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Abstract. This paper presents a novel approach for exploiting an on-
tology in an ontology-based information extraction system, which sub-
stitutes part of the extraction process with reasoning, guided by a set of
automatically acquired rules.

1 Introduction

Information extraction (IE) is the task of automatically extracting structured
information from unstructured documents, mainly natural language texts. Due
to the ambiguity of the term “structured information”, information extraction
covers a broad range of research, from simple data extraction from Web pages
using patterns and regular grammars, to the semantic analysis of language for
extracting meaning, such as the research areas of word sense disambiguation
or sentiment analysis. The basic idea behind information extraction (the con-
centration of important information from a document into a structured format,
mainly in the form of a table) is fairly old, with early approaches appearing in
the 1950s, where the applicability of information extraction was proposed by
the Zellig Harris for sub-languages, with the first practical systems appearing at
the end of the 1970s, such as Roger Schank’s systems [27, 28], which exported
“scripts” from newspaper articles. The ease of evaluation of information extrac-
tion systems in comparison to other natural language processing technologies
such as machine translation or summarisation, where evaluation is still an open
research issue, made IE systems quite popular and led to the Message Under-
standing Conferences (MUC) [21] that redefined this research field.

Ontology-Based Information Extraction (OBIE) has recently emerged as a
subfield of information extraction. This synergy between IE and ontologies aims
at alleviating some of the shortcomings of traditional IE systems, such as efficient
representation of domain knowledge, portability into new thematic domains, and



2 Georgios Petasis, Ralf Möller, Vangelis Karkaletsis

interoperability in the era of Semantic Web [14]. Ontologies are a means for shar-
ing and re-using knowledge, a container for capturing semantic information of a
particular domain. A widely accepted definition of ontology in information tech-
nology and AI community is that of “a formal, explicit specification of a shared
conceptualization” [29, 10], where “formal implies that the ontology should be
machine-readable and shared that it is accepted by a group or community” [4].
According to [31], an ontology-based information extraction system is a system
that “processes unstructured or semi-structured natural language text through
a mechanism guided by ontologies to extract certain types of information and
presents the output using ontologies”. This definition suggests that the main dif-
ferences between traditional IE systems and OBIEs are: a) OBIEs present their
output using ontologies, and b) OBIEs use an information extraction process
that is “guided” by an ontology. In all OBIE systems the extraction process is
guided or driven by the ontology to extract things such as classes, properties
and instances [31], in a process known as ontology population [23].

However, the way the extraction process is guided by an ontology in all OBIEs
has not changed much with respect to traditional information extraction systems.
According to a fairly recent survey [31], OBIEs do not employ new extraction
methods, but they rather employ existing methods to identify the components
of an ontology. Current research on the field investigates the development of
“reusable extraction components” that are tied to ontology portions that are
able to identify and populate [30, 11]. In this paper we propose an alternative
approach that tries to minimise the use of traditional information extraction
components, and substitute their effect with reasoning. The motivation behind
the work presented in this paper is to propose a new “kind” of ontology-based in-
formation extraction system, which integrates further ontologies and traditional
information extraction approaches, through the use of reasoning for “guiding”
the extraction process, instead of heuristics, rules, or machine learning. The pro-
posed approach splits a traditional OBIE in two parts, the first part of which
deals with the gathering of evidence from documents (in the form of ontology
property instances and relation instances among them), while the second part
employs reasoning to interpret the extracted evidence, driven by plausible expla-
nations for the observed relations. Thus, the innovative aspects of the presented
approach include a) the use of an ontology through reasoning as a substitute for
the embedded knowledge usually found in the extraction components of OBIEs,
b) a proposal of how reasoning can be applied for extracting information from
documents, and c) an approach for inferring the required interpretation rules
even when the ontology evolves with the addition of new concepts and relations.

