following two types:

(a) Entity X is crossed (interbred) with entity Y.
(b) Entity X crossed entity Y.

For UTs of type (a), whether the usage is in the context of an experiment in which an
action class corresponding to that experiment should be used. In this case, conducting
a cross breeding experiment is a domain-specific class to be created and maintained by
the domain experts.

For UTs of type (b), the relevant CLIB class is Move-Through with participant relations
having the values: object = X, base = Y.

We have developed systematic guidelines to help the encoders in identifying a suit-
able action class from CLIB. Normally, the CLIB action selected to encode a biological
process is designated as its superclass. However, there are two exceptions: sometimes
the identified CLIB action describes a subevent of the biological process, not its super-
class; other times, there is a more specific action in the KB that should be made the
superclass. We illustrate this using examples.

(3) Most often these existing proteins are modified by phosphorylation, the addi-
tion of a phosphate group onto the protein.

In the above sentence, should Add be one of the subevents of Phosphorylation, or
the superclass of Phosphorylation, or neither?

We address the subevent possibility first. Let us assume that we have a biological
process P and we have identified a CLIB action A that could be used to model it. We
use the following test to determine whether A should be a step of P or its superclass: If
it is appropriate to say “During P , A happens”, and P is already known to have other
substeps of P , then A should be a sub-step. If we apply these guidelines to (3), we
notice that it is appropriate to say that “during phosphorylation, addition happens,” but
the textbook does not describe any other subevent of phosphorylation. So, Add should
not be modeled as a substep of Phosphorylation.
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Next, we consider the superclass possibility. If P is a complex biological process
and A describes just the overall outcome of P but does not capture its intricacies, then
A should not be the superclass of P ; this is especially valid if P has multiple steps.
In this situation, a more specific biological process from the KB should be selected as
the superclass of P . The reason behind this approach is that, in such cases, the CLIB
actions tends to abstract away too many of the relevant details of the biological process.
The CLIB action is useful, though, in expressing the common sense definition of the
process. For instance, although Phosphorylation is described as an addition of a phos-
phate group to a protein in (3), encoding this process as a specialization of the CLIB
action Add is not a good choice as it would result in an overly simplified model. We
prefer to make Phosphorylation a subclass of Synthesis-Reaction, which is a subclass
of Chemical-Reaction and is better suited for capturing the complexity of this process.

The discussion above illustrates the kind of procedures we needed to develop to
identify suitable actions classes that should be used when modeling a process verb in a
textbook sentence.

4 Guidelines for Choosing Semantic Relations

CLIB provides two types of relations between events and entities, motivated by “case
roles” in linguistics [c.f. 2] :

– Participant relations – agent, base, instrument, raw-material, result, object
– Spatial relations – destination, origin, path, site.

CLIB provides a semantic definition of each relation, together with common sense
examples as shown in Table 3. In the examples, the event in boldface is related to the
entity in italics.

Relation Definition Example

agent
The entity that initiates, performs, or causes an
event.

John swatted the fly

base
Event references something as a major or rela-
tively fixed thing

Vlad attached the sign to the
post

site
The specific place of some effect of an event, as
opposed to the locale of the event itself

The nurse stabbed the needle in
my arm at the hospital

Table 3: Definition of relations in CLIB with examples

After a CLIB action is selected for modeling some biological process described by
a sentence, the next step is to identify the semantic relationships between the action
class and its various participants. It is well known that semantic distinctions are not
always directly expressed in language [19] making it difficult to apply the definitions of
the relations as shown above. The following pairs of relations are especially difficult to
distinguish.

– agent and instrument;
– raw-material and instrument;
– base and path.
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If the choice between these relationships is not made consistently and correctly,
it significantly interferes with the system’s ability to generate good natural language
sentences to support explanation generation. To further make this point, we consider
two specific problems caused by lack of proper usage.

1. The same entity is assigned to two or more semantic relations of the same event.
With such encoding, the translation into English of events is unnatural, as shown
by the following automatically produced sentence:

(4) A gated channel is closed by a stimulus with a stimulus.

The above sentence results from an action Close with object = gated channel and
agent = instrument = stimulus.

2. A required relation is assigned an overly general entity such as Physical-Object or
Tangible-Entity. Such process models are only partially useful in answering ques-
tions. Furthermore, their translations into natural language are difficult for end-
users to understand.

(5) A gene is moved into an object.

The above sentence resulted from an action Move-Into with object = gene and base
= a tangible entity.

To address this issue, we developed a more detailed characterization of how the
semantic relations might be expressed in language and how an encoder could be bet-
ter supported in choosing the most appropriate relation. Such characterization involves
specifying syntactic clues and examples from the domain of biology. Syntactic defini-
tions are usually easier to follow, as they are more precise. There is however one se-
mantic relationship, base, that has an irregular syntactic definition, which varies across
CLIB events. Additionally, there are some prepositions that are associated with more
than one semantic relationship (e.g., from may indicate either a donor or an origin). For
these reasons, a combined approach based on both semantic and syntactic definitions, as
summarized in Table 4, works the best. Such an approach benefits from the advantages
of both methods while diminishing their disadvantages.

For the pairs of relations that were particularly difficult to distinguish, we performed
a deeper comparative analysis and provided additional guidelines, as described in Sub-
section 4.1.

We tested these guidelines and our definitions by asking the domain experts to con-
vert sample encodings created into English sentences and then assessing whether the
resulting sentences were of good quality. We consider a few representative examples of
this evaluation in Subsection 4.2, together with suggestions for correcting them.

4.1 Distinguishing between Problematic Pairs of Relations

In this section, we discuss examples of relations that were too difficult to distinguish for
encoders as originally defined in CLIB, and our approach for developing a procedure to
better distinguish them.
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Distinguishing between agent and instrument. In natural language, entities denot-
ing the agent or the instrument of an event can both be realized as the grammatical
subject of a sentence, which makes it difficult to distinguish between the two:

(6) Birds eat small seeds.

(7) Intermediate filaments support cell shape.

The subjects of sentences (6) and (7) are mapped into the agent and instrument re-
lations, respectively, based on the original semantic definitions of these relations, which
requires the agent to be sentient, but the instrument need not be sentient:

– An agent is active, while an instrument is passive, being used by the agent if there
is one.

– An agent is typically considered sentient, if only metaphorically, while an instrument
need not be.

Applying these definitions and distinctions is not always straightforward because
different people have different understandings of what sentient means. This is illustrated
by the following example sentence:

(8) A biomembrane blocks hydrophilic compounds.

A biomembrane is part of a living thing, so it is not clear whether by itself, it is
sentient or not. To solve this problem, we complemented the specifications of the two
slots by adding some syntactic tests for disambiguation:

– Transform a sentence written in the active voice into an equivalent sentence in the
passive voice. The agent is the entity preceded by the preposition by, if such an
entity exists. (e.g., By transforming (6) into an equivalent sentence in the passive
voice, we obtain: “Small seeds are eaten by birds.” The noun birds is preceded by
the preposition by, hence it must indicate the agent.)

– If the subject of a sentence can be replaced by a phrase containing the preposition
with or using when the sentence is transformed into its passive voice equivalent,
then that entity is an instrument. (e.g., The sentence “Cell shape is supported
using intermediate filaments” sounds natural, so the intermediate filaments are the
instrument in sentence (7).)

By performing these syntactic tests on sentence (8), and using the semantic def-
initions above, we can determine that the biomembrane should be the agent of the
described event.

Distinguishing between raw-material and instrument. Consider the following sen-
tences:

(9) A planarian detects light using a pair of eyespots.

(10) The Calvin cycle produces sugar using ATP and NADPH.
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Here, the preposition using, normally associated with the instrument relation, ap-
pears in both of the sentences. However, only (9) specifies an instrument; (10) specifies
a raw-material.

To determine what sets the two cases apart, we analyzed several sentences which
contained verbs such as to use, to produce, to form, to consume, etc. We determined that
the following distinctions capture how these two relations are expressed in language:

– A raw-material is an entity that is used up in an event and does not come out of it
the same way it entered the process.

– An instrument is an entity that facilitates the occurrence of the event, but it is not
consumed by the process.

This new definition clarifies why (10) is an example of a raw-material: ATP and
NADPH are used up by the Calvin cycle.

Distinguishing between base and path. Consider the sentence:

(11) A molecule moves through the cell membrane.

which describes a Move-Through action. According to the original CLIB guidelines
for Move-Through, the cell membrane should be mapped into the base relation. This
conflicts with the syntactic guidelines in Table 4, which indicate that the cell membrane
should be the path, because it is preceded by the preposition through. However, opting
for either of the two relations seems to cause problems as we discuss below.

Let us assume that we opt for using the slot base in (11), and let us consider the
sentence:

(12) A molecule moves into the cell.

According to the CLIB guidelines for action Move-Into, the cell in (12) should be the
base of a Move-Into event. This leads to conflicting definitions for the slot base: in
the parent class Move-Through it must be the Barrier that is crossed; in the subclass
Move-Into it must be a Container into which an object is moved.

If we opt for using the slot path in (11), then we run into a different problem. In the
sentence:

(13) A molecule moves through a pore of the cell membrane.

there would be no relation to assign to the pore, given that the slot path—the most
natural choice—is already assigned the value the cell membrane. This is an even bigger
issue than the first option.

To remedy this problem, we decided to allow the slot base to have different defini-
tions for different action classes, even if these action classes are connected by subclass
relationships in the CLIB ontology. The new general definition of base says that it must
be “a major or relatively fixed thing that the event references” and that cannot be as-
sociated with other slots. More specific definitions are given in relation to each action
class for which this relation is relevant.



Three Lessons in Creating a Knowledge Base 13

4.2 Testing Our Definitions and Guidelines

To test the guidelines that we have described above, we asked the encoders to apply
them to encode a few representative actions, and then manually convert them into En-
glish. Such a task is in direct support of our goals to enable explanation and dialog.

In most cases the guidelines were effective, ie, when they were followed, the re-
sulting representations led to good natural language sentences. In this section, we will
discuss only those cases where the guidelines were not effective and suggest solutions
for improving them.

(14) Liquid is transported by a eukaryotic cell to cytoplasm inside a vesicle through
a plasma membrane using an organic molecule. (Pinocytosis)

In (14), the vesicle is mapped into the instrument slot. From a syntactic point of
view, the preposition inside normally indicates association with the base slot. However,
in the process of pinocytosis, the vesicle functions more like a carrier that transports
the liquid. Thus semantically it is closer to an instrument. Note that instruments are
indicated by the expression using, which is also associated with raw-material. We be-
lieve that the encoder used the preposition inside for the instrument because the using
relationship had already been used to capture the raw-material in this sentence. One
suggestion would be to use the expression consuming for the raw-material, and the
preposition using for the instrument, resulting in a new sentence:

Liquid is transported by a eukaryotic cell to cytoplasm using a vesicle through a
plasma membrane consuming an organic molecule.

Next, consider the following sentence:

(15) An image is produced using a radioactive tracer by a PET scanner.

In (15), the radioactive tracer is assigned to slot agent and the PET scanner to the
slot instrument, but the prepositions associated with the two expressions indicate a re-
versed assignment to slots. What happens in reality is that the image is produced by the
PET device based on the computer analysis of concentrations of the tracer. Therefore,
both syntactically and semantically the tracer should be the instrument and the PET
scanner should be the agent.

(16) A cell recognizes another cell (a target cell) at a plasma membrane.

In (16), the plasma membrane is assigned the role base, while the preposition at is
normally related to the slot site. Semantically, what this means is that Cell-Cell-Recognition
is a function of the plasma membrane. According to the guidelines for modeling of
Functions [9], this information would be modeled by making the has-function slot of
the plasma membrane point to Cell-Cell-Recognition. Then, the plasma membrane can
be assigned the role of site in this event, as it specifies a particular place on the agent
cell where the effect of recognition occurs.

(17) Transferring by an electron from a chemical (a reducing agent) to another
chemical (an electron recipient). (Reduction)
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In (17), the electron is assigned the role of donor, although it is preceded by the prepo-
sition by usually associated to agent. Reduction is defined as “a reaction in which the
atoms in an element accept electrons.” Hence, semantically, electrons are not a donor
(nor an agent), but rather the object of this transfer. To fix this case, we replace the
preposition by with the preposition of as in:

Transferring of an electron from a chemical (a reducing agent) to another chemical
(an electron recipient).

(18) A cell receives a signal at a receptor protein carried by a chemical.

In (18), the receptor protein is assigned to slot instrument, and the chemical to slot
object. Syntactically, the preposition at is used to denote the site. If we look at the
definition of this process, we see that it uses a different verb than receives: “The target
cell’s detection of a signaling molecule coming from outside the cell.” Moreover, in the
encoding of this process, the chemical plays the role of a signal. Hence, this sentence
could be reformulated as

A chemical entity playing the role of a signal is detected by a cell using a receptor
protein.

As a result, the following assignment of values to slots would be appropriate, accord-
ing to the information in Table 4: object = chemical with plays = signal, base = cell,
instrument = receptor protein.

5 Discussion and Lessons Learned

Let us now step back and draw some higher level conclusions from the techniques we
have presented here.

Reformulating a sentence as a UT can be more generally viewed as a way to arrive at
a surface structure of a sentence which is more closely aligned with the ultimate logical
form that needs to be created. Of course, the idea of UT needs to be generalized to a
broader set of axiom templates to support sufficient properties, constraints, disjointness
etc. A closely related notion was first introduced under the name of abstract syntax trees
(ASTs) [15]. UTs can be viewed as a specific instance of an AST. The use of ASTs is
more broadly applicable to manual knowledge curation efforts in which the acquisition
process starts from text, and an AST generation provides a graceful migration from the
informal textual knowledge to a more formal logical form. In the context of automated
knowledge acquisition using natural language processing methods, availability of ASTs
can make the task of logical form generation substantially more tractable. The sentences
in the textbook are so complex that unless one uses some form of AST, the task of
getting a reasonable logical form is almost impossible. Therefore, the use of ASTs as
a technique to add knowledge capture is the first major lesson or take away from the
proces described here.

CLIB was originally created to be a linguistically motivated upper ontology. The ac-
tion names are grounded in language and the semantic relationships based on research
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in linguistics. As we saw, the linguistic grounding of CLIB was quite effective in achiev-
ing coverage of core concepts that were needed for modeling knowledge in the biology
textbook. Even though CLIB defines semantic relationships and a few key axioms for
each of the action in the library, it is far from clear how to argue the completeness of
those axioms. There are several concepts in CLIB that capture distinctions that are not
usually expressed in language. One such example is the concept of Tangible-Entity.
As we saw during the discussion, such concepts were problematic for natural language
generation, because if such concepts appear in the output, the end-users will fail to nat-
urally understand their meaning. Ideally speaking, the usage of such concept names in
an ontology should be minimized, and preferably, avoided. We expect CLIB to have
special strength for natural language processing application because of its linguistically
motivated concepts and semantic relationships. While we cannot claim that CLIB has
yet proven its value in being an inferentially valuable knowledge resource in the same
way that Wordnet is a lexical resource, continuing to develop CLIB in that direction is
still a sensible direction for future work. Accordingly, we encourage and advocate other
researchers to make their ontologies as linguistically grounded as possible.

Use of a combination of syntactic and semantic guidelines was essential in ensuring
a systematic encoding of knowledge. We developed guidelines that helped encoders de-
termine which semantic relationship is most appropriate for use in a process description.
The linguistically motivated semantic relationships have the strength of being general
across multiple domains. But, as the complexity of the guidelines indicates, they can
also be difficult for humans to use and apply in a consistent manner. We hope that
developing the guidelines that we presented in this paper will provide a foundation
for automated and semi-automated tools that could either acquire such relationships
from text automatically, or provide much better support to encoders as they make their
choices. The basic idea of using a combination of syntactic and semantic guidelines is
quite general and can be adopted by a broad range of applications.

6 Related Work

Several well-known upper ontologies exist today that have been used to create knowl-
edge bases and overlap in their goals and coverage with CLIB. One of them is DOLCE
[6], which is a higher-level ontology than CLIB. It contains approximately 100 con-
cepts in total, whereas CLIB contains more than 1000, 147 of which are action classes.
In DOLCE, events are called occurrents. Entity-event relations are denoted by the ex-
pression participation. DOLCE distinguishes between temporary and constant partic-
ipation (and other types of participation as well), distinctions that are not present in
CLIB. Similarly to CLIB, DOLCE was used in domain-specific applications. Borgo
and Leitão, for instance, used DOLCE to model a manufacturing domain [5].

Other commonly used upper ontologies are: Basic Formal Ontology (BFO) [17, 29]
containing 36 classes in total; General Formal Ontology (GFO) [18] containing 79
classes; or Suggested Upper Merged Ontology (SUMO) [23] containing 20,000 terms.
As far as we know, there is no published research on guidelines for encoding knowl-
edge described by natural language sentences, for any of these ontologies. However, we
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believe that the method we describe in this paper is general enough to be applicable to
these upper ontologies as well.

There are several specialized biological or biomedical ontologies currently in use.
They generally tend to have a large number of concepts. Systems Biology Ontology
(SBO) [14] is an ontology dedicated to a specific branch of biology. It incorporates
the concept of interaction, which roughly corresponds to events in CLIB. The Gene
Ontology (GO) [13] is designed to facilitate the description of gene products. The Sys-
tematized Nomenclature of Medicine Clinical Terms (SNOMED-CT) [31] is a much
larger biomedical ontology, containing over 400,000 concepts. It is currently in use
in different countries. There has been substantial research in revising and auditing this
large ontology [25, 32, 28]. In contrast with the issues we discussed in relation to CLIB,
the problems identified by this body of work concerned the taxonomy of SNOMED-CT.
Some similarities with our approach are present however, such as a close collaboration
between knowledge engineers and domain experts, and a need to address the mismatch
between a common sense meaning of words and their usage in the ontology.