The rest of this paper is organised as follows: In section 2 related work is
presented in order to place our approach within the current state-of-the-art. In
section 3 the proposed approach is presented, detailing both the interpretation
process and the automatic reasoning rule acquisition. Finally, section 4 concludes
this paper and outlines interesting directions for further research.
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2 Related Work

Ontology-based information extraction has recently emerged as a subfield of
information extraction that tries to bring together traditional information ex-
traction and ontologies, which provide formal and explicit specifications of con-
ceptualizations, and acquire a crucial role in the information extraction process.
A set of recent surveys have been presented that analyse the state-of-art in the
research fields of OBIEs [13, 14, 31] and ontology learning/evolution [24, 23], a
relevant research field since many OBIE systems also perform ontology evolu-
tion/learning. OBIE systems can be classified according to the way they acquire
the ontology to be used for information extraction. One approach is to consider
the ontology as an input to the system: The OBIE is guided by a manually
constructed ontology or from an “off-the-shelf” ontology. Most OBIE systems
appear to adopt this approach [31]. Such systems include SOBA [5, 3], KIM [25,
26] the implementation by Li and Bontcheva [18] and PANKOW [7], Artequact
[15, 2, 1]. The other approach is to construct an ontology as a part of the infor-
mation extraction process, either starting from scratch or by evolving an initial,
seed ontology. Such systems include Text-To-Onto [19], the implementation by
Hwang [12], Kylin [32], the work by Maedche et al. [20], the work of Dung and
Kameyama [8]. However, all the aforementioned systems employ traditional in-
formation extraction methods to identify elements of the ontology, and none
attempts to employ reasoning, as the work presented in this paper suggests.

3 The BOEMIE approach

The work presented in this paper has been developed in the context of the
BOEMIE project. It advocates an ontology-driven multimedia content analysis,
i.e. semantics extraction from images, video, text, audio/speech, through a novel
synergistic method that combines multimedia extraction and ontology evolution
in a bootstrapping fashion. This method involves, on one hand, the continuous
extraction of knowledge from multimedia content sources in order to populate
and enrich the ontologies and, on the other hand, the deployment of these ontolo-
gies to enhance the robustness of the multimedia information extraction system.
More details about BOEMIE can be found in [6, 23].

As already mentioned, the proposed approach splits a traditional OBIE in
two parts, the first part of which deals with the gathering of evidence from
documents (in the form of ontology property instances and relation instances
among them), while the second part employs reasoning to interpret the extracted
evidence, driven by plausible explanations for the observed relations. As a result,
the typical extraction process in also split in two phases: “low-level analysis”
(where traditional extraction techniques such as machine learning are used) and
“semantic interpretation”, where analysis’ results are explained, according to the
ontology, through reasoning. Each of the two phases identifies different elements
of the ontology, whose elements are also split in two groups, the “mid-level
concepts” (MLCs - identified by low-level analysis), and the “high-level concepts”
(HLCs), which are identified through semantic interpretation.
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The implications of this separation are significant: the low-level analysis can-
not assume that a Person/Athlete/Journalist has been found in a multimedia
document, just because a name has been identified. Instead the low-level analysis
reports that a name, an age, a nationality, a performance, etc. has been found,
and reports how all these are related through binary relations, extracted from
modality-specific information (i.e. linguistic events for texts, spatial relations for
images/videos, etc.). The identification of Person/Athlete/Journalist instances
is done through reasoning, using the ontology and the reasoning (interpretation)
rules, as low-level analysis cannot know how the Person or Athlete concepts are
defined in the ontology (i.e. what their properties/axioms/restrictions are). In
essence, BOEMIE proposes a novel approach for constructing an OBIE, by keep-
ing the named-entity extraction phase from traditional IE systems, modifying
relation extraction to reflect modality-specific relations at the ontological level,
and implementing the remaining phases of traditional IE systems through rea-
soning. For example, low-level analysis of an image is responsible for reporting
only that a few tenths of faces have been detected (i.e. the faces of athletes and
the audience – represented as MLC instances), along with a human body (i.e.
the body of an athlete – represented as an MLC instance), a pole, a mattress,
two vertical bars, a horizontal bar, etc. (all these are instances of MLCs). After
MLC instances have been identified, the low-level analysis is expected to iden-
tify relational information about these MLC instances. For example, the low-level
analysis is expected to identify that a specific face is adjacent to a human body
and both are adjacent to the pole and the horizontal bar. The low-level analysis
is expected to report the extracted relational information through suitable bi-
nary relations between each pair of related MLC instances. On the other hand,
the low-level is not expected to interpret its findings and hypothesise instances
of HLC instances, such as the existence of athletes and their number. It is up
to the second phase, the semantic interpretation, to identify how many athletes
are involved (each one represented as instance of the “Athlete” HLC), and to
interpret the scene shown in the image as an instance of the “Pole Vault” HLC
concept, effectively explaining the image.