A different type of research with converging goals to ours is Proposition Bank
(PropBank) [24] — “a corpus of text annotated with information about basic seman-
tic propositions.” The goal of PropBank is to define a methodology for mapping nouns
in a sentence into arguments of the verb in that sentence. PropBank arguments corre-
spond loosely to relations of CLIB, but a PropBank argument may reflect the meaning
of one or more CLIB relations (e.g., Arg0 denotes both agents and experiencers). As a
result, the task we address is much more difficult than the one of PropBank.

One of the resources used by annotators of PropBank texts is a database describing
the arguments associated to each verb in a selected vocabulary. For instance, the argu-
ments specified for the verb to move are: (a) Arg0: mover (b) Arg1: moved (c) Arg2:
destination. If the same noun (entity) plays more than one role in a sentence, only the
argument with the highest rank is assigned. This solution could be used in our applica-
tion as well, in order to prevent awkward translations into natural language when the
same entity appears several times in a sentence.

A second resource used by annotators is a detailed set of guidelines provided by [4]
for the mapping of nouns into arguments, with specific instructions for sentences with
different syntactic structures (e.g., declarative sentences, questions, etc.). Our work also
focuses on developing guidelines for a consistent assignment of entities to participant
relations of events, but we operate at a higher level of abstraction. We do not look at
sentences expressed in natural language directly; rather we assume that sentences are
transformed into Universal Truths first.

7 Summary and Conclusions

The work reported in this paper has been driven by the assumption that an explicit
representation of knowledge is critical for a system to support reasoning, explanation
and dialog. We described some key aspects of creating a knowledge base from a bi-
ology textbook. Even though we used specific examples from our project, there are
three broad lessons that are of interest to other projects using both manual and auto-
mated techniques for knowledge acquisition. These lessons are: (1) reformulating the
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sentences so that their abstract structure is closer to the logical form to be acquired (2)
use of a linguistically motivated upper ontology (3) use of a combination of syntactic
and semantic guidelines to specify how ontological distinctions are expressed in lan-
guage. We further hope that the three lessons at a general level, and the specifics of
the guidelines that we presented, will inspire a new breed of manual, semi-automatic
and fully automatic tools for creating knowledge representations that are well-suited for
reasoning, explanation and dialog.
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Relation Semantic Definition Syntactic Definition Biology Examples

agent
The entity that initiates, performs,
or causes an event.

• the grammatical subject of a
sentence in active voice
• preposition: by (sentence in pas-
sive voice)
(Assume that biological entities
like protein, bacteria, etc., can be
agents too.)

A virus enters a cell.
A cell is penetrated by a virus.

object
The entity that is acted upon by
an event; the main passive partic-
ipant in the event.

• the grammatical object of a sen-
tence in active voice
• preposition: of

A virus enters a cell.
A cell is penetrated by a virus.
... the penetration of a cell by a
virus.

instrument
The entity that is used (by the
agent if there is one) to perform
an event.

• preposition: with / preceded by:
using

An animal walks using its legs.

raw-material
The entity/ material used as input
for an event.

• the grammatical object of verbs
like to use, to consume, etc.
• preceded by: using

The Calvin cycle uses the ATP
and NADPH to produce sugar.
Water is converted to hydrogen.
Chemicals are transported, us-
ing energy.

result
The entity that comes into exis-
tence as a result of an event.

• the grammatical object of verbs
like to produce, to create, etc.
• preposition: to / preceded by:
producing

Plants produce their own sugars
by photosynthesis.
Water is converted to hydrogen.

donor
The entity that releases the object
of an event (possibly unintention-
ally).

• preposition: from
Heat is transfered from the
warmer body to the cooler body.

recipient
The entity that receives (takes
possession of) the object of an
event.

• preposition: to
Heat is transferred from the
warmer body to the cooler body.

base
An entity that the event references
as something major or relatively
fixed.

Irregular – depends on the verb.

Water moves into a cell.
Water moves out of a cell.
A signal molecule attaches to a
receptor protein.

beneficiary
The entity that benefits from an
event.

• preposition: for

experiencer
The entity that experiences an
event.

For a sentence containing a verb
describing an emotional or psy-
chological action:
• the sentence subject (sentence
in active voice)
• preposition: by (sentence in pas-
sive voice)

Plants sense gravity and the di-
rection of light.
Gravity and the direction of light
are sensed by plants.

origin
The place where an event (typi-
cally a movement) begins.

• preposition: from
Water moves from a hypotonic so-
lution to a hypertonic solution.

destination
The place where an event (typi-
cally a movement) ends.

• preposition: to
Water moves from a hypotonic
solution to a hypertonic solution.

away-from
The place away from which an
event transpires, but not necessar-
ily where the event starts.

• preposition: away from
The plasma membrane pulls
away from the wall.

toward
The place toward which an event
transpires, but not necessarily
where the event ends.

• preposition: toward
Daughter chromosomes move to-
ward opposite ends of the cell.

path
The place (or other entity) along
or through which an entity moves.

• preposition: across, along,
through

A protein moves into a cell
through a pore.

site
The specific place of some effect
of an event, as opposed to the lo-
cale of the event itself.

• preposition: at
The protein binds at the groove
with the target molecules of bac-
terial walls.

Table 4: Summary of guidelines for mapping entities into slots.
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Abstract. The diversity in source and target languages coupled with source 

language ambiguity makes Machine Translation (MT) an exceptionally hard 

problem. The highly information intensive corpus based MT leads the MT re-

search field today, with Example Based MT and Statistical MT representing 

two dissimilar frameworks in the data-driven paradigm. Example Based MT is 

another approach that involves matching of examples from large amount of 

training data followed by adaptation and re-combination.  

Urdu MT is still in its infancy due to nominal availability of required data 

and computational resources. This paper provides a detailed survey of the 

aforementioned contemporary MT techniques and reports findings based on qu-

alitative analysis with some quantitative BLEU metric quantitative results. 

Strengths and weaknesses of each technique have been brought to surface 

through special focus and discussion on examples from Urdu language. The pa-

per concludes with proposal of future directions for research in Urdu machine 

translation.  

Keywords:  Urdu Machine Translation, Qualitative Comparison, Rule Based 

MT, Statistical MT, Example Based MT 

1 Introduction 

Representing text in one natural language, the source language (SL) into another, the 

target language (TL) is as old as the written literature [1]. At present, the need of 

translation is continuously growing in business, economy, medical and many other 

fields. The growth in science and technology in general and computer based solutions 

in particular have paved the way to the concept of automatic translation called the 

Machine Translation (MT) [2]. 

1.1 Urdu 

Urdu ranks 19
th

 among the 7,105 languages spoken in the world
1
. It is one the most-

spoken languages in South Asia [3]. It is also spreading in the West due to the large 

                                                           
1  http://www.ethnologue.com/statistics/size 



Diaspora of Indo-Pak Subcontinent citizens. Urdu is the national language of Pakistan 

and it is used i) as medium of teaching in most of the public schools ii) for junior to 

mid level administration and iii) in the mass print and electronic media. It is not only 

spoken in Pakistan but also in India, Bangladesh, Afghanistan and Nepal. Also it has 

become the culture language and lingua franca of the South Asian Muslim Diaspora 

outside the Indo-Pak subcontinent, mainly in the Middle East, Europe, Canada and the 

United States [4].  

1.2 Urdu Machine Translation (UMT) 

In spite of the large number of speakers around the world, there are very few compu-

tational natural language tools available for Urdu. It is a morphologically rich lan-

guage having many other distinct linguistic characteristics. On the contrary it is still 

an under-resourced language from the point of view of computational research. We 

could not find any public domain machine translation tool(s) developed specifically 

for Urdu. However some trace of basic MT techniques has been discovered [5-9]. In 

the current work we presented a detailed survey on the contemporary research in 

UMT. We identified the weaknesses and strengths of each technique and proposed the 

guidelines for future directions in UMT research.  

2 Literature Survey 

Some traces of basic UMT research are presented in this section. Naila et al [5] pre-

sented a Rule Based English to Urdu Machine Translation (RBMT) technique primar-

ily based on the transfer approach that tries to handle the case phrases and verb post-

positions using Paninian grammar. Statistical Machine Translation (SMT) between 

languages with word order differences was discussed by Bushra et al [6]. Example 

Based Machine Translation (EBMT) approach was introduced by Maryam and Asif 

that translates text form English to Urdu that supports idioms and homographs [7]. 

Parallel corpus for statistical machine translation for English to Urdu text was pre-

sented by Aasim et al [8]. Word-Order Issues in English-to-Urdu have been investi-

gated by Bushra and Zeman [9]. In addition, SMT systems such as Google
2
 and Bing

3
 

are already available online. However these systems offer poor translation quality and 

limited accuracy due to issues related to Urdu syntax and other intrinsic linguistic 

features.  

  

Fig. 1. Paradigms for Machine Translation 

                                                           
2  http:// translate.google.com 
3  http://www.bing.com/translator 



Contemporary Machine Translation techniques can be broadly categorized into 

three paradigms as shown in Figure 1. 

2.1 Rule Based Machine Translation (RBMT) 

To provide suitable rules for translation, the RBMT needs linguistic knowledge of 

source as well as the target language. Translation depends on formalized linguistic 

knowledge represented in lexicon along with grammars [10].  RBMT is described by 

several characteristics; it has firm set of well fashioned rules, several rules rely on 

present linguistic theories and the grammatical errors are prohibited. The major ad-

vantage of RBMT is that if the required knowledge is not found in available literature 

then ad-hoc heuristic rules are applied [5]. This system contains input sentence ana-

lyzer (morphological, syntactic and semantic analysis) and procedures for producing 

output (structural transfers and inherent Inter-lingua structures). 

2.2 Statistical Machine Translation (SMT) 

Two models are built in SMT; i) Translation model and ii) Language model. A trans-

lation model gives probability of a target sentence given source sentence P(T/S) whe-

reas the language model determines the probability P(S) of the string of target lan-

guage actually occurring in that language. By using the language model and condi-

tional probabilities of translation model, P(S/T) is calculated using the following for-

mula: 

𝑃  
𝑆

𝑇
 =

𝑃 𝑆 𝑃  
𝑇

𝑆
 

𝑃 𝑇 
 

Probability based analysis of MT is part of SMT. It has numerous diverse applica-

tions such as those in word sense disambiguation or structural disambiguation etc. 

[11]. The SMT techniques do not need explicit encoding of the linguistic information. 

It highly depends upon availability of fine and very large amount of bilingual data 

that presently does not exist for Urdu and other languages spoken in the Indo-Pak 

Subcontinent region.  

2.3 Example Based Machine Translation (EBMT) 

Somers referred to EBMT as a hybrid approach of RBMT and SMT [12]. Like SMT, 

it is depended upon a corpus of available translations. That is why it is similar to (of-

ten confused with) translator‟s aid known as Translation Memory (TM). EBMT and 

TM both involve comparison of input text with the database of real examples and then 

find out the nearest match. In TM, a translator selects the candidate target text whe-

reas EBMT makes use of automated procedures that identify the translation frag-

ments. Recombination of these fragments produces the target text [10]. 

Thus the process is split into three phases [10]. i) “Matching” fragments against the 

available database of real examples (that are common between EBMT and TM), ii) 



“Alignment” identifying corresponding translation fragments and finally iii) “Recom-

bination” that gives the target text. EBMT needs a database of parallel translations 

that are searched for source language phrases or sentences and their nearest matching 

target language components are generated as output [11]. 

EBMT saves the translation examples in different manners. In simple case, exam-

ples are saved as pairs of strings with no extra information related to them. 

3 Methodology 

In this section we discuss the methodologies of three major Machine Translation 

techniques. English is considered as source language and Urdu as the target language. 

We compare the strengths and weaknesses of these techniques in Section 4.  

3.1 Rule Based Machine Translation 

There are three stages in RBMT; i) Analysis, ii) Transfer and iii) Synthesis  

 

 

Fig. 2. RBMT Model 

Analysis. 
The source text is analyzed based upon lexicon and grammar rules of source lan-

guage. Word segmentation is done and each word is annotated by appropriate POS 

tag and parse tree of input text is created. A parse tree for the input text “I called you 

several times” is created as shown in figure 3.  

Transfer.  

In this stage, parse tree of source language text is „transferred‟ into parse tree of de-

sired target language according to the lexicon and structural rules of the target lan-

guage. English is SVO (Subject, Verb, Object) language whereas Urdu is SOV lan-

guage. Re-ordering of words is inevitable in order to generate the output parse tree as 

shown in Figure 4. 



English to Urdu Translation Rules.  

Some coarse grained rules for translation from English to Urdu are mentioned in 

the following.  

1. NP in both languages follows the same rule. So swapping in not required. 

2. If NP is having NP and PP, then transform it as in Urdu PP comes before NP. 

English  𝑁𝑃 → 𝑁𝑃 +  𝑃𝑃 

Urdu   𝑁𝑃 → 𝑃𝑃 +  𝑁𝑃 

3. If adverb phrase (AP) appears before verb then swapping is not needed. AP in Eng-

lish can appear in different order depending on the type of AP, however Urdu pre-

fers AP before verb.  

Urdu   AP +V 

4. In Urdu, Verb phrase (VP) is inflected according to gender, number and person 

(GNP) of the head noun while NP depends upon tense, aspect and modality of the 

verb phase (VP). Urdu adjectives are also modified by GNP of the head noun.

 

Fig. 3. English Parse Tree 

 

Fig. 4. Parse Tree (transferred in SOV)

Synthesis.  

Finally, the target language lexicon and grammar is used to convert the parse tree of 

target language to the target language surface form. It requires two independent mo-

nolingual dictionaries so that appropriate surface form of target language can be gen-

erated. 

As shown in figure 5 the source text “I called you several times” is translated into 

   .using RBMT ”میں کئی مرتبہ آپ کو بلایا“

 

Fig. 5. Urdu parse tree 



3.2 Statistical Machine Translation (SMT) 

SMT makes use of i) Translation Model, ii) Language Model and iii) Decoder Algo-

rithm.  

 

 

Fig. 6. SMT Model 

Translation Model.  

Words and phrases in the source text are matched against the target language strings. 

If the strings are matched the model assigns a probability value P(T/S) to it. This 

probability shows that what are the chances that the input text string is present in the 

output or target language. These probability values are pre-assigned in a parallel cor-

pus through human translation. Subsequently machine learning techniques are used to 

improve the system depending upon the human translated text. 

Language Model.  

Language model determines the probability P(S) of output text string. It does not 

require a parallel corpus. It requires text in only one language. We can calculate the 

value by using N-gram model. In this the probability of occurrence of sentence of 

length N is the product of probability of each k
th

 word given the occurrence of pre-

vious words k-1 and k-2. 

Decoder Algorithm.  

After finding the product of translation and language model the decoder algorithm 

selects the string of output text language with the highest probability value based on 

the stochastic formula mentioned in Section 2.2.  

3.3 Example Based Machine Translation (EBMT) 

English to Urdu EBMT is divided into four phases; i) Sentence Fragmentation, ii) 

Search in Corpus, iii) N-ary Product based Retrieval and iv) Ordering of Translated 

Text. 



Sentence Fragmentation.  

For better handling of input sentence by translator, it is better to break the sentence 

into phrases. On the other hand same results are achieved by storing sentence in the 

corpus and by gaining a broad coverage by fragmenting and combining using genetic 

algorithm at run time for obtain new sentences. Fragmentation of a sentence into 

phrases is handled by using concept of idioms, cutter points and connecting words. 

 

 

Fig. 7. EBMT Model 

Searching in Corpus.  

Bilingual corpus is searched for finding whether the input phrase is accessible or not. 

If the system is unable to locate exact match, then in that situation it will look for the 

nearest match. Closeness is calculated by threshold at two stages; i) for exact match 

and ii) for nearest match. This is done by two algorithms “Levenshtein Algorithm” 

and “Semantic Distance Algorithm”.  

N-ary Product Based Retrieval.  

The translation for an input sentence is extracted in this stage. And there is possibility 

that input can have many translations. So the possibilities are collected and the idea of 

n-ary product is used to record all the feasible sentences. 

Ordering of Translated Phrases.  

If a single input sentence is divided into pieces and translated into output language 

phrase, then ordering of these translated phrases are done in this phase. 

4 Comparison 

4.1 Rule Based Machine Translation  

The quality of translation in Rule Based Machine Translation (RBMT) depends upon 

large number of rules. Therefore its computational cost is very high. Rules are based 

on both source and target languages, their respective morphological, syntactical and 



semantic structures. With a large set of large and fine grained linguistic rules, RBMT 

generates translation with acceptable quality, but developing system like this needs 

more time and man hours because this type of linguistic recourses should be hand 

crafted (Knowledge Acquisition Problem). As RBMT works with exact matches, it is 

unable to translate text when system does not have enough knowledge about the in-

put. It is also difficult to add more rules for generating high quality output. 

4.2 Statistical Machine Translation 

The knowledge about translation is acquired automatically from the example data. 

This is the main reason why SMT is developed fast as compared to RBMT. In a situa-

tion where large corpus is available but linguistic knowledge is not readily available 

then SMT is a preferred method. When input and output languages are not complex 

morphologically then SMT techniques generate better results. SMT based approaches 

do not need Bilingual dictionaries. They depend upon the quality of bilingual corpus. 