3.1 Definitions

The approach presented in this paper organises the ontology into four main on-
tological modules, the “low-level features”, the “mid-level concepts”, the “high-
level concepts”, and the “interpretation rules”, which are employed through
reasoning in order to provide one or more “interpretations” of a multimedia
document.

Definition 1 (low-level features). Low-level features are concepts related to
the decomposition of a multimedia document (i.e. the description of an HTML
page into text, images or other objects), and concepts that describe surface forms
on single modality documents, such as segments in text and audio documents,
polygons in image and video frames, etc.
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Definition 2 (Mid-Level Concept (MLC)). Mid-level concepts are concepts
that can be materialised (i.e. have surface forms) on documents of a single modal-
ity. Anything that can be extracted by an OBIE that has a surface form on a
document, is an MLC.

For example, the names of persons, locations, etc. in texts, the faces, bodies of
persons in images and the sound events (i.e. applauses) in audio tracks are all
MLC concepts. The BOEMIE OBIE extracts only instances of MLCs (MLCIs)
and relations (i.e. spatial) among them.

Definition 3 (High-Level Concept (HLC)). High-level concepts are com-
pound concepts formed from MLCs. HLCs cannot be directly identified in a mul-
timedia document, as they cannot be associated with a single surface form (i.e.
segment).

For example, the concept “Person” is an HLC, that groups several MLCs (proper-
ties), such as “PersonName”, “Age”, “Nationality”, “PersonFace”, “PersonBody”,
etc. Instances of HLCs (HLCIs) in the BOEMIE OBIE are identified through
reasoning over MLC instances (MLCIs) in the ontology, guided by a set of rules,
in a process known as “interpretation”.

Definition 4 (interpretation). Interpretation is the identification of one or
more HLC instances (HLCIs) in a multimedia document.

An OBIE can have identified several MLC instances (MLCIs) and relations be-
tween them in a multimedia document. If these MLC instances satisfy the axioms
of the ontology and the interpretation rules are able to generate one or more HLC
instances (HLCIs), then this multimedia document is considered as interpeted
(or explained) by the ontology, with the HLC instances (HLCIs) constituting the
interpretation of the document. If the same MLC instances (MLCIs) are involved
in more than one HLC instances (HLCIs) of the same HLC, then the document
is considered to have multiple interpretations, usually due to ambiguity.

3.2 Semantic Extraction

The extraction engine is responsible for extracting instances of concept descrip-
tions that can be directly identified in corpora of different modalities. These
concept descriptions are mid-level concepts (MLCs). For example, in the textual
modality the name or the age of a person is an MLC, as instances of these con-
cepts are associated directly with relevant text segments. On the other hand, the
concept person is not an MLC, as it is a “compound”, or “aggregate” concept in
such a way that instances of this concept are related to instances of name, age,
gender or maybe instances of other compound concepts. Compound concepts are
referred to as high-level concepts (HLCs), and instances of such concepts can-
not be directly identified in a multimedia document, and thus associated with
a content segment. Thus, such instances and also relationships between these
instances have to be hypothesized. In particular, this engine implements a mod-
ular approach [13] that comprises the following three level of abstraction: 1. The
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low-level analysis, which includes a set of modality-specific (image, text, video,
audio) content analysis tools. 2. A modality-specific semantic interpretation en-
gine. 3. A fusion engine, which combines interpretations from each modality3.

The first two levels implement ontology-driven, modality-specific information
extraction, while the last one fuses the information obtained from the previous
levels of analysis. The first level involves the identification of “primitive” con-
cepts (MLCs), as well as instances of binary relations amongst them. The second
level involves the semantic interpretation engine, responsible for hypothesizing
instances of high-level concepts (HLCs) representing the interpretation of (parts
of) a document. Semantic interpretation operates on the instances of MLCs
and relations between them extracted by the information extraction engine. The
goal of semantic interpretation is to explain why certain instances of MLCs are
observed in certain relations according to the background knowledge (domain
ontology and a set of interpretation rules) [9], by creating instances of high-
level concepts and relating these instances. Semantic interpretation is performed
through calls to a non-standard reasoning service, known as explanation deriva-
tion via abduction. The semantic interpretation is performed on the extracted
information (MLC/relation instances) from a single modality in order to form
modality-specific HLC instances. The fact that content analysis is separated from
semantic interpretation, along with the fact that semantic interpretation is per-
formed through reasoning using rules from the ontology, allows single-modality
extraction to be adaptable to changes in the ontology.

Once a multimedia document has been decomposed into single-modality el-
ements and each element has been analysed and semantically interpreted sep-
arately, the various interpretations must be fused into one or more alternative
interpretations of the multimedia document as a whole. This process is per-
formed at a third level, where the modality-specific HLC instances are fused
in order to produce HLC instances that are not modality-specific, and contain
information extracted from all involved modalities. Fusion is also formalized as
explanation generation via abductive reasoning.

Example: the OBIE for the text modality The low-level analysis system
implemented in the context of BOEMIE exploits the infrastructure offered by
the Ellogon4 platform [22], and the Conditional Random Fields [17] machine
learning algorithm, in order to build an adaptable named-entity recognition and
classification (NERC) system, able to identify MLC instances (MLCIs) and rela-
tions between MLCIs. Both NERC and relation extraction components operate
in a supervised manner, using MLC instances that populate the (seed or evolved)
ontology as training material (whose surface forms are available through their
low-level features). The fact that both components use the populated ontology
as training source, allows them to adapt to ontology changes, and improve their
extraction performance over time, as the ontology evolves. The performance of

3 The fusion engine will not be described in this paper, as it is similar to the semantic
interpretation engine. More information can be found at [6, 23].

4 http://www.ellogon.org
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the NERC and relation extraction components has been measured to about 85%
and 70% (F-measure), in the thematic domain of athletics, involving news items
and biographies from official sites like IAAF5 (International Association of Ath-
letics Federations). More details about the low-level analysis system for the text
modality can be found in [13].

The modality specific interpretation engine (not only for text, but for all
modalities) is a process for generating instances of HLCs, by combining instances
of MLCs, through reasoning over instances. Abduction is used for this task, a
type of reasoning where the goal is to derive explanations (causes) for obser-
vations (effects). In the framework of this work we regard as explanations the
high-level semantics of a document, given the middle-level semantics, that is, we
use the extracted MLCIs in order to find HLCIs [9]. The reasoning process is
guided by a set of rules, which belong into two kinds, deductive and abductive.
Assuming a knowledge base, Σ = (T,A) (i.e. an ontology), and a set of assertions
Γ , (i.e. the assertions of the semantic interpretation of a document), abduction
tries to derive all sets of assertions (interpretations) ∆ such as Σ ∪ ∆ |= Γ ,
while the following conditions must be satisfied: (a) Σ ∪ ∆ is satisfiable, and
(b) ∆ is a minimal explanation for Γ , i.e. there exists no other explanation ∆′

(∆′ ⊆ ∆) that Σ ∪∆′ |= ∆ holds. For example, assuming the following ontology
Σ (containing both a “terminological component” – TBox, and a set of rules):