4.3 Example Based Machine Translation 

It requires Bilingual dictionary. It translates text by adapting to examples. The com-

putational cost is less than RBMT. By storing proper examples in the DB the system 

can be upgraded. It works on best matching reasoning, so therefore when the corres-

ponding example is not available in corpus, the translation process becomes compli-

cated. It translates in fail-safe way. Quality of translation depends upon the difference 

between input text and lookup results for similar examples. EBMT can also notify us 

that when its translation is improper. 

Table 1. Comparison of RBMT, SMT and EBMT  

 



5 Findings  

The qualitative findings are tabulated in table 1, and the quantitative findings are 

mentioned in table 2. The BLEU metric is used for the evaluation of the machine 

translated text, five reference sentences were used for calculating the BLEU value. 

From the value of the BLEU it is clearly shown that EBMT performs better than the 

rest of the three systems. RBMT was found to be better than both the SMT systems. 

Out of the two SMT (Google and Bing), Bing translator gave better results than the 

Google translator.  

Table 2. BLEU value of RBMT, EBMT and SMT  

 RBMT EBMT 
SMT 

Google Bing 

BLEU Value 0.8 0.8421 0.6268 0.709 

6 Discussion  

After detailed literature study and investigation of the above mentioned three MT 

systems, we can conclude that for languages with similar lexical and syntactic struc-

ture e.g. Urdu and Hindi, the Rule based MT technique gives better results. The SMT 

systems perform better if necessary resources such as annotated corpora etc. are avail-

able. At present, most of the systems translate text from source to target language on 

the basis of single sentence whereas in real life text for translation is much larger than 

one sentence. Nonetheless, the continuous process of repetitive translation and im-

provements by human annotators contribute significantly to any MT system. 

7 Conclusion and Future Directions  

In this paper we explained three main techniques of machine translation; Rule Based 

Machine Translation, Statistical Machine Translation and Example Based Machine 

Translation. We explained the methodology of each of these systems and found their 

comparison based on their respective outputs using carefully selected text. Our cur-

rent work is preliminary in nature. However it reports significant results based on 

qualitative analysis. 

In order to contribute a significant role to UMT research, at present we are in the 

process of building the required corpora. We intend to use our corpora to conduct 

larger scale automated experiments and report quantitative results that are comparable 

to human translators. Based on our qualitative and quantitative results, we aim at pro-

posing a new model that minimizes flaws in the existing Urdu MT systems. Ideally, 

we would like to implement our proposed system with fewer requirements of compu-

tational and human resources. 
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Abstract. In this paper we will describe the NL2KR system that trans-
lates natural language sentences to a targeted knowledge representation
formalism. The system starts with an initial lexicon and learns mean-
ing of new words from a given set of examples of sentences and their
translations. We will describe the first release of our system with several
examples.
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edge Representation

1 Introduction and Motivation

Our approach to understanding natural language involves translating natural
language text to formal statements in an appropriate knowledge representation
language so that a reasoning engine can reason with the translated knowledge
and give a response, be it an answer, a clarifying question or an action. To
translate natural language text to a formal statement we propose to use the
compositional method of Montague [1] where the translation (or meaning) of
words are given as lambda calculus formulas and the meaning of phrases and
sentences are obtained by composing the meaning of the constituent words.
The challenge in doing this is in coming up with appropriate lambda calculus
expressions for each word. The challenging aspects in this are: (a) the number
of words may be huge, (b) the lambda calculus expression (or meaning) of some
words are too complicated for humans to come up with it, and (c) the lambda
calculus expressions for the words are target language specific; so it is not a one
time affair like compiling traditional dictionaries. To address these challenges we
use an inverse lambda algorithm [2] that computes the meaning of a word/phrase
G when the meaning of the word/phrase H and the phrase GH (or HG) is known.

The NL2KR system uses an initial lexicon containing some words and their
meanings and a set of training corpus containing sentences in natural language
and their translations to learn new meanings of words. The system then uses the
new learned lexicon to translate new sentences. In this paper, we would like to
give an overview of the NL2KR system and examples of using it.
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2 Overview

Shown below in Fig. 1 is the architecture of the NL2KR system. It has two sub-
parts which depend on each other (1) NL2KR-L for learning and (2) NL2KR-T
for translating.

Fig. 1. Architecture of the NL2KR system: NL2KR-T on the left and NL2KR-L on
the right

The NL2KR-L sub-part takes an initial lexicon consisting of some words and
their meanings in terms of λ-calculus expressions & a set of training sentences
and their target formal representations as input. It then uses a Combinato-
rial Categorical Grammar (CCG) parser to construct the parse trees. Next, the
learning sub-part of the system uses Inverse-λ and Generalization algorithms to
learn meanings of newly encountered words, which are not present in the initial
lexicon, and adds them to the lexicon. A parameter learning method is then
used to estimate a weight for each lexicon entry (word, its syntactic category
and meaning) such that the joint probability of the sentences in the training
set getting translated to their given formal representation is maximized. The re-
sult of NL2KR-L is the final lexicon, which contains a larger set of words, their
meanings and their weights.

Once the training component finishes its job, the translation sub-part (NL2KR-
T) uses this updated lexicon and translates sentences using the CCG parser.
Since words can have multiple meanings and their associated λ-calculus expres-
sions, weights assigned to each lexical entry in the lexicon helps in deciding the
more likely meaning of a word in the context of a sentence.

3 Using NL2KR

The latest version of NL2KR system can be downloaded from
http://nl2kr.engineering.asu.edu. It can be run on Linux (64 bit) and OS-X.
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3.1 Third Party Software Used by NL2KR

The current version of NL2KR uses the following libraries and tools developed
by others:

– Scripting language Python (version ≥ 2.6)

– AspCcgTk version 0.3 1

– Stanford Log-linear Part-Of-Speech Tagger 2 (version 3.1.5)

– Oracle Java (version ≥ 1.6)

– ASP grounder and solver: gringo (version 3.x), clasp (version 2.x) and clingo
(version 3.x) 3

3.2 Installation guide

The NL2KR package contains a readme file and a zipped file which contains

– AspCcgTk

– Jar file and models of Stanford Log-linear Part-Of-Speech Tagger

– Jar file and configurations for NL2KR

– Gringo, clasp and clingo

After unzipping the package, the instruction in the readme file directs how to
install NL2KR.

3.3 Files/Folders in the package

Following is a brief list of important files/folders in the package:

– README: Installation instruction and examples of how to use NL2KR.

– NL2KR.jar: NL2KR’s classes packed in a jar file.

– config.properties: Default configuration of the NL2KR system.

– install.sh: Script to install NL2KR.

– ccgParser.sh: Script to get a CCG parse tree of a given sentence.

– Generalization.sh: Script that gives generalized meanings of a word.

– Inverse.sh: Script to compute the inverse using the inverse lambda algo-
rithms.

– Lambda.sh: Script to do application operation, given a function and an
argument in λ-calculus.

– NL2KR-L.sh: Script to run the NL2KR-L sub-part.

– NL2KR-T.sh: Script to run the NL2KR-T sub-part.

– RunConfiguration: Example inputs of the preceding scripts.

– resources: Folder containing AspCcgTk package, gringo, clasp and clingo.

– examples: Folder containing examples in various domains for NL2KR-L and
NL2KR-T.

1 http://www.kr.tuwien.ac.at/staff/former staff/ps/aspccgtk
2 http://nlp.stanford.edu/software/tagger.shtml
3 http://potassco.sourceforge.net/
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3.4 Executing the scripts

To execute any of the scripts one needs to go to the NL2KR’s root directory and
run

./<script name > <RunConfiguration file > [Optional params]

where script name is the name of one of the six scripts (e.g. ./Lambda.sh),
RunConfiguration file contains corresponding parameters for the script, and
optional parameters are for the Java Virtual Machine (JVM) to execute the
module that corresponds to the script. For learning and testing large dataset
with NL2KR-L or NL2KR-T, it is recommended to provide more memory for
the JVM and enable garbage collection if needed (i.e. Use -Xmx and -XX:-
UseGCOverheadLimit).

3.5 Lambda application

To use the lambda application script, the function and the argument of the
lambda application need to be provided. For example, the following snippet in
the RunConfiguration file specifies that we need to apply the argument #x.x@mia
to the function #y.#x.loves(x, y) (note: # is for λ).

function =#y.#x.loves(x,y)
argument =#x.x@mia

The output of the lambda application is function@argument. According to
lambda application, the y variable is replaced by #x.x@mia and the result is
#x.loves(x,#x0.x0@mia), where x in the argument is renamed to x0. Running
the lambda application script with the preceding configuration yields the output:

Function =#y.#x.loves(x,y)
Argument =#x.x@mia
Result= #x.loves(x,#x0.x0 @ mia)

However, in the following configuration, the argument cannot be applied to
the function since there is no free variable in the function.

function = loves(x,y)
argument = #x.x @ mia

The output thus would be

Function = loves(x,y)
Argument = #x.x @ mia
Cannot apply the argument#x.x @ mia to the function loves(x,y)

3.6 Inverse application

Given two lambda expressions g and h, the lambda application gives us f = g@h
or f = h@g. But sometime, we have only f and g and we need to find h. The
inverse application allow us to calculate the lambda expression h so that f = g@h
or f = h@g. More details about the inverse application can be found in [2]. For
inverse application, we need to provide the parent (lambda expression f), the
right child (r) or the left child (l). Given one child, the module will calculate the
other child so that f = l@r.
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In the first example below, since there does not exist a lambda expression
h (right child) so that mia@h = #x.loves(x,mia), the inverse algorithm re-
turns right child expression = null. However, when mia is the right child, inverse
lambda returns Leftchild = #x1.#x.loves(x, x1) because #x1.#x.loves(x, x1)@mia
= #x.loves(x,mia). In case the CCG parse tree specifies that the meaning of
“Mia” must be in the left child, using left child as #x.x@mia instead of mia
will do the trick and let us have the same right child: #x1.#x.loves(x, x1).

Example 1. Input:

parent =#x.loves(x,mia)
left_child=mia

Output:

Parent = #x.loves(x,mia)
Left child =mia
Right child = null

Example 2. Input:

parent =#x.loves(x,mia)
right_child=mia

Output:

Parent = #x.loves(x,mia)
Right child = mia
Left child = #x1.#x.loves(x,x1)

Example 3. Input:

parent =#x.loves(x,mia)
left_child =#x.x @ mia

Output:

Parent = #x.loves(x,mia)
Left child =#x.x @ mia
Right child = #x1.#x.loves(x,x1)

3.7 Generalization

The inverse lambda module is not always adequate to learn new meanings of
words when we lack meaning of words that will allow us to use the inverse
lambda module. To address that we have developed a generalization module in
NL2KR system, where the generalization technique described in [2] is imple-
mented. For example, if we want to find the meaning of the word plays with the
category (S\NP )/NP using generalization, we can use the lexical entry (eats,
(S\NP )/NP , λy.λx.eats(x, y)) in the lexicon, where the category of the word
eats is same as that of the word plays. The generalization module will add a new
lexical entry (plays, (S\NP )/NP , λy.λx.plays(x, y)) to the lexicon. The input
of the generalization module is the file path for lexicon (existing dictionary) and
a new word, which we want to generalize. Following is an illustration of the use
of generalization with the RunConfiguration file having the following:
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lexicon =./ examples/sample/dictionary.txt
word=Mia
ccg=N

where dictionary.txt contains

Vincent N vincent
Vincent N #x.vincent(x)
takes (S\NP)/NP #w. #z. (w@ #x. takes(z,x) )
plane N #x. plane(x)

5 boxer N #x. boxer(x)
fights S\NP #x. fight(x)

In this case, the word Mia can be obtained by generalization from the words
Vincent, plane and boxers, each of category N (meaning noun); and the output
is

New lexical items learned through Generalization:
Mia [N] #x.mia(x)
Mia [N] mia

We can restrict generalization by modifying the config.properties file. For
example, adding the following snippet to config.properties will skip the general-
ization process for NP and N categories, and generalization for the words: on,
of, by and in.

GENERALIZATION_D_EXCLIST =[NP],[N]
GENERALIZATION_D_PREPOSITIONLIST=on ,of,by,in

3.8 CCG parser

The input of the CCG parser module is the sentence we want to parse and an
optional path of the file containing the words and their additional categories
we want to use. The parser will parse the input sentence and output its CCG
parse tree. Our CCG parser is based on ASPccgTk [3] with some modifications
such as our use of the Stanford Part-Of-Speech tagger [4] instead of the C&C
Part-Of-Speech tagger [5] to improve accuracy. Following is an example snippet
of the RunConfiguration file.

sentence=’Every boxer walks ’
syntaxFile =./ examples/sample/syntax.txt

where syntax.txt contains

takes (S\NP)/NP
Every (S/(S\NP))/NP
Some (S/(S\NP))/NP
walks S\NP

5 fights S\NP
loves (S\NP)/NP

The output of the CCG parser is a parse tree of the sentence “Every boxer
walks” in ASP format as follows

nl2kr_token(t1 , "Every", "(S/(S\NP))/NP", 1).
nl2kr_token(t2 , "boxer", "NP", 2).
nl2kr_token(t3 , "walks", "S\NP", 3).
nl2kr_token(t4 , "Every boxer", "S/(S\NP)",1).

5 nl2kr_token(t5 , "Every boxer walks", "S", 1).
nl2kr_child_left(t4, t1).
nl2kr_child_right(t4, t2).
nl2kr_child_left(t5, t4).
nl2kr_child_right(t5, t3).

10 nl2kr_valid_rootNode(t5).
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The predicate nl2kr valid rootNode is used to specify the root node of the parse
tree (corresponds to the whole sentence). nl2kr token is used to specify nodes
in the tree and nl2kr child left, nl2kr child right are for the left child and the
right child of a node. The four atoms of nl2kr token are respectively the node
ID, the corresponding phrase, its CCG category and its starting position in the
sentence.

3.9 NL2KR-L: the learning module of NL2KR

To run the learning module NL2KR-L we need to set the initial lexicon file
path, the override file for syntax categories (optional), the training data file and
the output dictionary file path (optional) in the RunConfiguration file of the
NL2KR-L. Following is an example snippet of the RunConfiguration file.

Ldata =./ examples/sample/train.txt
Ldictionary =./ examples/sample/dictionary.txt
Lsyntax =./ examples/sample/syntax.txt
Loutput =./ examples/sample/dictionary_train.out

For example, the preceding snippet specifies that: the training data is in ./exam-
ples/train.txt, the initial lexicon is in ./examples/sample/dictionary.txt,
and the override syntax categories are in ./examples/sample/syntax.txt.
The override syntax categories will be used in CCG parsing step as showed in
the previous subsection. If it is not specified, the output dictionary is saved as
dictionary train.out in ./output folder.

The training data file contains the training sentences and their formal repre-
sentation such as:

Some boxer walks EX. (boxer(X) ^ walk(X))
John takes a plane EX. (plane(X) ^ takes(john , X))
John walks walk(john)

In the above, EX denotes ∃X.
The initial lexicon contains words and the their meanings that we already

know:

John N john
takes (S\NP)/NP #w. #z. (w@ #x. takes(z,x) )
plane N #x. plane(x)
boxer N #x. boxer(x)

5 fights S\NP #x. fight(x)

The NL2KR-L sub-part learns the new meanings of words in multiple itera-
tions. It stops when it cannot learn any new word. Below we give the output of
the script with example inputs.

We start with some snippets of the running output in the following. From
line 5 to 9, NL2KR-L was checking if it has the meaning of Some boxer and
walks. It then learned the meaning of walks by generalization.

From line 15 to 19, NL2KR-L was trying to learn the meaning of Some
boxer given the meaning of walks and the meaning of the whole sentence Some
boxer walks from the training data. Using inverse lambda, it figured out that the
meaning of Some boxer is #x1.EX.boxer(X) ∧ x1@X.

NL2KR-L did not go further to the meaning of “some” because the meaning
“boxer” of boxer was not helpful.
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However, using the second parse tree where the meaning #x.boxer(X) of
boxer is used, NL2KR-L can get the meaning of some (line 42-49) : #x2.#x1.EX.x2@X∧
x1@X.

****** Learning lexicon ...
...
Processing sentence number 1
Processing Parse Tree 1

5 Word : Some boxer walks sem::null
Both children do not have current lambda expression: Some boxer ,walks
Generalizing for leafs with no expected lambda: walks
New lexical item Learned by Expansion: walks ////[S\NP ]////#x.walk(x)
...

10 Processing sentence number 1

Processing Parse Tree 1

Word : Some boxer walks sem::null
15 Applying inverse : EX.boxer(X) ^ walk(X) #x.walk(x)

INVERSE_L Tried:
Some boxer walks(H) = EX.boxer(X) ^ walk(X)
walks(G) = #x.walk(x)
Some boxer(F) = #x1.EX.boxer(X) ^ x1 @ X

20 Word : walks sem::#x.walk(x)
Word : Some boxer sem::null
Applying inverse : #x1.EX.boxer(X) ^ x1 @ X boxer
INVERSE_L Tried:
Some boxer(H) = #x1.EX.boxer(X) ^ x1 @ X

25 boxer(G) = boxer
Some(F) = null
Generalizing for leafs with no expected lambda: Some
Generalizing for leafs with no expected lambda: boxer
Word : boxer sem::boxer

30 Word : Some sem::null

Processing Parse Tree 2

Word : Some boxer walks sem::null
35 Applying inverse : EX.boxer(X) ^ walk(X) #x.walk(x)

INVERSE_L Tried:
Some boxer walks(H) = EX.boxer(X) ^ walk(X)
walks(G) = #x.walk(x)
Some boxer(F) = #x1.EX.boxer(X) ^ x1 @ X

40 Word : walks sem::#x.walk(x)
Word : Some boxer sem::null
Applying inverse : #x1.EX.boxer(X) ^ x1 @ X #x.boxer(x)
INVERSE_L Tried:
Some boxer(H) = #x1.EX.boxer(X) ^ x1 @ X

45 boxer(G) = #x.boxer(x)
Some(F) = #x2.#x1.EX.x2 @ X ^ x1 @ X
Word : boxer sem::#x.boxer(x)
Word : Some sem::null
New lexicon Learned: Some ////[(S/(S\NP))/NP ]////# x2.#x1.EX.x2 @ X ^ x1 @ X

At the end of the learning phase, parameter estimation is run to assign the
weights for each meaning of words. NL2KR-L then uses those meanings to check
if they are enough to translate the training sentences correctly.

****** Evaluation on training set ...

Processing training sentence: Some boxer walks
Predicted Result: EX.boxer(X) ^ walk(X)

5 Correct Prediction

Processing training sentence: John takes a plane
Predicted Result: EX.plane(X) ^ takes(john ,X)
Correct Prediction
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10
...

Following is the output lexicon learned with the example inputs mentioned
earlier. Each row contains a word, its CCG category, its meaning and the as-
sociated weight. Compared to the initial dictionary, we can see that NL2KR-L
learned 14 more word meanings. Note that some words such as likes and eats
are in the “syntax.txt”.

Some [(S/(S\NP))/NP] #x2.#x1.EX.x2 @ X ^ x1 @ X 0.0074364278
fight [S\NP] #x.fight(x) 0.01
boxer [N] #x.boxer(x) 0.060000002
boxer [N] boxer -0.041248113

5 a [NP/N] #x4.#x2.EX.x4 @ X ^ x2 @ X 0.009887816
John [NP] john 0.0073314905
John [N] john 0.01
eats [(S\NP)/NP] #w.#z.w @ #x.eats(z,x) 0.01
fights [S\NP] #x.fights(x) 0.01

10 fights [S\NP] #x.fight(x) 0.01
takes [(S\NP)/NP] #w.#z.w @ #x.takes(z,x) 0.01
walks [S\NP] #x.walks(x) -0.08722576
walks [S\NP] #x.walk(x) 0.10615976
plane [N] #x.plane(x) 0.059950046

15 plane [N] plane -0.03995005
likes [(S\NP)/NP] #w.#z.w @ #x.likes(z,x) 0.01
flies [S\NP] #x.fly(x) 0.01
flies [S\NP] #x.flies(x) 0.01
loves [(S\NP)/NP] #w.#z.w @ #x.loves(z,x) 0.01

3.10 NL2KR-L in the Geoquery domain

In this subsection, we present an example of using NL2KR-L for the GEO-
QUERY4 domain. GEOQUERY uses a Prolog based language to query a database
with geographical information about the U.S. The input of NL2KR-L is specified
in the RunConfiguration file as:

Ldata =./ examples/geoquery/train.txt
Ldictionary =./ examples/geoquery/dictionary.txt
Lsyntax =./ examples/geoquery/syntax.txt
Loutput=

where ./examples/geoquery/train.txt contains

How large is texas answer(X) ^ size(B,X) ^ const(B,sid ,texas)
How high is mountmckinley answer(X) ^ elevation(B, X) ^ const(B,

pid ,mountmckinley)
How big is massachusetts answer(X)^ size(B, X) ^ const(B,

sid ,massachusetts)
How long is riogrande answer(X)^ len(B, X) ^ const(B, rid ,riogrande)

5 How tall is mountmckinley answer(X)^ elevation(B, X)^ const(B,
pid ,mountmckinley)

./examples/geoquery/dictionary.txt contains

How S/S #x.answer(X) ^ x@X
texas NP #x.const(x,sid ,texas)
mountmckinley NP #x.const(x,pid ,mountmckinley)
massachusetts NP #x.const(x,sid ,massachusetts)

5 riogrande NP #x.const(x,rid ,riogrande)
is (S\NP)/NP #y. #x.x @ y

and ./examples/geoquery/syntax.txt contains

4 http://www.cs.utexas.edu/users/ml/geo.html
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How S/S
texas NP
mountmckinley NP
massachusetts NP

5 riogrande NP
is (S\NP)/NP
rivers NP
large NP
is (S\NP)/NP

10 high NP
big NP
long NP
the NP/NP
How S/(S\NP)

15 long S\NP
tall NP
colorado NP
arizona NP

After the learning module is executed, 15 more word meanings were learned
by NL2KR-L and the result is:

is [(S\NP)/NP] #y.#x.x @ y -0.0015125279
texas [NP] #x.const(x,sid ,texas) 0.07666666
texas [NP] #x.const(x,rid ,texas) -0.023256822
texas [NP] #x.const(x,pid ,texas) -0.023256822

5 riogrande [NP] #x.const(x,pid ,riogrande) -0.02315781
riogrande [NP] #x.const(x,rid ,riogrande) 0.07646726
riogrande [NP] #x.const(x,sid ,riogrande) -0.02315781
mountmckinley [NP] #x.const(x,sid ,mountmckinley) -0.055226557
mountmckinley [NP] #x.const(x,pid ,mountmckinley) 0.14075616

10 mountmckinley [NP] #x.const(x,rid ,mountmckinley) -0.055226557
massachusetts [NP] #x.const(x,rid ,massachusetts) -0.023190754
massachusetts [NP] #x.const(x,sid ,massachusetts) 0.0765336
massachusetts [NP] #x.const(x,pid ,massachusetts) -0.023190754
long [NP] #x3.#x1.len(B,x1) ^ x3 @ B 0.010111484

15 How [S/S] #x.answer(X) ^ x @ X 0.009999999
high [NP] #x3.#x1.elevation(B,x1) ^ x3 @ B 0.010112147
big [NP] #x3.#x1.size(B,x1) ^ x3 @ B 0.010111821
tall [NP] #x.const(x,rid ,tall) -0.014923776
tall [NP] #x.const(x,pid ,tall) -0.014923776

20 tall [NP] #x3.#x1.elevation(B,x1) ^ x3 @ B 0.084677815
tall [NP] #x.const(x,sid ,tall) -0.014923776
large [NP] #x3.#x1.size(B,x1) ^ x3 @ B 0.010112498

3.11 NL2KR-T: the translation sub-part of NL2KR

Similar to NL2KR-L, in the RunConfiguration file of NL2KR-T, we need to set
the lexicon file path, the override file for syntax categories(optional), and the
testing data file as given below:

Tdata =./ examples/sample/test.txt
Tdictionary =./ output/dictionary_train.out
Tsyntax =./ examples/sample/syntax.txt

For example, the preceding snippet specifies that: the testing data is in ./ex-
amples/sample/test.txt, the lexicon is in ./output/dictionary train.out,
and the override syntax categories are in ./examples/sample/syntax.txt.
The lexicon should be the lexicon learned by NL2KR-L.

The content of ./examples/sample/test.txt is

Mia sleeps sleep(mia)
John catches a bus EX. (bus(X) ^ catches(john , X))
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Running the NL2KR-T script with the inputs specified above, we have the
following output where John catches a bus is translated to EX. (bus(X) ∧
catches(john, X)) as expected.

****** Parsing Sentences ...
...
Parsing test sentence: John catches a bus
Expected Representation: EX. (bus(X) ^ catches(john , X))

5 Generalizing bus = [bus : [N] : #x.bus(x), bus : [N] : bus]
Generalizing catches = [catches : [(S\NP)/NP] : #w.#z.w @ #x.catches(z,x)]
Predicted Result: EX.bus(X) ^ catches(john ,X)
Correct Prediction
...

Note that the expected translation in “test.txt” is optional. Without it, the
evaluation is not correct but NL2KR-T still gives its results.

4 Conclusion and Future Work

In this work, we presented the NL2KR system, which is used for translating
natural language to a formal representation. The input of the NL2KR system
are training sentences and their formal representation; and an initial lexicon of
some known meanings of words. NL2KR system will try to learn the meaning of
others words from the training data. We presented six scripts to execute several
modules of NL2KR and show how to use them through examples.

In the future, we plan to make NL2KR more scalable and add more features
to the NL2KR system such as (1) automatically constructing the initial lexicon
and (2) using more knowledge such as word sense to select the correct meaning
of words.
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Abstract. Minimalist Grammars (MG) are viewed as a resource con-
suming system where syntactic operations are triggered when a positive
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ification of the feature in a lexical entry.

Keywords: minimalist grammars, feature underspecification, default
logic.

1 Introduction

In Bantu syntax, the computational system only needs a noun class formal fea-
ture to proceed analysis. Noun classes are sets of words that trigger the same
agreement schema. Ewondo (Bantu, A72a)1 has 14 noun classes2. The choice

Table 1. Agreement Marker & Gender in Ewondo

Gender Classes Class morpheme Agr marker on verb Agr marker on adj

Gender I 1,2 ǹ- ∼ø- / b@- á-(À) / b@́- á-(À) / b@́-
Gender II 3,4 ǹ- / mì- ó- / mí- ó- / mí-
Gender III 5,6 à- / m@̀- á- *ĺ@́- *d@́- / m@́- á- *ĺ@́- *d@́- / m@́-
Gender IV 7,8 è- / bì- é- / bí- é- / bí-
Gender V 9,10 n- / n- é-(À) / é- é-(À) / é-
Gender VI 9,2 n- / b@- é-(À) / b@́- é-(À) / b@́-
Gender VII 9,6 n- / m@̀- é-(À) / m@́- é-(À) / m@́-
Gender VIII 11,5 ò- / à- ó- / á- *ĺ@́- *d@́- ó- / á- *ĺ@́- *d@́-
Gender IX 11,6 ò- / m@̀- ó- / m@́- ó- / m@́-
Gender X 19 vì- ó- ó-

1 [Gu1] alphanumeric coding (of bantu languages) is mainly geographic. Nevertheless,
the distribution (of languages) is done in zones A, B, ... whether the language has
kept a tone model closed to Proto-bantu.

2 More information on classes pairing can be found in [On1]. Two locatives noun classes
are to be added to Table 1 , namely cl16 (v-, à-) and cl17 (ò-).



of a noun class prefix indicates whether the noun is viewed as a unit or a set
of units. Except for locatives (cl16, cl17), even-numbered noun classes indicate
augmented (AUG) and odd-numbered are for minimal (MIN)3. As it can be seen
in Table 1, each class has a different class morpheme that triggers a different
agreement morpheme feature; except for nouns of classes 9, 10 that share the
same class feature.

(1) 1. mÓngÓ
m-ÓngÓ
1min-child

áku
á-a-ku
agr1-past1-fall down

ám̀boo
á-m̀boo
agr1-lay flat

‘the child falled down and laid flat’
2. b́OngÓ

b-ÓngÓ
2aug-child

b́@ku
b@́-a-ku
agr2-past1-fall down

b́@m̀boo
b@́-m̀boo
agr2-lay flat

‘the children falled down and laid flat’

(2) 1. ñag
ñag
9min.cow

yàdì
y@̀-à-dì
agr9-Pres-eat

bíl̀Og
bí-lÒg
8aug-grass

‘The cow grazes’
2. ñag

ñag
10aug.cow

yâdì
y@́-à-dì
agr10-Pres-eat

bíl̀Og
bí-lÒg
8aug-grass

‘The cows graze’

In (1), the agreement class feature of the head noun (mÓngÓ, bÓngÓ) spreads on
the verbs. In (2) we have the same form of the noun for both the minimal and the
augmented. In fact, when standing alone, one can’t tell whether ñag is minimal
(i.e class 9) or augmented (i.e class 10). It’s rather the agreement it
triggers that helps to distinguish one form to another. As already mentionned,
Bantu agreement phenomenon is characterized by the spreading of class feature
of the head noun all over its dependents including the verb. Structure building
rules (merge, move) in MG are defined in a directional process with a feature
checking system that is a mechanism of resource consumption i.e each selector
feature must match a selectee and each licensor match a licensee. [On1]
proposed to formalize bantu multiple agreement in MG by Head Movement with
Copying, the idea being that a selector is not end-consumed as the items that
select it still exist in the derivations. The aim of this paper is to see how to
deal with the balancing of ambiguity versus underspecification in the feature
(2) in a resource consumption system like MG. Underspecification has being
addressed in type-based grammars [Cr1,Dn1], in Type-Logical Grammars [He1],
but never in MG. Here, we propose to associate a defeasible inference rule
(σ) to lexical items with underspecified class feature. σ is based on Prototypical

3 Ewondo grammatical number has been redefined as Minimal (Min) and Augmented
(Aug), thus we have one single feature [±aug] [On1]



Reasoning [Re1,An1]. Section 2 proposes three ways that languages can have
(or not have) noun classes. Section 3 presents the indeterminacy of class feature
of nouns of class 9/10 in Bantu syntax. In Sect. 4 we show how the building of
syntactic operations works in MG, Sect. 5 provides a new solution that could
help to account for underspecification in MG after showing the limits of the first
proposal made in [On1]. The paper ends with a conclusion.

2 Inherent vs Flexible Gender Features

Given examples (3, 4, 5) that show agreement phenomenon encountered in
French, English and Ewondo. Imagine one removes maisons (houses) from
(3a), then if a French speaker is asked to give the masculine form of the ad-
jective belles (beautifulfem,pl), he would say beaux (beautifulmasc,pl) be-
cause gender is inherent in adjective in French. On the other hand in English
(4), the adjective stays unchanged, gender (or number) feature is not inherent
in adjective.

(3) 1. toutes
allfem,pl

ces
thisfem,pl

belles
beautifulfem,pl

maisons
housefem,pl

’All these beautiful houses’
2. tous

allmasc,pl

ces
thismasc,pl

trois
threemasc,pl

jours
daymasc,pl

’All these three days’

(4) 1. all
allø

the
theø

beautiful
beautifulø

houses
housepl

2. the
theø

desperate
desperateø

housewives
housewifepl

For a Ewondo4 speaker, if he is asked to give the gender class of a determinative5,
he will be unable to give one. He needs to know the syntactic context in which
this determinative appears to tell what its class marker is.

(5) 1. m@-mǒs
6aug-day

m@́-t̄@
agr6-this

m@́-s@
agr6-all

m@́-lá
agr6-three

‘All these three days’
4 Unless specified, all the examples that aren’t French or English are from Ewondo
language

5 The class marker allows to distinguish between substantives and determinatives.
Substantives are the set of nouns that [Gr1, p. 7] called inherent gender because
this category triggers agreement. The second one he called derived gender is made
of words that agree with the first one. In Ewondo (as in most Bantu languages), there
are two nominal categories that share the fact to have the same nominal prefix. We
term this second one as "determinative"



2. bi-soá
8aug-plate

bi-t̄@
agr8-this

bi-s@
agr8-all

bi-lá
agr8-three

‘All these three plates’

The following observations6 can be made: (i) adjective in French is an unmarked
form that potentially agrees with the noun; (ii) in Ewondo, we can’t indicate the
class marker of a determinative except it appears in a construction, that means
we need the presence of a substantive that bears a specified noun class marker
to tell what are the class markers of the others items. Determinatives don’t have
pre-specified class marker, they inherit the class marker of the head noun; (iii)
adjective in English is invariable. French and Ewondo speakers differ in whether
they are able to produce a particular inflected form of an adjective in isolation.
This is an experimental finding, and can be explained in many ways. One possible
explanation is simply that speakers of any gendered language, when faced with
such a task, think of an appropriate context and report the form the adjective
takes in that context. The different behaviour of the French and Ewondo speakers
is a result of there being only two genders in French, and thus that it is much
easier to think of an appropriate context.

3 The Problem

3.1 Ambiguity in the Feature

In Ewondo, nouns of classes 9, 10 are problematic if one wants to determine their
respective noun class. In (6), the DPs subjects aren’t different as can be found
(chicken vs chickens) in English. It’s rather the agreement class marker the
noun triggers (agr9 y@̀ and agr10 y@́) that differentiates kúb in (6a, b) [Ow1,
p. 65] is 9min and 10aug respectively.

(6) 1. kúb
kúb
9min.chicken

yàkOn.
y@̀-à-kOn
agr9-Pres-be sick

’The chicken is sick’
2. kúb

kúb
10aug.chicken

yâkOn.
y@́-à-kOn
agr10-Pres-be sick

’The chickens are sick’

As in most Bantu languages, it’s assumed their nominal class morphemes are
originally homophones n- (see Table 1). It’s also difficult to say whether a given
noun has a root /NCVC(V)/ or /CVC(V)/ with a class morpheme n-. Linguists
usually argue by analogy to others noun classes: if most nouns of classes 9,
10 begin with a nasal7, and if there are less nouns in others classes with that
6 My thanks to Greg Kobele for valuable comments after my aviva.
7 and there is a high percentage of initials [nD] and [nT] (where [D] is a voiced
occlusives and [T] is a non voiced occlusives).



structure, then people assume that roots can’t generally begin with NC; therefore
nouns in classes 9, 10 that always have a NC initial must actually have a prefix
/n-/. An answer to this argument is the possibility to mark a contrast between
roots with NC and C initials in noun classes 9, 10. In Ewondo, we have nouns with
[nD] but also words with [T] and [z]; such thematic roots are ambiguous. Two
explanations are possible : (i) there is a phonological deletion of /n/ in front of
voiceless consonants and fricatives, and (ii) there is a real contrast between NC
and C initials in theses noun classes. In Ewondo, the prefix n- is deleted when
it’s followed by another nasal (7), an unvoiced consonant (8) or by a voiced
consonant /z/ (9):

(7) n+Nàk → Nag: cow (8) n+tsit → tsíd:
animal

(9) n+z@k → z@g:
pineapple

In short, nouns of classes 9, 10 are morphologically invariable et neutral for
class distinction. One may think there is no difference between minimal and
augmented number.