Jumper v Human

Pole v SportsEquipment

Bar v SportsEquipment

Pole uBar v ⊥
Pole u Jumper v ⊥
Jumper uBar v ⊥
JumpingEvent v ∃≤1hasParticipant.Jumper

PoleV ault v JumpingEvent u ∃hasPart.Pole u ∃hasPart.Bar
HighJump v JumpingEvent u ∃hasPart.Bar
near (Y,Z)← PoleV ault (X) , hasPart (X,Y ) , Bar (Y ) ,

hasPart (X,W ) , Pole (W ) ,

hasParticipant (X,Z) , Jumper (Z)

near (Y,Z)← HighJump (X) , hasPart (X,Y ) , Bar (Y ) ,

hasParticipant (X,Z) , Jumper (Z)

And a document (i.e. an image) describing a pole vault event, whose analysis
results Γ contain instances of the MLCs “Pole”, “Human”, “Bar” and a relation
that the human is near the bar:

pole1 : Pole

human1 : Human

5 http://www.iaaf.org/
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bar1 : Bar

(bar1, human1) : near

The interpretation process splits the set of analysis assertions Γ into two sub-
sets: (a) Γ1 (bona fide assertions): {pole1 : Pole, human1 : Human, bar1 : Bar},
which are assumed to be true by default, and (b) Γ2 (fiat assertions):
{(bar1, human1 : near)}, containing the assertions aimed to be explained. Since
Γ1 is always true, Σ∪∆ |= Γ can be expressed as Σ∪Γ1∪∆ |= Γ2. Then, a query
Q1 is formed from each fiat assertion (Γ2), such asQ1 := {()|near (bar1, human1)}.
Executing the query, a set of possible explanations (interpretations) is retrieved:

∆1 = {NewInd1 : PoleV ault, (NewInd1, bar1) : hasPart,

(NewInd1, NewInd2) : hasPart,NewInd2 : Pole,

(NewInd1, human1) : hasParticipant, human1 : Jumper}
∆2 = {NewInd1 : PoleV ault, (NewInd1, bar1) : hasPart,

(NewInd1, pole1) : hasPart, (NewInd1, human1) : hasParticipant,

human1 : Jumper}
∆3 = {NewInd1 : HighJump, (NewInd1, bar1) : hasPart,

(NewInd1, human1) : hasParticipant, human1 : Jumper}

Each interpretation is scored, according to a heuristic based on the number of
hypothesized entities and the number of involved Γ1 assertions used, and the best
scoring interpretations are kept. For the example interpretation shown above,
∆2 is the best scoring explanation, as ∆1 has an excessive hypothesized entity
(NewInd2), and ∆3 does not use the “Pole” instance from Γ1. More details about
interpretation through abduction can be found in [6] and [9]. The language of
the rules is SROIQV , and they can be written in OWL using nominal schemas
[16]. For instance the first rule of the TBox shown in the previous section can
be written as follows:

Bar u {Y } u ∃hasPart−.(PoleV ault u {X} u (∃hasPart.(Pole u {W})) u
(∃hasParticipant.(Jumper u {Z}))) v {Y } u ∃near.{Z}

where {Z} is a nominal variable [16]. However, we are going to use a more
“comfortable” notation for rules through out this paper.

3.3 The Role of Interpretation Rules

Rules are considered part of the ontology TBox and their role is to provide
guidance to the interpretation process. Their main responsibility is to provide
additional knowledge on how analysis results (specified through MLCIs and rela-
tions between MLCIs) can be mapped into HLCIs within a single modality, and
how HLCIs from various modalities can be fused. As a result, rules can be split
in two categories: rules for semantic interpretation, and rules for fusion. Both
categories follow the same design pattern for rules: each rule is built around a
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specific instance or a relation between two instances in the “head” of the rule,
followed by a set of statements or restrictions in the “body” of the rule. When
a rule is applied by the semantic interpretation engine, instances can be created
to satisfy the rule, either for concepts/relations of the head (forward rules) or
for concepts on the head (backward rules).