3.2 Distinction between Class 9, 10 Nouns

As noted, for those nouns that don’t change in minimal/augmented form, the
distinction is made by the agreement they trigger (10, 11).

(10) 1. kúb
9min.chicken

é-n@̀
agr9-pres.be

o-nǑn
11min-bird

’The chicken is a bird’
2. kúb

10aug.chicken
é-n@̂
agr10-pres.be

a-nǑn
5aug-bird

’Chickens are birds’
3. *kúb

10aug.chicken
é-n@̌
agr10-pres.be

a-nǑn
5aug-bird

’Chicken are birds’

(11) 1. z@g
9min.pineapple

é-b@d@̀
agr9-pres.put down

á
on

t@b@l@
1min.table

’The pineapple is on the table’
2. z@g

10aug.pineapple
é-b@d@̂
agr10-pres.put down

á
on

t@b@l@
1min.table

’Pineapples are on the table’

In (10, 11), tone doesn’t help to distinguish the two noun classes. Originally,
the augmented form is obtained by adjoining a suprasegmental High tone |´ |
to the noun of class 9. This floating High tone8 attaches either to the noun or
8 Regarding the architecture of tonal representations, floating tones (not associated)
are usually represented in a circle : spreading high tone , spreading low tone .



to the verb. Nevertheless, it seems that the verb, each time it’s present, bears
the floating High tone. The association of the High tone is done from left to
right. Nouns and verbs that bear a Low tone on the last syllable (10a) yield,
when a High tone is added to them, a High-Low tone on the verb (10b). If the
association is made from the right to the left, then we get a Low-High tone on
the verb, thus the ungrammatical (10c). Let’s take the subject and the verb in
(10b), the High tone of kúb (chickens) spreads on the right :

(12)
hkub hlen@ In (12), as there is already a High tone

on the verbal prefix (é), there is no dif-
ference.

(13)
hkub hhlen@ And nothing stops this High tone to

spread on its right up to the verb root
yielding a High-Low tone (13). That’s
the way we get sentence (10b).

With nouns originally with a Low tone, the difference is made at phonological
level with a raising pitch on the first syllable of the verb. This syllable should
bear the Low or High tone to indicate whether the noun is minimal or augmented
and also specify the class agreement feature. But, as the verb already has a High
tone on its first syllable, the original tone of nouns of class 9, 10 spreads to the
last vowel of the verb (11). Let’s take an example with a noun bearing a High
tone9

(14) kúb
9min.chicken

é-n@̀
agr9-pres.be

‘The chicken is’

We have a High tone on kúb (chicken), a Low tone of class 9 on the verbal
prefix è and a Low tone on the verbal root n@̀ that are shown below (15):

(15)
hkub llen@ The floating High tone of kúb

(chicken) attaches on the right yield-
ing (16):

(16)
hkub llen@ This floating High tone of kúb

(chicken) pushes the Low tone of the
verbal prefix to the right, and we get
(17):

9 It’s important to note that tone isn’t a distinctive feature as the word already has
a high tone. The main point to look at is the (minimal) agreement on the verb
comparing to (10b) that is an augmented form. That means the proposed analysis
is the same for N with Low tone.



(17)
hkub hlen@ The floating Low tone blocks the High

tone of kúb (chicken) so that it can’t
spread up to the verb root.

And the Low tone goes on this verb root, as the latter already bears a Low
tone, nothing changes. We can conclude that tonal distinction on the agreement
feature can be useful to distinguish the covert class feature of nouns of class
9/10.

4 Minimalist Grammars

MG [St1] attempt to implement the so-called minimalist principles introduced
by [Ch1]. A MG is a quadruplet (V,Cat,Lex,F): V = {P ∪ I}, set of non syn-
tactic features (vocabulary) where P represents the phonetic features and I
the semantics features; Cat = {base ∪ selector ∪ licensor ∪ licensee},
finite set of non syntactic features (categories) which are partitioned into four
kinds (x : base (c, t, v, d, n, ...), =x : selector/probe, -x : licensee,
+x : licensor (feature that trigger move)); Lex = finite set of expressions built
from V and Cat (lexicon); F = {merge ∪ move} : set of generating functions.
Merge and Move are built with trees where : (i) internal nodes are labelled with
direction arrows (< or >) indicating where the head of the structure is, (ii) leaves
are pairs 〈α, β〉 with α = vocabulary item and β = set of features. Merge (or ex-
ternal merge) is a binary operation that takes two trees and puts them together.
The tree whose first feature is =x merges with a tree whose category feature is
x to built a new tree. Features =x and x are deleted after merging.

(18) merge (t=x1 , tx2) = <

t1 t2

if t1 is a lexical item

merge (t=x1 , tx2) = >

t1 t2

if t1 is not a lexical item

Move (or internal merge) is a unary operation that targets (some part of) an
expression to remerge it higher in the structure. Move is applied to a subtree with
a feature -x. Given a subtree with -x written t−x2 that appears in a tree t+X1 , we
write t1[t−x2 ]+X . t+X1 is the maximal projection of t1[t−x2 ]+X i.e the largest
subtree with -x as its head. After extraction, the subtree t−x2 merges as specifier
of the head of the tree, features served for Move operation are removed from the
tree. The shortest move contraint (SMC) that applies to Move requires there
should be exactly one maximal projection t1[t−x2 ]+X displaying a subtree t−x2 .
The original place of t−x2 is then filled by an empty tree ε i.e a single featureless
node.

(19) move (t1[t−x2 ]+X) = >

t2 t1[ε]



There are few syntactic operations implemented in MG (Scrambling & Adjunction
[FG1], Head Movement [St2], Copying [Ko1], Head Movement with Copying
[On1]). In MG, Merge and Move, need a selecting feature matching a selected
feature (both being of the same category) to drive derivations. Now, what’s
happened if the selecting feature is un(der)specified?

5 On Underspecification in Minimalist Grammars

5.1 Unspecified Class Feature

Given the examples below where nouns of classes 9, 10 are in subject position
(20) and in object position (21), the analysis developed in [On1] for (20) is based
on the theoretical claim that nouns of classes 9, 10 are not lexically specified for
their class.

(20) ñag
ñag
9min.cow

yàdì
y@̀-à-dì
agr9-Pres-eat

bíl̀Og
bí-lÒg
8aug-grass

‘The cow grazes’

(21) ńsOmO
ń-sOmO
1min-huntsman

áwé
á-a-wé
agr1-past1-kill

ñag
ñag
9min/10aug.cow

’The huntsman has killed the cow/cows.’

These nouns enter the derivation with an uninstantiated variable x that will be
valued through postsyntactic insertion of the class morpheme of the agreement
feature +−→agr on TP. Variable x instantiation means to copy on the subject DP
the value of the agreement feature on T head.

(22) >

<

/ε/ -−−→agr /ñag(x)/

<

d -q (n(x)) λ

(22) is built in 3 steps:
(a) merge(n(x)<= !cl -k /ε/, n(x)

-−→agr /ñag/),
(b) merge(=>+cl +k d -q /ε/,a),
(c) move(b).

Postsyntactic insertion means the agreement class feature on the verb is
substituting for the variable x yielding the corresponding noun class feature
on the noun. As we said it’s the agreement feature on the verb that give the
information about the nominal class morpheme of the DP. The substitution
process is made in two steps : (i) covert movement then (ii) agree (for detailed
step-by-step justification see [On1]). If (20) is appropriately treated in [On1],
the solution provided is still problematic for (21) where noun of classes 9, 10 are
in object position. To solve this problem, let’s try another approach. Following
[Ro1], we distinguish three features: φ-features are specified class feature for
inherent noun classes; θ-features are underspecified class feature for noun of



Table 2. Syntactic Class Features

Inherent noun classes Neutral noun classes Derived noun

cl1 cl2 cl9 cl10 flexible
cl3 cl4
cl5 cl6
cl7 cl8
cl11
cl16
cl17
cl19

class 9/10; α-features are flexible and inherited class agreement feature found on
derived nouns (i.e determinatives) and verbs. If we think of noun class feature
as Attribute-Value feature system, we could say, noun of class 9, 10 has an
Attribute specification "n" without a Value (i.e without a class number). That
means, a word like ñag(cow) is represented with the feature nθ. The difference
being that a noun with a specified noun class (say m-ÓngÓ: 1min-child) will
be represented with a specified class feature n1. α-features’ transmission is done
through HMC. The question now is how to formalize θ-feature in MG?

5.2 Default Inference Rule

A default rule will be used to model feature underspecification through proto-
typical reasoning, the latter is used when most instances of a concept have some
property10. Default Logic [Re1,An1] is a nonmonotonic reasoning approach al-
lowing to rely on incomplete information about problem. A default theory T is a
pair (z, Γ ) where z is a set of FOL sentences representing the background infor-
mation, Γ represents the defeasible information (i.e a countable set of defaults
rule).
Definition 1. A default rule (say σ) is an inference rule of the form:

δ : ρ1, . . . , ρn
ξ





δ = prerequisite, pre(σ)
ρ1, . . . , ρn = justifications, just(σ)or simply(σ)
ξ = consequent ofσ, cons(σ).

(23)

interpreted as: given δ and as there is no information that ¬ρi, conclude ξ by
default. A default rule is called normal if and only if it has the form:

δ : ξ

ξ
(24)

10 That means for us the case when most instances of noun class feature have Attribute-
Value property.



A semantics for Default Logic is provided through the notion of extension
[Re1,AS1,An1]. An extension for a default theory T (T = (z, Γ )) is a set of FOL
sentences E where: (a) z ⊆ E; (b) E = ∆(E) where ∆ denotes the deductive
closure; (c) E should be closed under the application of defaults from Γ i.e if
δ:ρ1,...,ρn

ξ , δ ∈ E and ¬ρ1 /∈ E, . . . ,¬ρn /∈ E then ξ ∈ E.

Definition 2. For T = (z, Γ ), let Π = (σ0, σ1, . . .) be a finite or infinite se-
quence of default rules from Γ without multiple occurrences. Π is viewed as possi-
ble order in which default rules from Γ are applied, so a default rule doesn’t need
to be applied more than once in such a reasoning. The initial segment of Π with
length k is denoted Π[k]. Sets of first-order formulae, In(Π) and Out(Π) are
associated to such sequence as Π: (a) In(Π) = ∆(z∪{cons(σ)|σ occurs in Π}),
In(Π) collects the information gained by the application of the default in Π and
represents the current knowledge base after the default in Π have been ap-
plied; (b) Out(Π) = {¬ρ|ρ ∈ just(σ) for some σ occuring in Π}, Out(Π)
collects formulae that should not turn out to be true i.e that should not become
part of the current knowledge base even after subsequent application of the other
default rules.

Definition 3. Π is called a process of T iff σk is applicable to In(Π[k]), for
every k such that σk occurs in Π.

Definition 4. For a given process Π of T: (a) Π is a successful process
iff In(Π) ∩ Out(Π) = ∅, otherwise it is a failed process; (b) Π is a closed
process iff every σ ∈ Γ that is applicable to In(Π) already occurs in Π. Closed
processes correspond to the desired property of an extension E being closed under
application of default rules from Γ .

Definition 5. For the application of a default rule, a consistency condition
should be satisfied.

σ =
δ : ρ1, . . . , ρn

ξ
(25)

is applicable to a deductively closed set of formulae E iff σ ∈ E and ¬ρ1 /∈
E, . . . ,¬ρn /∈ E.

Proposition 1. The rule of thumb when treating nouns of class 9, 10 is to say
these nouns are of class 10 unless stated by the grammarian they are of class 911.
If the latter is done, the default rule (i.e the rule of thumb) already mentionned
isn’t rejected, it’s simply no more applicable as the missing information is now
known.In a classical logic setting12, we need to say what is the Value of Attribute
n for classes 9, 10 nouns. As we don’t know, no decision could be taken in such
a system. But in default reasoning, the previous rule of thumb can be applied.
11 That means, only the augmented is grammatically marked, minimal will have a zero

grammatical marker that is realised as a low tone by default. In fact, that’s the
strategy generally used in natural language that the minimal has a zero morpheme.

12 As well as in Stablerian MG



Proof. We write Attribute with indices to differentiate between n1 (that stands
for class 10 nouns) and n0 (that stands for class 9 nouns). So, for T = (z,
Γ ), let z = {n1, n0} and Γ =

{
n1:¬9
10 , n0:¬10

9

}
. The default theory T is repre-

sented as : T =
(
{n1, n0} ,

{
n1:¬9
10 , n0:¬10

9

})
. Let also assume that σ1 = n1:¬9

10 ,
σ0 = n0:¬10

9 and Π = (σ1, σ0). As Γ contains only (a finite number of) two de-
fault rules, closedness doesn’t matter. We apply default rules as long as they
are applicable, and then we get a closed process. So, we apply the first default
σ1 and check default σ0 with respect to the knowledge collected after the appli-
cation of σ1. ForΠ[σ1] we have: In(Π[σ1]) =∆ ({n1, n0, 10}), Out(Π[σ1]) = {9},
In(Π[σ1]) ∩Out(Π[σ1]) = ∅, so, we sayΠ[σ1] is closed and successful process.For
Π[σ0] we have: In(Π[σ0]) = ∆ ({n1, n0, 9}), Out(Π[σ0]) = {10}. In fact σ0
can’t be applied as 10 ∈ ∆ ({n1, n0, 10}) which is our current knowledge base
before we apply σ0. We know In(Π[k + 1]) = ∆ (Π[k]) ∪ ∆ (Π[k + 1]) and
Out(Π[k+ 1]) = Out(Π[k])∪Out (Π[k + 1]) so In(Π[σ0]) = ∆ ({n1, n0, 10, 9}),
Out(Π[σ0]) = {10, 9}, In(Π[σ0]) ∩ Out(Π[σ0]) = {10, 9}, thus, we say Π[σ0]
is failed process.We could have stopped the proof earlier as application of σ1
blocks application of σ0 and vice versa, so there are no more extension of T.
From the application of the first default rule σ1, we know Attribute n has Value
10, so it is not consistent to assume 9. Thus ∆ ({n1, n0, 10}) is the only extension
of T. ut

We associate a defeasible inference rule σ to lexical items with feature ambiguity.
A default rule on an underspecified Attribute n is marked using an arrow ↑σ
indicating to map Attribute n to the result of σ. Once the Value of n is calculated,
then the MG derivation can proceed (and not the inverse). The idea being that
the default rule blocks the derivation. So the derivation tree for a word like ñag
(cow) is:

(26) <

[n ↑σ]⇐!cl -k /ε/ nx / ñag/

where x is an anonymous variable that
match with any value collected after
the application of [n ↑σ].

MG are by definition encapsulated, which means that they make reference only
to their own internalised system, and not to any external formal system, such as
a logic for general reasoning. This is intrinsic to the claim of the language faculty
being prior, feeding into more general reasoning devices but separate from them.
If the current proposal is in line with Stabler’s formalization, then we think MG
clearly differentiate a Stabler form of minimalism with others. That might mean
that the notion of encapsulation may be rather different for a Stabler form of
grammar than others.

6 Conclusion

In this paper we attempt to introduce a rule in a Stablerian MG that could
help to account for feature underspecification in a resource consuming system.



The proposal rests on default reasoning that allows to deal with incomplete
information about a problem.
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Abstract. This paper presents a novel approach for exploiting an on-
tology in an ontology-based information extraction system, which sub-
stitutes part of the extraction process with reasoning, guided by a set of
automatically acquired rules.

1 Introduction

Information extraction (IE) is the task of automatically extracting structured
information from unstructured documents, mainly natural language texts. Due
to the ambiguity of the term “structured information”, information extraction
covers a broad range of research, from simple data extraction from Web pages
using patterns and regular grammars, to the semantic analysis of language for
extracting meaning, such as the research areas of word sense disambiguation
or sentiment analysis. The basic idea behind information extraction (the con-
centration of important information from a document into a structured format,
mainly in the form of a table) is fairly old, with early approaches appearing in
the 1950s, where the applicability of information extraction was proposed by
the Zellig Harris for sub-languages, with the first practical systems appearing at
the end of the 1970s, such as Roger Schank’s systems [27, 28], which exported
“scripts” from newspaper articles. The ease of evaluation of information extrac-
tion systems in comparison to other natural language processing technologies
such as machine translation or summarisation, where evaluation is still an open
research issue, made IE systems quite popular and led to the Message Under-
standing Conferences (MUC) [21] that redefined this research field.

Ontology-Based Information Extraction (OBIE) has recently emerged as a
subfield of information extraction. This synergy between IE and ontologies aims
at alleviating some of the shortcomings of traditional IE systems, such as efficient
representation of domain knowledge, portability into new thematic domains, and
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interoperability in the era of Semantic Web [14]. Ontologies are a means for shar-
ing and re-using knowledge, a container for capturing semantic information of a
particular domain. A widely accepted definition of ontology in information tech-
nology and AI community is that of “a formal, explicit specification of a shared
conceptualization” [29, 10], where “formal implies that the ontology should be
machine-readable and shared that it is accepted by a group or community” [4].
According to [31], an ontology-based information extraction system is a system
that “processes unstructured or semi-structured natural language text through
a mechanism guided by ontologies to extract certain types of information and
presents the output using ontologies”. This definition suggests that the main dif-
ferences between traditional IE systems and OBIEs are: a) OBIEs present their
output using ontologies, and b) OBIEs use an information extraction process
that is “guided” by an ontology. In all OBIE systems the extraction process is
guided or driven by the ontology to extract things such as classes, properties
and instances [31], in a process known as ontology population [23].

However, the way the extraction process is guided by an ontology in all OBIEs
has not changed much with respect to traditional information extraction systems.
According to a fairly recent survey [31], OBIEs do not employ new extraction
methods, but they rather employ existing methods to identify the components
of an ontology. Current research on the field investigates the development of
“reusable extraction components” that are tied to ontology portions that are
able to identify and populate [30, 11]. In this paper we propose an alternative
approach that tries to minimise the use of traditional information extraction
components, and substitute their effect with reasoning. The motivation behind
the work presented in this paper is to propose a new “kind” of ontology-based in-
formation extraction system, which integrates further ontologies and traditional
information extraction approaches, through the use of reasoning for “guiding”
the extraction process, instead of heuristics, rules, or machine learning. The pro-
posed approach splits a traditional OBIE in two parts, the first part of which
deals with the gathering of evidence from documents (in the form of ontology
property instances and relation instances among them), while the second part
employs reasoning to interpret the extracted evidence, driven by plausible expla-
nations for the observed relations. Thus, the innovative aspects of the presented
approach include a) the use of an ontology through reasoning as a substitute for
the embedded knowledge usually found in the extraction components of OBIEs,
b) a proposal of how reasoning can be applied for extracting information from
documents, and c) an approach for inferring the required interpretation rules
even when the ontology evolves with the addition of new concepts and relations.

The rest of this paper is organised as follows: In section 2 related work is
presented in order to place our approach within the current state-of-the-art. In
section 3 the proposed approach is presented, detailing both the interpretation
process and the automatic reasoning rule acquisition. Finally, section 4 concludes
this paper and outlines interesting directions for further research.
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2 Related Work

Ontology-based information extraction has recently emerged as a subfield of
information extraction that tries to bring together traditional information ex-
traction and ontologies, which provide formal and explicit specifications of con-
ceptualizations, and acquire a crucial role in the information extraction process.
A set of recent surveys have been presented that analyse the state-of-art in the
research fields of OBIEs [13, 14, 31] and ontology learning/evolution [24, 23], a
relevant research field since many OBIE systems also perform ontology evolu-
tion/learning. OBIE systems can be classified according to the way they acquire
the ontology to be used for information extraction. One approach is to consider
the ontology as an input to the system: The OBIE is guided by a manually
constructed ontology or from an “off-the-shelf” ontology. Most OBIE systems
appear to adopt this approach [31]. Such systems include SOBA [5, 3], KIM [25,
26] the implementation by Li and Bontcheva [18] and PANKOW [7], Artequact
[15, 2, 1]. The other approach is to construct an ontology as a part of the infor-
mation extraction process, either starting from scratch or by evolving an initial,
seed ontology. Such systems include Text-To-Onto [19], the implementation by
Hwang [12], Kylin [32], the work by Maedche et al. [20], the work of Dung and
Kameyama [8]. However, all the aforementioned systems employ traditional in-
formation extraction methods to identify elements of the ontology, and none
attempts to employ reasoning, as the work presented in this paper suggests.

3 The BOEMIE approach

The work presented in this paper has been developed in the context of the
BOEMIE project. It advocates an ontology-driven multimedia content analysis,
i.e. semantics extraction from images, video, text, audio/speech, through a novel
synergistic method that combines multimedia extraction and ontology evolution
in a bootstrapping fashion. This method involves, on one hand, the continuous
extraction of knowledge from multimedia content sources in order to populate
and enrich the ontologies and, on the other hand, the deployment of these ontolo-
gies to enhance the robustness of the multimedia information extraction system.
More details about BOEMIE can be found in [6, 23].

As already mentioned, the proposed approach splits a traditional OBIE in
two parts, the first part of which deals with the gathering of evidence from
documents (in the form of ontology property instances and relation instances
among them), while the second part employs reasoning to interpret the extracted
evidence, driven by plausible explanations for the observed relations. As a result,
the typical extraction process in also split in two phases: “low-level analysis”
(where traditional extraction techniques such as machine learning are used) and
“semantic interpretation”, where analysis’ results are explained, according to the
ontology, through reasoning. Each of the two phases identifies different elements
of the ontology, whose elements are also split in two groups, the “mid-level
concepts” (MLCs - identified by low-level analysis), and the “high-level concepts”
(HLCs), which are identified through semantic interpretation.
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The implications of this separation are significant: the low-level analysis can-
not assume that a Person/Athlete/Journalist has been found in a multimedia
document, just because a name has been identified. Instead the low-level analysis
reports that a name, an age, a nationality, a performance, etc. has been found,
and reports how all these are related through binary relations, extracted from
modality-specific information (i.e. linguistic events for texts, spatial relations for
images/videos, etc.). The identification of Person/Athlete/Journalist instances
is done through reasoning, using the ontology and the reasoning (interpretation)
rules, as low-level analysis cannot know how the Person or Athlete concepts are
defined in the ontology (i.e. what their properties/axioms/restrictions are). In
essence, BOEMIE proposes a novel approach for constructing an OBIE, by keep-
ing the named-entity extraction phase from traditional IE systems, modifying
relation extraction to reflect modality-specific relations at the ontological level,
and implementing the remaining phases of traditional IE systems through rea-
soning. For example, low-level analysis of an image is responsible for reporting
only that a few tenths of faces have been detected (i.e. the faces of athletes and
the audience – represented as MLC instances), along with a human body (i.e.
the body of an athlete – represented as an MLC instance), a pole, a mattress,
two vertical bars, a horizontal bar, etc. (all these are instances of MLCs). After
MLC instances have been identified, the low-level analysis is expected to iden-
tify relational information about these MLC instances. For example, the low-level
analysis is expected to identify that a specific face is adjacent to a human body
and both are adjacent to the pole and the horizontal bar. The low-level analysis
is expected to report the extracted relational information through suitable bi-
nary relations between each pair of related MLC instances. On the other hand,
the low-level is not expected to interpret its findings and hypothesise instances
of HLC instances, such as the existence of athletes and their number. It is up
to the second phase, the semantic interpretation, to identify how many athletes
are involved (each one represented as instance of the “Athlete” HLC), and to
interpret the scene shown in the image as an instance of the “Pole Vault” HLC
concept, effectively explaining the image.

3.1 Definitions

The approach presented in this paper organises the ontology into four main on-
tological modules, the “low-level features”, the “mid-level concepts”, the “high-
level concepts”, and the “interpretation rules”, which are employed through
reasoning in order to provide one or more “interpretations” of a multimedia
document.

Definition 1 (low-level features). Low-level features are concepts related to
the decomposition of a multimedia document (i.e. the description of an HTML
page into text, images or other objects), and concepts that describe surface forms
on single modality documents, such as segments in text and audio documents,
polygons in image and video frames, etc.
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Definition 2 (Mid-Level Concept (MLC)). Mid-level concepts are concepts
that can be materialised (i.e. have surface forms) on documents of a single modal-
ity. Anything that can be extracted by an OBIE that has a surface form on a
document, is an MLC.

For example, the names of persons, locations, etc. in texts, the faces, bodies of
persons in images and the sound events (i.e. applauses) in audio tracks are all
MLC concepts. The BOEMIE OBIE extracts only instances of MLCs (MLCIs)
and relations (i.e. spatial) among them.

Definition 3 (High-Level Concept (HLC)). High-level concepts are com-
pound concepts formed from MLCs. HLCs cannot be directly identified in a mul-
timedia document, as they cannot be associated with a single surface form (i.e.
segment).

For example, the concept “Person” is an HLC, that groups several MLCs (proper-
ties), such as “PersonName”, “Age”, “Nationality”, “PersonFace”, “PersonBody”,
etc. Instances of HLCs (HLCIs) in the BOEMIE OBIE are identified through
reasoning over MLC instances (MLCIs) in the ontology, guided by a set of rules,
in a process known as “interpretation”.

Definition 4 (interpretation). Interpretation is the identification of one or
more HLC instances (HLCIs) in a multimedia document.

An OBIE can have identified several MLC instances (MLCIs) and relations be-
tween them in a multimedia document. If these MLC instances satisfy the axioms
of the ontology and the interpretation rules are able to generate one or more HLC
instances (HLCIs), then this multimedia document is considered as interpeted
(or explained) by the ontology, with the HLC instances (HLCIs) constituting the
interpretation of the document. If the same MLC instances (MLCIs) are involved
in more than one HLC instances (HLCIs) of the same HLC, then the document
is considered to have multiple interpretations, usually due to ambiguity.

3.2 Semantic Extraction

The extraction engine is responsible for extracting instances of concept descrip-
tions that can be directly identified in corpora of different modalities. These
concept descriptions are mid-level concepts (MLCs). For example, in the textual
modality the name or the age of a person is an MLC, as instances of these con-
cepts are associated directly with relevant text segments. On the other hand, the
concept person is not an MLC, as it is a “compound”, or “aggregate” concept in
such a way that instances of this concept are related to instances of name, age,
gender or maybe instances of other compound concepts. Compound concepts are
referred to as high-level concepts (HLCs), and instances of such concepts can-
not be directly identified in a multimedia document, and thus associated with
a content segment. Thus, such instances and also relationships between these
instances have to be hypothesized. In particular, this engine implements a mod-
ular approach [13] that comprises the following three level of abstraction: 1. The
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low-level analysis, which includes a set of modality-specific (image, text, video,
audio) content analysis tools. 2. A modality-specific semantic interpretation en-
gine. 3. A fusion engine, which combines interpretations from each modality3.

The first two levels implement ontology-driven, modality-specific information
extraction, while the last one fuses the information obtained from the previous
levels of analysis. The first level involves the identification of “primitive” con-
cepts (MLCs), as well as instances of binary relations amongst them. The second
level involves the semantic interpretation engine, responsible for hypothesizing
instances of high-level concepts (HLCs) representing the interpretation of (parts
of) a document. Semantic interpretation operates on the instances of MLCs
and relations between them extracted by the information extraction engine. The
goal of semantic interpretation is to explain why certain instances of MLCs are
observed in certain relations according to the background knowledge (domain
ontology and a set of interpretation rules) [9], by creating instances of high-
level concepts and relating these instances. Semantic interpretation is performed
through calls to a non-standard reasoning service, known as explanation deriva-
tion via abduction. The semantic interpretation is performed on the extracted
information (MLC/relation instances) from a single modality in order to form
modality-specific HLC instances. The fact that content analysis is separated from
semantic interpretation, along with the fact that semantic interpretation is per-
formed through reasoning using rules from the ontology, allows single-modality
extraction to be adaptable to changes in the ontology.

Once a multimedia document has been decomposed into single-modality el-
ements and each element has been analysed and semantically interpreted sep-
arately, the various interpretations must be fused into one or more alternative
interpretations of the multimedia document as a whole. This process is per-
formed at a third level, where the modality-specific HLC instances are fused
in order to produce HLC instances that are not modality-specific, and contain
information extracted from all involved modalities. Fusion is also formalized as
explanation generation via abductive reasoning.

Example: the OBIE for the text modality The low-level analysis system
implemented in the context of BOEMIE exploits the infrastructure offered by
the Ellogon4 platform [22], and the Conditional Random Fields [17] machine
learning algorithm, in order to build an adaptable named-entity recognition and
classification (NERC) system, able to identify MLC instances (MLCIs) and rela-
tions between MLCIs. Both NERC and relation extraction components operate
in a supervised manner, using MLC instances that populate the (seed or evolved)
ontology as training material (whose surface forms are available through their
low-level features). The fact that both components use the populated ontology
as training source, allows them to adapt to ontology changes, and improve their
extraction performance over time, as the ontology evolves. The performance of

3 The fusion engine will not be described in this paper, as it is similar to the semantic
interpretation engine. More information can be found at [6, 23].

4 http://www.ellogon.org
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the NERC and relation extraction components has been measured to about 85%
and 70% (F-measure), in the thematic domain of athletics, involving news items
and biographies from official sites like IAAF5 (International Association of Ath-
letics Federations). More details about the low-level analysis system for the text
modality can be found in [13].

The modality specific interpretation engine (not only for text, but for all
modalities) is a process for generating instances of HLCs, by combining instances
of MLCs, through reasoning over instances. Abduction is used for this task, a
type of reasoning where the goal is to derive explanations (causes) for obser-
vations (effects). In the framework of this work we regard as explanations the
high-level semantics of a document, given the middle-level semantics, that is, we
use the extracted MLCIs in order to find HLCIs [9]. The reasoning process is
guided by a set of rules, which belong into two kinds, deductive and abductive.
Assuming a knowledge base, Σ = (T,A) (i.e. an ontology), and a set of assertions
Γ , (i.e. the assertions of the semantic interpretation of a document), abduction
tries to derive all sets of assertions (interpretations) ∆ such as Σ ∪ ∆ |= Γ ,
while the following conditions must be satisfied: (a) Σ ∪ ∆ is satisfiable, and
(b) ∆ is a minimal explanation for Γ , i.e. there exists no other explanation ∆′

(∆′ ⊆ ∆) that Σ ∪∆′ |= ∆ holds. For example, assuming the following ontology
Σ (containing both a “terminological component” – TBox, and a set of rules):

Jumper v Human

Pole v SportsEquipment

Bar v SportsEquipment

Pole uBar v ⊥
Pole u Jumper v ⊥
Jumper uBar v ⊥
JumpingEvent v ∃≤1hasParticipant.Jumper

PoleV ault v JumpingEvent u ∃hasPart.Pole u ∃hasPart.Bar
HighJump v JumpingEvent u ∃hasPart.Bar
near (Y,Z)← PoleV ault (X) , hasPart (X,Y ) , Bar (Y ) ,

hasPart (X,W ) , Pole (W ) ,

hasParticipant (X,Z) , Jumper (Z)

near (Y,Z)← HighJump (X) , hasPart (X,Y ) , Bar (Y ) ,

hasParticipant (X,Z) , Jumper (Z)

And a document (i.e. an image) describing a pole vault event, whose analysis
results Γ contain instances of the MLCs “Pole”, “Human”, “Bar” and a relation
that the human is near the bar:

pole1 : Pole

human1 : Human

5 http://www.iaaf.org/
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bar1 : Bar

(bar1, human1) : near

The interpretation process splits the set of analysis assertions Γ into two sub-
sets: (a) Γ1 (bona fide assertions): {pole1 : Pole, human1 : Human, bar1 : Bar},
which are assumed to be true by default, and (b) Γ2 (fiat assertions):
{(bar1, human1 : near)}, containing the assertions aimed to be explained. Since
Γ1 is always true, Σ∪∆ |= Γ can be expressed as Σ∪Γ1∪∆ |= Γ2. Then, a query
Q1 is formed from each fiat assertion (Γ2), such asQ1 := {()|near (bar1, human1)}.
Executing the query, a set of possible explanations (interpretations) is retrieved:

∆1 = {NewInd1 : PoleV ault, (NewInd1, bar1) : hasPart,

(NewInd1, NewInd2) : hasPart,NewInd2 : Pole,

(NewInd1, human1) : hasParticipant, human1 : Jumper}
∆2 = {NewInd1 : PoleV ault, (NewInd1, bar1) : hasPart,

(NewInd1, pole1) : hasPart, (NewInd1, human1) : hasParticipant,

human1 : Jumper}
∆3 = {NewInd1 : HighJump, (NewInd1, bar1) : hasPart,

(NewInd1, human1) : hasParticipant, human1 : Jumper}

Each interpretation is scored, according to a heuristic based on the number of
hypothesized entities and the number of involved Γ1 assertions used, and the best
scoring interpretations are kept. For the example interpretation shown above,
∆2 is the best scoring explanation, as ∆1 has an excessive hypothesized entity
(NewInd2), and ∆3 does not use the “Pole” instance from Γ1. More details about
interpretation through abduction can be found in [6] and [9]. The language of
the rules is SROIQV , and they can be written in OWL using nominal schemas
[16]. For instance the first rule of the TBox shown in the previous section can
be written as follows:

Bar u {Y } u ∃hasPart−.(PoleV ault u {X} u (∃hasPart.(Pole u {W})) u
(∃hasParticipant.(Jumper u {Z}))) v {Y } u ∃near.{Z}

where {Z} is a nominal variable [16]. However, we are going to use a more
“comfortable” notation for rules through out this paper.

3.3 The Role of Interpretation Rules

Rules are considered part of the ontology TBox and their role is to provide
guidance to the interpretation process. Their main responsibility is to provide
additional knowledge on how analysis results (specified through MLCIs and rela-
tions between MLCIs) can be mapped into HLCIs within a single modality, and
how HLCIs from various modalities can be fused. As a result, rules can be split
in two categories: rules for semantic interpretation, and rules for fusion. Both
categories follow the same design pattern for rules: each rule is built around a
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specific instance or a relation between two instances in the “head” of the rule,
followed by a set of statements or restrictions in the “body” of the rule. When
a rule is applied by the semantic interpretation engine, instances can be created
to satisfy the rule, either for concepts/relations of the head (forward rules) or
for concepts on the head (backward rules).

Forward rules Forward rules perform an action (usually the addition of a rela-
tion between two instances) described in the head of the rule, if the restrictions
contained in the body have been satisfied. For example, consider the following
ABox fragment:

(personName1, “JaroslavRybakov”) : hasV alue

(ranking1, “1”) : hasV alue

(person1, personName1) : hasPersonName

personName1 : PersonName

person1 : Person

ranking1 : Ranking

(personName1, ranking1) : personNameToRanking

This ABox fragment describes the situation where the semantics extraction en-
gine has identified two MLCIs, a person name (“Jaroslav Rybakov”) and a rank-
ing (“1”), connected with the “personNameToRanking” relation. Also, a “Person”
instance exists that relates only to the “PersonName” instance, but not to the
“Ranking” instance. Despite the fact that the personName1 MLCI is related to
the ranking1 MLCI, the person1 HLCI that aggregates personName1 is not re-
lated to the “Ranking” instance. In order for the “Person” instance to be related
to the “Ranking” instance, a forward rule like the following one must be present
during interpretation:

personToRanking(X,Z)← Person(X), P ersonName(Y ),
hasPersonName(X,Y ),
personNameToRanking(Y,Z)

This rule can be interpreted as follows: if a “Person” instance X and a “Person-
Name” instance Y are found connected with a hasPersonName(X,Y ) relation,
and a relation “personNameToRanking” exists between the “PersonName” Y and
any instance Z, then add a relation between the “Person” instance X and the
instance Z. The fact that the rule is applied in a forward way, suggests that all
restrictions in the body have to be met, for the relation “personToRanking” on
the head to be added in an ABox.