Forward rules Forward rules perform an action (usually the addition of a rela-
tion between two instances) described in the head of the rule, if the restrictions
contained in the body have been satisfied. For example, consider the following
ABox fragment:

(personName1, “JaroslavRybakov”) : hasV alue

(ranking1, “1”) : hasV alue

(person1, personName1) : hasPersonName

personName1 : PersonName

person1 : Person

ranking1 : Ranking

(personName1, ranking1) : personNameToRanking

This ABox fragment describes the situation where the semantics extraction en-
gine has identified two MLCIs, a person name (“Jaroslav Rybakov”) and a rank-
ing (“1”), connected with the “personNameToRanking” relation. Also, a “Person”
instance exists that relates only to the “PersonName” instance, but not to the
“Ranking” instance. Despite the fact that the personName1 MLCI is related to
the ranking1 MLCI, the person1 HLCI that aggregates personName1 is not re-
lated to the “Ranking” instance. In order for the “Person” instance to be related
to the “Ranking” instance, a forward rule like the following one must be present
during interpretation:

personToRanking(X,Z)← Person(X), P ersonName(Y ),
hasPersonName(X,Y ),
personNameToRanking(Y,Z)

This rule can be interpreted as follows: if a “Person” instance X and a “Person-
Name” instance Y are found connected with a hasPersonName(X,Y ) relation,
and a relation “personNameToRanking” exists between the “PersonName” Y and
any instance Z, then add a relation between the “Person” instance X and the
instance Z. The fact that the rule is applied in a forward way, suggests that all
restrictions in the body have to be met, for the relation “personToRanking” on
the head to be added in an ABox.

Backward rules Backward rules on the other hand assume that the restric-
tion described by the head is already satisfied by the ABox (i.e. instances and
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relations exist in the ABox), and that the action involves the addition of (one or
more) missing instances or relations to satisfy the body. Consider for example
the following ABox fragment from the image modality:

personBody1 : PersonBody

personFace1 : PersonFace

(personBody1, personFace1) : isAdjacent

This ABox fragment describes two MLCIs (a person face and a person body)
that are found adjacent inside an image. Also, suppose that the TBox contains
a backward rule like the following one:

isAdjacent(Y,Z)← Person(X), P ersonBody(Y ), P ersonFace(Z),
hasPart(X,Y ), hasPart(X,Z)

This rule roughly suggests that if a person face and a person body instances
are aggregated by a person instance (and thus both body parts are related to
the person instance with the “hasPart” relation), then the two body parts must
be adjacent to each other. However, since the relation isAdjacent(personBody1,
personFace1) already exists in the ABox and the rule is a backward one, it will
try to hypothesise a “Person” instance X, and aggregate the two body parts.

3.4 Rules for Semantic Interpretation

One domain of rules application is the semantic interpretation of the results ob-
tained from the low level analysis, performed on multimedia resources. During
this interpretation process, the MLCIs and the relations among MLCIs are ex-
amined, in order to aggregate the MLCIs into HLCIs. Then, relations that hold
between MLCIs are promoted to the HLCIs that aggregate the corresponding
MLCIs. Finally, an iterative process starts, which tries to aggregate the HLCIs
into other HLCIs and again promote the relations, until no other instances can
be added to an ABox. As a result, two types of rules are required during inter-
pretation: rules that aggregate concept instances (either MLCIs or HLCIs) into
instances of HLCs, and rules that promote relations. However, not all relations
must be promoted: only relations that hold between a property instance of an
HLCI and an instance that is not a property of the HLCI should be promoted
to the HLCI. The aggregation of instances into HLCIs is performed with the
help of backward rules6, while the promotion of relations from properties to the
aggregating HLCI is performed with forward rules.

3.5 Acquiring Rules

When the ontology changes (i.e. through the addition of a new concept) the
interpretation rules must be modified accordingly. We tried to automate this

6 Backward rules imply the use of abduction to hypothetize instances not contained
in the original ABox.
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task by monitoring ontological changes: the actions performed by an ontology
expert to the ontology are monitored and reflected to the interpretation rules,
following a transformation based approach. Considering as input what an ABox
can contain without the current concept definition available, and as output the
instances that can be generated from the concept if defined, the rule generation
approach tries to find a set of rules that can transform the input into the desired
output. In order to perform this transformation, the transformation is split into
a set of more primitive “operations” that can be easily transformed into rules.

Assuming the set of all possible concepts C, the set of all possible rela-
tions R, a set of predefined operations O on a single concept c ∈ C, and a
modification M over c, where M = {mi (c, ci, ri)}N1 , mi ∈ O, ci ∈ C, ci 6= c,

ri ∈ R, the target is to calculate a rule set S = {ri}N1 , ri = Tmi
(c, ci, ri), that

corresponds to the modification M . Tmi
is a function that transforms a hypoth-

esized initial state (c′, ci, r
′
i) to the desired state (c, ci, ri) for modification mi,

Tmi : (c′, ci, r
′
i)→ (c, ci, ri), c

′ ∈ C, r′ ∈ R. Each function Tmi depends not only
on mi and the two states, but also on the interpretation engine. Since the ob-
jective of rules generation was to eliminate manual supervision, a pattern based
approach was selected for representing each Tmi

. Each pattern is responsible for
generating the required rules from transforming the initial state (c′, ci, r

′
i) to a

final state (c, ci, ri) for each operation in O, possibly biased towards the specific
interpretation model.

Operations over a Single Concept A set of predefined operations O has
been defined that captures all modifications that can be performed on a concept
c within the BOEMIE system. This set contains the following operations:

– Definition of a new MLC c: This operation reflects the addition of a new MLC
to the ontology TBox, an action that is not associated with the modification
of the rules associated with the TBox. For this operation, T = {}.

– Definition of a new HLC c that aggregates a single concept c′: This operation
describes the action of the definition of an HLC based on the presence of
either an MLC or an HLC. Typical usage of this operation is when a new HLC
c has been defined that aggregates another concept c′, and c′ is enough to
define this concept c. In such a case, it is assumed that during interpretation
an instance of c should be created for every instance of c′ found in an ABox.
Thus the set of rules T should create an instance of c for every instance of c′.
Example of this operation is the definition of “Person” (c) that aggregates
either “PersonName” or “PersonFace” (c′).

– Addition of a single concept c′ to an existing HLC c: This operation deals
with the extension of an existing HLC c with a concept c′, i.e. when adding a
new property to an existing HLC. In such a case, T should contain rules that
aggregate instances of concept c′ with instances of concept c, and promote
all relations between the instance of c′ and instances not aggregated by the
instance of c to the c instance. Examples include the extension of “Person”
with properties like “Age”, “Gender”, or “PersonBody” and the “SportsEvent”
with “Date”, or “Location”.
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– Removal of a single concept c′ from an HLC c: This operation handles prop-
erty removals from HLCs. The rule set T is identical to the operation of
adding a property to an HLC, with the difference that each rule in T is
located and removed from the TBox rules, instead of extending it.

– Removal of HLC c that aggregates a single concept c′: Again, this operation
is the negation of creating a new HLC that aggregates a single concept
operation. Thus, the rule set T is identical between the two operations, but
this operation causes the removal of all rules in T from the TBox.

– Removal of an MLC c: Similar to the addition of a new MLC operation, this
operation has no effect on the TBox rule set, i.e. no rules are removed.

Rule templates for concept definition operations In this subsection the
templates for generating rules are described, for the operators that do not have
an empty set T , and are not related to removals, which share the same T with
the corresponding addition operations.