Backward rules Backward rules on the other hand assume that the restric-
tion described by the head is already satisfied by the ABox (i.e. instances and
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relations exist in the ABox), and that the action involves the addition of (one or
more) missing instances or relations to satisfy the body. Consider for example
the following ABox fragment from the image modality:

personBody1 : PersonBody

personFace1 : PersonFace

(personBody1, personFace1) : isAdjacent

This ABox fragment describes two MLCIs (a person face and a person body)
that are found adjacent inside an image. Also, suppose that the TBox contains
a backward rule like the following one:

isAdjacent(Y,Z)← Person(X), P ersonBody(Y ), P ersonFace(Z),
hasPart(X,Y ), hasPart(X,Z)

This rule roughly suggests that if a person face and a person body instances
are aggregated by a person instance (and thus both body parts are related to
the person instance with the “hasPart” relation), then the two body parts must
be adjacent to each other. However, since the relation isAdjacent(personBody1,
personFace1) already exists in the ABox and the rule is a backward one, it will
try to hypothesise a “Person” instance X, and aggregate the two body parts.

3.4 Rules for Semantic Interpretation

One domain of rules application is the semantic interpretation of the results ob-
tained from the low level analysis, performed on multimedia resources. During
this interpretation process, the MLCIs and the relations among MLCIs are ex-
amined, in order to aggregate the MLCIs into HLCIs. Then, relations that hold
between MLCIs are promoted to the HLCIs that aggregate the corresponding
MLCIs. Finally, an iterative process starts, which tries to aggregate the HLCIs
into other HLCIs and again promote the relations, until no other instances can
be added to an ABox. As a result, two types of rules are required during inter-
pretation: rules that aggregate concept instances (either MLCIs or HLCIs) into
instances of HLCs, and rules that promote relations. However, not all relations
must be promoted: only relations that hold between a property instance of an
HLCI and an instance that is not a property of the HLCI should be promoted
to the HLCI. The aggregation of instances into HLCIs is performed with the
help of backward rules6, while the promotion of relations from properties to the
aggregating HLCI is performed with forward rules.

3.5 Acquiring Rules

When the ontology changes (i.e. through the addition of a new concept) the
interpretation rules must be modified accordingly. We tried to automate this

6 Backward rules imply the use of abduction to hypothetize instances not contained
in the original ABox.
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task by monitoring ontological changes: the actions performed by an ontology
expert to the ontology are monitored and reflected to the interpretation rules,
following a transformation based approach. Considering as input what an ABox
can contain without the current concept definition available, and as output the
instances that can be generated from the concept if defined, the rule generation
approach tries to find a set of rules that can transform the input into the desired
output. In order to perform this transformation, the transformation is split into
a set of more primitive “operations” that can be easily transformed into rules.

Assuming the set of all possible concepts C, the set of all possible rela-
tions R, a set of predefined operations O on a single concept c ∈ C, and a
modification M over c, where M = {mi (c, ci, ri)}N1 , mi ∈ O, ci ∈ C, ci 6= c,

ri ∈ R, the target is to calculate a rule set S = {ri}N1 , ri = Tmi
(c, ci, ri), that

corresponds to the modification M . Tmi
is a function that transforms a hypoth-

esized initial state (c′, ci, r′i) to the desired state (c, ci, ri) for modification mi,
Tmi : (c′, ci, r′i)→ (c, ci, ri), c

′ ∈ C, r′ ∈ R. Each function Tmi depends not only
on mi and the two states, but also on the interpretation engine. Since the ob-
jective of rules generation was to eliminate manual supervision, a pattern based
approach was selected for representing each Tmi

. Each pattern is responsible for
generating the required rules from transforming the initial state (c′, ci, r′i) to a
final state (c, ci, ri) for each operation in O, possibly biased towards the specific
interpretation model.

Operations over a Single Concept A set of predefined operations O has
been defined that captures all modifications that can be performed on a concept
c within the BOEMIE system. This set contains the following operations:

– Definition of a new MLC c: This operation reflects the addition of a new MLC
to the ontology TBox, an action that is not associated with the modification
of the rules associated with the TBox. For this operation, T = {}.

– Definition of a new HLC c that aggregates a single concept c′: This operation
describes the action of the definition of an HLC based on the presence of
either an MLC or an HLC. Typical usage of this operation is when a new HLC
c has been defined that aggregates another concept c′, and c′ is enough to
define this concept c. In such a case, it is assumed that during interpretation
an instance of c should be created for every instance of c′ found in an ABox.
Thus the set of rules T should create an instance of c for every instance of c′.
Example of this operation is the definition of “Person” (c) that aggregates
either “PersonName” or “PersonFace” (c′).

– Addition of a single concept c′ to an existing HLC c: This operation deals
with the extension of an existing HLC c with a concept c′, i.e. when adding a
new property to an existing HLC. In such a case, T should contain rules that
aggregate instances of concept c′ with instances of concept c, and promote
all relations between the instance of c′ and instances not aggregated by the
instance of c to the c instance. Examples include the extension of “Person”
with properties like “Age”, “Gender”, or “PersonBody” and the “SportsEvent”
with “Date”, or “Location”.
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– Removal of a single concept c′ from an HLC c: This operation handles prop-
erty removals from HLCs. The rule set T is identical to the operation of
adding a property to an HLC, with the difference that each rule in T is
located and removed from the TBox rules, instead of extending it.

– Removal of HLC c that aggregates a single concept c′: Again, this operation
is the negation of creating a new HLC that aggregates a single concept
operation. Thus, the rule set T is identical between the two operations, but
this operation causes the removal of all rules in T from the TBox.

– Removal of an MLC c: Similar to the addition of a new MLC operation, this
operation has no effect on the TBox rule set, i.e. no rules are removed.

Rule templates for concept definition operations In this subsection the
templates for generating rules are described, for the operators that do not have
an empty set T , and are not related to removals, which share the same T with
the corresponding addition operations.

Definition of a new HLC c that aggregates a single concept c′ The rule set T
during the definition of a new HLC c from a concept c′ should contain rules
that create instances of c from instances of c′ found in the ABox of a multimedia
resource. In the interpretation model used in BOEMIE, this can be accomplished
by a single backward rule, which can be described with the following pattern:

〈c′〉 (X)← 〈c〉 (Y ), has 〈c′〉 (Y,X)

For example, if c is “Person” and c′ is “PersonName”, the following rule can be
generated from this pattern:

PersonName(X)← Person(Y ), hasPersonName(Y,X)

Addition of a single concept c′ to an existing HLC c The rule set T during the
addition of a property c′ to an HLC c should contain rules that relate instances
of c with instances of c′ found in the ABox of a multimedia resource. In addition,
it should contain rules that promote the relations of a c′ instance with all in-
stances not aggregated by c onto the c instance. This operation reflects an action
performed on the definition of concept c, from which the “final” state (c, c′, r) is
known. The state (c, c′, r) is the part of the concept definition that relates to how
c aggregates c′. For example, if “Person” in the image modality is defined as hav-
ing only a single property (hasPersonFace : PersonFace), and the operation
is to extend it also with “PersonBody” through the role “hasPersonBody”, then
(c, c′, r) = (Person, PersonBody, hasPersonBody). According to the adopted
interpretation model, c′ can be aggregated with c only if c′ is related with any
property of c. If c′′, c′′ 6= c′ is an aggregated by c concept, then an “initial” state
(c′′, c′, r′′) is hypothesized, relating c′ with c′′ through the relation r′′. Continuing
the example, since “Person” has a single aggregated concept, only one initial state
can be hypothesized, i.e. (c′′, c′, r′′) = (PersonFace, PersonBody, isAdjacent).
Once both initial and final states have been decided, then a rule pattern can be
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defined to transform the initial into the final state. In the interpretation model
used within BOEMIE, this can be accomplished by a single backward rule, which
can be described with the following pattern:

〈r′′〉 (Y,Z)← 〈c〉 (X) , has 〈c′′〉 (X,Y ) , 〈c′′〉 (Y ) ,
〈r〉 (X,Z) , 〈c′〉 (Z)

Applied to our example, this pattern will lead to the following rule:

isAdjacent (Y, Z)← Person (X) , hasPersonFace (X,Y ) , P ersonFace (Y ) ,
hasPersonBody (X,Z) , P ersonBody (Z)

This rule can relate instances of “PersonBody” to instances of “Person”, already
related to instances of “PersonFace”. The same process should be repeated for
all possible initial states that can be found for concept c.

However these are not the only rules that should be added in set T . Each
relation w defined in the TBox that can have as subject concepts c and c′, must
be promoted from c′ to c. This can be accomplished with forward rules that can
be generated by the following pattern:

〈w〉 (X,Z)← 〈c〉 (X) , 〈r〉 (X,Y ) , 〈c′〉 (Y ) , 〈w〉 (Y,Z)

Please note that in this pattern no type is specified for variable Z, allowing Z
to take as value instances of any concept that is in the range of the relation 〈w〉.
Assuming w = isNear, this pattern can lead to the following rule:

isNear (X,Z)← Person (X) , hasPersonBody (X,Y ) , P ersonBody (Y ) ,
isNear (Y,Z)

The rule set T must be extended with a single rule of the above form for each
w that can be found in the ontology TBox.

4 Conclusions

In this paper we have presented a novel approach for exploiting an ontology in an
ontology-based information extraction system, which substitutes part of the ex-
traction process with reasoning, guided by a set of automatically acquired rules.
Innovative aspects of the presented framework include the use of reasoning in the
construction of an ontology-based information extraction system that can adapt
to changes in the ontology and the clear distinction between concepts of the low-
level analysis (MLCs), and the semantic interpretation (HLCs). An interesting
future direction is the investigation of how reasoning can be better applied on
modalities involving the dimension of time, such as video. In BOEMIE a sim-
ple approach has been followed regarding the handling of time sequences, where
extracted real objects or events were grounded to timestamps, and artificial re-
lations like “before” and “after” were added. Nevertheless, an enhancement that
maintains the temporal semantics from the perspective of reasoning will be an
interesting addition.
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Abstract. Discourse relation recognition is the task of identifying the
semantic relationships between textual units. Conventional approaches to
discourse relation recognition exploit surface information and syntactic
information as machine learning features. However, the performance of
these models is severely limited for implicit discourse relation recognition.
In this paper, we propose an abductive theorem proving (ATP) approach
for implicit discourse relation recognition. The contribution of this paper
is that we give a detailed discussion of an ATP-based discourse relation
recognition model with open-domain web texts.
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edge, Association Information

1 Introduction

Discourse relation recognition is the task of identifying the semantic relation-
ship between textual units. For example, given the sentence John pushed Paul
towards a hole.(S1) Paul didn’t get hurt.(S2), we identify a contrast relationship
between textual units (S1) and (S2). Discourse relation recognition is useful for
many NLP tasks such as summarization, question answering, and coreference
resolution.

The traditional studies on discourse relation recognition divided discourse re-
lations into two distinct types according to the presence of discourse connectives
between textual units: (i) an explicit discourse relation, or discourse relation with
discourse connectives (e.g. John hit Tom because he is angry.). (ii) an implicit
discourse relation, or discourse relation without discourse connectives (e.g. John
hit Tom. He got angry.). Identifying an implicit discourse relation is much more
difficult than identifying an explicit discourse relation. In this paper, we focus
on the task of implicit discourse relation recognition.

Conventional approaches to implicit discourse relation recognition exploit
surface information (e.g. bag of words) and syntactic information (e.g. syntactic
dependencies between words) to identify discourse relations [1, 2, etc.]. However,
the performance of these models is severely limited as mentioned in Sec. 2.2. We
believe that the problem of these approaches is two fold: (i) they do not cap-
ture causality between the events mentioned in each textual units, and (ii) they
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do not capture the factuality of these events. We believe that this information
plays a key role for implicit discourse relation recognition. Suppose we want to
recognize a contrast relation between S1 and S2 in the first example. To recog-
nize the discourse relation, we need to at least know the following information:
(i) commonsense knowledge: pushing into a hole usually causes getting hurt ;
(ii) factuality: Paul did not get hurt. Finally, combining (i) and (ii), we need
to recognize the unusualness of discourse: something against our commonsense
knowledge happened in S2. As described in Sec. 3, our investigation revealed
that we have several patterns of reasoning and need to combine several kinds of
reasoning to identify a discourse relation.

Motivated by this observation, we propose an abductive theorem proving
(ATP) approach for implicit discourse relation recognition. The key advantage of
using ATP is that the declarative nature of ATP abstracts the flow of information
away in a modeling phase: we do not have to explicitly specify when and where
to use a particular reasoning. Once we give several primitive inference rules to
an ATP system, the system automatically returns the best answer to a problem,
combining the inference rules.

In this paper, we attempt to answer the following open issues of ATP-based
discourse relation recognition: (i) does it really work on real-life texts?; (ii) does
it work with a large knowledge base which is not customized for solving target
texts? The contribution of this paper is as follows. We give a detailed discussion
of an ATP-based discourse relation recognition model with open-domain web
texts. In addition, we show that our ATP-based model is computationally feasible
with a large knowledge base.

The structure of this paper is as follows. In Sec. 2, we describe abduction and
give an overview of previous efforts on discourse relation recognition. In Sec. 3,
we describe our ATP-based discourse relation recognition model. In Sec. 4, we
report the results of pilot evaluation of our model with large lexical knowledge.

2 Background

2.1 Weighted abduction

Abduction is inference to the best explanation. Formally, logical abduction is
defined as follows:

– Given: Background knowledge B, and observations O, where both B and
O are sets of first-order logical formulas.

– Find: A hypothesis (or explanation, abductive proof ) H such that H ∪ B |=
O, H ∪ B 6|=⊥, where H is a conjunction of literals. We say that p is hy-
pothesized if H ∪ B |= p, and that p is explained if (∃q) q → p ∈ B and
H ∪ B |= q.

Typically, several hypotheses H explaining O exist. We call each of them a
candidate hypothesis and each literal in a hypothesis an elemental hypothesis.
The goal of abduction is to find the best hypothesis among candidate hypotheses
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by a specific measure. In the literature, several kinds of evaluation measure have
been proposed, including cost-based and probability-based [3, 4, etc.].

In this paper, we adopt the evaluation measure of weighted abduction, which
is proposed by Hobbs et al. [4]. In principle, the evaluation measure gives a
penalty for assuming specific and unreliable information but rewards for inferring
the same information from different observations. We summarize the primary
feature of this measure as follows (see [4] for more detail):

– Each elemental hypothesis has a positive real-valued cost;
– The cost of each candidate hypothesis is defined as the sum of costs of the

elemental hypotheses;
– The best hypothesis is defined as the minimum-cost candidate hypothesis;
– If an elemental hypothesis is explained by other elemental hypothesis, the

cost becomes zero.

2.2 Related work

Discourse relation recognition is a prominent research area in NLP. Most re-
searchers have primarily focused on explicit discourse relation recognition, em-
ploying statistical machine learning-based models [5, 6, etc.] with superficial and
syntactic information. The performance of explicit discourse relation recognition
is comparatively high; for instance, Lin et al. [7] achieved an 80.6% F-score.

The performance of implicit discourse relation recognition is, however, rel-
atively low (25.5% F-score). Most existing work on implicit discourse relation
recognition [1, 2, etc.] extend the feature set of [5] with richer lexico-syntactic
information. For example, Pitler et al. [2] exploit a syntactic parse tree and sen-
timent polarity information of words contained in textual units to generate a
feature set. However, the performance is not as high as a practical level.

An abductive discourse relation recognition model is originally presented in
Hobbs et al. [4]. However, Hobbs et al. [4] reported the results in a fairly closed
setting: they tested their model on two test texts with manually encoded back-
ground knowledge which is required to solve the discourse relation recognition
problems that appear in two texts. Therefore, it is an open question whether the
abductive discourse relation recognition model works in an open setting where
the wider range of real-life texts and large knowledge base are considered.

3 Abductive theorem proving for discourse relation
recognition

In this section, we describe our discourse relation recognition model. We em-
ploy ATP to recognize a discourse relation. Given target discourse segments,
we abductively prove that there exists a coherence relation (i.e. some discourse
relation) between the discourse segments using background knowledge. We ax-
iomatize (i) definition of discourse relations and (ii) lexical knowledge (e.g. causal
knowledge of events) in the background knowledge, which serve as a proof of the
existence of a coherence relation.
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The motivation of using abductive theorem proving is that we can assume a
proposition with the cost even if we fail to find a complete proof of a coherence
relation between discourse segments, as mentioned in Sec. 2. By choosing the
minimum-cost abductive proof, we can identify the most likely discourse relation.

We first show how to axiomatize the definition of discourse relations (Sec.
3.1). We then conduct an example-driven investigation of lexical knowledge
which is required to solve a few real-life discourse relation recognition problems
in order to identify a type of lexical knowledge needed for an ATP-based recogni-
tion model (Sec. 3.2). In Sec. 3.2, we make sure that our developed theory works
on a general-purpose inference engine as we expected. We use the lifted first-order
abductive inference engine Henry, which is developed by one of the authors.[8]
To perform deeper analysis of the inference results, we also improved the existing
visualization module provided by Henry. The inference engine and visualization
tool are publicly available at https://github.com/naoya-i/henry-n700/.

3.1 Axiomatizing definitions of discourse relations

We follow the definitions of discourse relations provided by Penn Discourse Tree-
Bank (PDTB) 2.0 [9], a widely used and large-scale corpus annotated with dis-
course relations.1 The PDTB defines four coarse-grained discourse relations, but
it is still rather difficult to identify all discourse relations. Therefore, we adopt
two-way classification: whether it is adversative (Comparison in PDTB) or re-
sultative (Temporal, Contingency, Expansion in PDTB). Because a resultative
relation can be regarded as relations other than an adversative relation, we first
axiomatize the definition of adversative and then consider the other relation.

According to the PDTB Annotation Manual [12], an adversative relation
consists of two subtypes: Concession and Contrast. These subtypes are defined
below, respectively.

Concession One of the arguments describes a situation A which causes C, while
the other asserts (or implies)¬C. One argument denotes a fact that triggers
a set of potential consequences, while the other denies one or more of them.

Contrast Arg1 and Arg2 share a predicate or a property and the difference is
highlighted with respect to the values assigned to this property.

The condition of Concession can be described as the following axiom:

event(e1, type1, F, x1, x2, x3, s1) ∧ event(e2, type2, NF, y1, y2, y3, s2)

∧ cause(e1, F, e2, F ) ∧ event(eu, type2, EF, y1, y2, y3, su) ⇒ Adversative(s1, s2).

This axiom says that if event e1 occurs in segment s1 (roughly corresponding to
Arg1 in PDTB) and that event is expected to cause an event of type2 while such
an event of type2 does actually not occur in segment s2 (roughly corresponding
to Arg2 in PDTB), then the discourse relation between s1 and s2 is Adversa-
tive. The examples using this type of axiom to recognize discourse relations will

1 For other corpora, see [10, 9, 11, etc.].
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be mentioned later. On the other hand, a typical pattern where the Contrast
relation holds can be described, for example, as follows:

value(e1, Pos, s1) ∧ value(e2, Neg, s2) ⇒ Adversative(s1, s2).

This axiom says that when the sentiment polarity of e1 in segment s1 is Positive
and the sentiment polarity of e2 in segment s2 is Negative, the discourse relation
between s1 and s2 is Adversative. The examples of axioms described here rep-
resent formation conditions of Adversative and take some variation due to their
value of factuality or sentiment.

Furthermore, these axioms can represent conditions of Resultative. For in-
stance, if the sentiment polarity of e2 in segment s2 is the same as that of segment
s1, then the discourse relation between s1 and s2 is Resultative as below:

value(e1, Pos, s1) ∧ value(e2, Pos, s2) ⇒ Resultative(s1, s2).

In total, we created 21 axioms for the definition of discourse relations.
Finally, we add the following axioms to connect the definition of discourse

relations with the existence of a coherence relation between discourse segments:

Adversative(s1, s2) ⇒ CoRel(s1, s2) (1)

Resultative(s1, s2) ⇒ CoRel(s1, s2), (2)

where CoRel(s1, s2) indicates that there exists a coherence relation between seg-
ments s1 and s2. Given target discourse segments S1, S2, we prove CoRel(S1, S2)
using the axioms described above and lexical knowledge which is described in
the next section.

We formally describe our meaning representation. First, we use cause(ea, fa, ec, fc)
to represent that event ea with factuality fa causes event ec with factuality fc.
Second, we represent an event by using event(e, t, f, x1, x2, x3, s), where e is the
event variable, t is the event type of e, f is the factuality of event e, x1, x2, x3

are arguments of event and s is the segment which event e belongs to. Factuality
of event e can take one of the following four values: F (Fact; e occurred), NF
(NonFact; e did not occur), EF (Expected-Fact; e is expected to occur), and
ENF (Expected-NonFact; e is expected not to occur). In addition, the value
(sentiment polarity) of event e is represented as value(e, v, s). v is either Pos
(Positive) or Neg (Negative).

3.2 Example-driven investigation of lexical knowledge

Next, we manually analyzed a small number of samples for each discourse relation
to investigate what types of knowledge are required to explain those samples and
how to axiomatize them. In this paper, we manually convert each sample text
into the logical forms, extracting main verbs in its matrix clauses as predicates.2

2 In future work, we will exploit the off-the-shelf semantic parser (e.g. Boxer [13]) to
automatically get the logical forms. Using automatic semantic parsers brings some
challenges to us, e.g. how to represent the verbs in embedded clauses. We do not
address these issues in this work, because we want to focus on the investigation of
types of world knowledge that are required to identify discourse relations.
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Fig. 1. Example of the abductive proof automatically produced by our system. The
black directed edges: backward-chainings. The red undirected edges: unification. The
labels of undirected red edges: unifier. The terms starting with a capital letter: constant;
otherwise, variable. “X ∼ Y ”: Y is unified with X. The grayed nodes: explained literals.
The red nodes: hypothesized literals.

The dataset consists of text which we collect from the Web.3 This website
provides English texts for adult English learners as a second language. We collect
16 discourse segment pairs in which half of them can be regarded as Adversative
and the others can be regarded as Resultative.

Let us take one of the simplest samples, example (2).

(2) S1: A lot of traffic once used Folsom Dam Road.
S2: Right now, the road is closed.
(Topic=Working, StoryID=174)

In this example, S1 and S2 are in the Adversative relation. While the Folsom Dam
Road was once used by a lot of traffic, it is not usable now because it is closed.
Something was once used but it is now unusable; therefore, the Adversative
relation holds. This can be described as the following axiom:

Condition of Adversative

event(e1, type1, F, x1, x2, x3, s1) ∧ event(e2, type2, F, y1, y2, y3, s2)

∧ cause(e2, F, eu, ENF ) ∧ event(eu, type1, ENF, x1, x2, x3, s1) ⇒ Adversative(s1, s2)

The causality relation between the “closed” event and the “unusable” event can
be described as:

3 http://www.cdlponline.org/
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Relation between events

event(e1, Use,ENF, x1, x2, x3, s1) ∧ cause(e2, F, e1, ENF )

⇒ event(e2, Close, F, y1, x2, y3, s2)

Note that we have cause(e2, F, e1, NF ) in the left-hand side of the axiom. We
use this literal to accumulate the type of reasoning. In an abductive proof, we
expect this literal to unify with an elemental hypothesis generated by the axioms
of discourse relation.

Fig. 1 shows the result of applying the proposed model to example (2).4 In
Fig. 1, the observations consists of three literals; occurrence of event whose type
is Use in segment S1, occurrence of event whose type is Close in segment S2, and
CoRel(S1, S2) which is a symbol of existence of some discourse relation between
the segments.

To see how our model combines multiple pieces of knowledge, let us take
another example.

(3) S1: Right now, the road is closed.
S2: Most of the people who used the road every day are angry.
(Topic=Working, StoryID=174)

The “closed” event causes the “unusable” event and the “unusable” event than
further causes the “angry” event, which can be explained by combining the
knowledge that being “unusable” is negative in sentiment polarity and the knowl-
edge that a negative event may cause someone to be angry. These pieces of
knowledge can be axiomatized as follows. The proof graph is shown in Fig. 2.

Condition of Resultative

event(e1, type1, F, x1, x2, x3, s1) ∧ event(e2, type2, F, y1, y2, y3, s2)

∧ cause(e1, F, eu, EF ) ∧ event(eu, type2, EF, y1, y2, y3, s2) ⇒ Resultative(s1, s2)

Relation between events

event(e1, Use,ENF, x1, x2, x3, s1) ∧ cause(e2, F, e1, ENF )

⇒ event(e2, Close, F, y1, x2, y3, s2)

event(e1, Angry,EF, x1, x2, x3, s1) ∧ cause(e2, f, e1, EF )

⇒ value(e2, Neg, s2) ∧ event(e2, type, f, y1, y2, y3, s2)

Transitivity

cause(e1, f1, e2, f2) ∧ cause(e2, f2, e3, f3) ⇒ cause(e1, f1, e3, f3)

Polarity

value(e1, Neg, s1) ⇒ event(e1, Use, ENF, x1, x2, x3, s1)

Through the investigation as illustrated above, we reached the conclusion
that the axioms in Table 1 can recognize discourse relations for most examples.
4 Throughout this paper, we omit the arguments of events from our representation

in a proof graph for readability. Since we do not have a lexical knowledge between
nouns and verbs, this simplification does not affect to the result of inference.
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^

event
(X1, Close-vb, F, S1)

$1.00/0

event
(_0, Use-vb, ENF, _1)

$1.20/3

inhibit

cause
(X1, F, _0, ENF)

$0.00/4

inhibit

cause
(X1~_17, F, _0~_30, ENF~_31)

$0.22/45

X1=_17, _0=_30, _31=ENF

Res
(S1, S2)
$1.20/6

CoRel
(S1, S2)
$1.00/2

?

value
(_0, Neg, _1)

$1.44/7

polar

^

event
(_18~_26, Angry-adj, EF, S2~_27)

$3.17/26

cause

^

cause

cause
(_0, ENF, _18~_26, EF)

$0.00/27

causecause

cause
(_0~_30, ENF~_31, _18, EF)

$0.22/46

_0=_30, _31=ENF, _26=_18

^

cause
(X1~_17, F, _18, EF)

$0.36/20

REScause6-2

event
(X1~_17, Close-vb~_19, F, S1)

$0.36/21

X1=_17, _19=Close-vb

REScause6-2

event
(E16~_20, Angry-adj~_21, F, S2)

$0.36/22

REScause6-2

event
(E16, Angry-adj, F, S2)

$1.00/1

_20=E16, _21=Angry-adj

event
(_18, Angry-adj~_21, EF, S2)

$0.36/23

_26=_18, _21=Angry-adj, S2=_27

REScause6-2

^

TransitiveTransitive

Fig. 2. Example of the abductive proof automatically produced by our system. See the
description of Fig. 1.

4 Pilot large-scale evaluation

As mentioned in the previous section, our model assumes that axioms encoding
lexical knowledge are automatically extracted from a large lexical resources (see
“To be automatically acquired”axioms in Sec. 3.2.) In this section, we extract the
axioms of causal relations and synonym/hyperonym relations from WordNet [14]
and FrameNet [15], both popular and large lexical resources, and then apply our
model to the example texts presented in Sec. 3. Regarding sentiment polarity,
we plan to extract the axioms from a large-scale sentiment polarity lexicon such
as [16] in future work.

We clarify that our primary focus here is the feasibility of our ATP-based
discourse relation recognition model with a large knowledge base. The quan-
titative evaluation of our model (e.g. the predictive accuracy of discourse rela-
tions) is future work. Therefore, we first report how to incorporate WordNet and
FrameNet axioms into our knowledge base (Sec. 4.1) and then preliminarily re-
port the computational time of inference required to solve the example problems,
showing some interesting output (Sec. 4.2).
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Table 1. Set of axiom type.

Scale Type of knowledge Examples of axiom

Small-scale
(Manually

written)

Definitions of
discourse relations

event(e1, type1, F, x1, x2, x3s1)

∧ event(e2, type2, F, y1, y2, y3, s2)

∧ cause(e2, F, eu, ENF )

∧ event(eu, type1, ENF, x1, x2, x3, s1)

⇒ Adversative(s1, s2);

value(e1, Pos, s1) ∧ value(e2, Pos, s2)

⇒ Resultative(s1, s2)

Transitivity

cause(e1, f1, e2, f2) ∧ cause(e2, f2, e3, f3)

⇒ cause(e1, f1, e3, f3)

Large-scale

(Automatically

acquired)

Causal relations

event(e1, Use, ENF, x1, x2, x3, s1) ∧ cause(e2, F, e1, ENF )

⇒ event(e2, Close, F, y1, x2, y3, s2);

event(e1, Angry, EF, x1, x2, x3, s1) ∧ cause(e2, f, e1, EF )

⇒ value(e2, Neg, s2) ∧ event(e2, type, f, y1, y2, y3, s2)

Synonym/Hyponym

event(e1, Attack, F, x1, x2, x3, s1)

⇒ event(e1, Destroy, F, x1, x2, x3, s1)

Sentiment polarity

value(e1, Neg, s1) ⇒ event(e1, Die, F, x1, x2, x3, s1);

value(e1, Pos, s1) ⇒ event(e1, Die, NF, x1, x2, x3, s1)

4.1 Automatic axiom extraction from linguistic resources

We summarize the axioms extracted from WordNet and FrameNet in Table 2.
For each resource, we extract two kinds of axioms. First, we generate axioms that
map a word to the corresponding WordNet synset or FrameNet frame (Word-
Synset, or Word-Frame types). The example WordNet axiom in Table 2 enables
us to hypothesize that a “die”-typed event can be mapped to WordNet synset
200358431. Second, we also encode a semantic relation between synsets or frames.
For example, the causal relation between Getting frame and Giving frame is
encoded as the axiom in the Table. 5

4.2 Results and discussion

We have tested our large-scale discourse relation recognition model on the ran-
domly selected 7 texts as those presented in Sec. 3. We restricted the maximum

5 Note that the mapping axioms have bi-directional implications. By using the bi-
directional axioms, we can combine the knowledge from FrameNet and WordNet to
perform a robust inference. For instance, we can do an inference like: pass away →
synsetA → die → FNDeath if we do not have a direct mapping from pass away to
FNDeath. Since the framework is declarative, we do not have to specify when and
where to use a particular type of knowledge, which results in a robust reasoning.
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Table 2. Axioms automatically extracted from WordNet and FrameNet.

Type Resources Example # axioms

Word-Synset WordNet event(e,Die, f, x1, x2, x3, s)
⇔ event(e,WNSynset200358431, f, x1, x2, x3, s)

169,362

Word-Frame FrameNet event(e,Shoot, f, x1, x2, x3, s)
⇔ event(e,FNUseFireArm, f, x1, x2, x3, s)

10,358

Causal relations

WordNet
relationsA∗1

event(e1,WNSynset20036712,EF, x1, x2, x3, s1)

∧ cause(e1,EF, e2, F )

⇒ event(e2,WNSynset200358431, F, y1, y2, y3, s2) 35,440

FrameNet
relations∗2

event(e1,FNGiving,EF, x1, x2, x3, s1)

∧ cause(e1,EF, e2, F )

⇒ event(e2,FNGetting, F, y1, y2, y3, s2) 6,584
Synonym/

Hyponym
WordNet
relationsB∗3

event(e,WNSynset200060063, f, x1, x2, x3, s)

⇒ event(e,WNSynset200358431, f, x1, x2, x3, s) 177,837

*1: Causality, Entailment, Antonym. *2: IsCausativeOf, InheritsFrom, PerspectiveOn,
Precedes, SeeAlso, SubFrameOf, Uses. *3: Meronym, Hyperonym.

number of backward-chaining steps to 2 due to the computational feasibility.
For each problem, on average, the number of potential elemental hypotheses
was 13,034 and the (typed) number of axioms that were used to generate can-
didate abductive proofs was 142. The time of inference required to solve each
problem was 7.00 seconds on average.

Now let us show one of the proof graphs automatically produced by our sys-
tem.6 In Figure 3, we show the abductive proof graph for the following discourse:

S1: Only 56 people died from the explosion,
S2: but many other problems have been caused because of it.

(Topic=Activity, StoryID=241)

Although we suffer from the insufficiency of lexical knowledge, the abductive
engine gave us the best proof where two segments are tied with a resultative
relation. In the proof graph, Die and CauseProblem events are used to prove
“event” literals hypothesized by the axiom of discourse relation. Note that the
causal relation between these events is not proven but assumed with $0.36.

The overall results indicate that we now have a good environment to develop
ATP-based discourse processing.

5 Conclusions

We have explored an abductive theorem proving (ATP)-based approach for im-
plicit discourse relation recognition. We have investigated the type of axioms re-
quired for an ATP-based discourse relation recognition and identified five types
of axioms. Our result is based on real-life Web texts, and no previous work has

6 For the simplicity, we used only one axiom for the axiom of discourse relation.
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Fig. 3. Abductive proof with potential elemental hypotheses. The grayed-out nodes are
those which are potentially included in the best proof, but not actually included in the
best proof. Similarly, the dotted edges are potential explainer-explainee relationships
between elemental hypotheses.

done an investigation in the same setting. Also, we have preliminarily evaluated
our model with a large knowledge base. We have automatically constructed ax-
ioms of lexical knowledge from WordNet and FrameNet, which results in around
four hundred thousand inference rules. Our experiments showed the great po-
tential of our ATP-based model and that we are ready to develop ATP-based
discourse processing in a real-life setting.

Our future work includes three directions. First, we will create a larger knowl-
edge base, exploiting the linguistic resources which have recently become avail-
able. As a first step, we plan to axiomatize Narrative Chain [17], ConceptNet,7

and Semantic Orientations of Words [16] to extend our axioms with the large
knowledge resources. Second, we plan on applying the technique of automatic
parameter tuning for weighted abduction [18] to our model. Third, we plan to
create a dataset for abductive discourse processing, where we annotate simple
English texts with some discourse phenomena including discourse relations and
coreference etc. As the source text, we will use materials for ESL (English as
Second Language) learners,8 a set of syntactically and lexically simple texts, so
that we can trace the detailed behavior of abductive reasoning process. About
the semantic representation, we plan to use the Boxer semantic parser [13] to
automatically get the event arguments.

7 http://conceptnet5.media.mit.edu/
8 http://www.cdlponline.org/
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