Definition of a new HLC c that aggregates a single concept c′ The rule set T
during the definition of a new HLC c from a concept c′ should contain rules
that create instances of c from instances of c′ found in the ABox of a multimedia
resource. In the interpretation model used in BOEMIE, this can be accomplished
by a single backward rule, which can be described with the following pattern:

〈c′〉 (X)← 〈c〉 (Y ), has 〈c′〉 (Y,X)

For example, if c is “Person” and c′ is “PersonName”, the following rule can be
generated from this pattern:

PersonName(X)← Person(Y ), hasPersonName(Y,X)

Addition of a single concept c′ to an existing HLC c The rule set T during the
addition of a property c′ to an HLC c should contain rules that relate instances
of c with instances of c′ found in the ABox of a multimedia resource. In addition,
it should contain rules that promote the relations of a c′ instance with all in-
stances not aggregated by c onto the c instance. This operation reflects an action
performed on the definition of concept c, from which the “final” state (c, c′, r) is
known. The state (c, c′, r) is the part of the concept definition that relates to how
c aggregates c′. For example, if “Person” in the image modality is defined as hav-
ing only a single property (hasPersonFace : PersonFace), and the operation
is to extend it also with “PersonBody” through the role “hasPersonBody”, then
(c, c′, r) = (Person, PersonBody, hasPersonBody). According to the adopted
interpretation model, c′ can be aggregated with c only if c′ is related with any
property of c. If c′′, c′′ 6= c′ is an aggregated by c concept, then an “initial” state
(c′′, c′, r′′) is hypothesized, relating c′ with c′′ through the relation r′′. Continuing
the example, since “Person” has a single aggregated concept, only one initial state
can be hypothesized, i.e. (c′′, c′, r′′) = (PersonFace, PersonBody, isAdjacent).
Once both initial and final states have been decided, then a rule pattern can be
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defined to transform the initial into the final state. In the interpretation model
used within BOEMIE, this can be accomplished by a single backward rule, which
can be described with the following pattern:

〈r′′〉 (Y,Z)← 〈c〉 (X) , has 〈c′′〉 (X,Y ) , 〈c′′〉 (Y ) ,
〈r〉 (X,Z) , 〈c′〉 (Z)

Applied to our example, this pattern will lead to the following rule:

isAdjacent (Y, Z)← Person (X) , hasPersonFace (X,Y ) , P ersonFace (Y ) ,
hasPersonBody (X,Z) , P ersonBody (Z)

This rule can relate instances of “PersonBody” to instances of “Person”, already
related to instances of “PersonFace”. The same process should be repeated for
all possible initial states that can be found for concept c.

However these are not the only rules that should be added in set T . Each
relation w defined in the TBox that can have as subject concepts c and c′, must
be promoted from c′ to c. This can be accomplished with forward rules that can
be generated by the following pattern:

〈w〉 (X,Z)← 〈c〉 (X) , 〈r〉 (X,Y ) , 〈c′〉 (Y ) , 〈w〉 (Y,Z)

Please note that in this pattern no type is specified for variable Z, allowing Z
to take as value instances of any concept that is in the range of the relation 〈w〉.
Assuming w = isNear, this pattern can lead to the following rule:

isNear (X,Z)← Person (X) , hasPersonBody (X,Y ) , P ersonBody (Y ) ,
isNear (Y,Z)

The rule set T must be extended with a single rule of the above form for each
w that can be found in the ontology TBox.

4 Conclusions

In this paper we have presented a novel approach for exploiting an ontology in an
ontology-based information extraction system, which substitutes part of the ex-
traction process with reasoning, guided by a set of automatically acquired rules.
Innovative aspects of the presented framework include the use of reasoning in the
construction of an ontology-based information extraction system that can adapt
to changes in the ontology and the clear distinction between concepts of the low-
level analysis (MLCs), and the semantic interpretation (HLCs). An interesting
future direction is the investigation of how reasoning can be better applied on
modalities involving the dimension of time, such as video. In BOEMIE a sim-
ple approach has been followed regarding the handling of time sequences, where
extracted real objects or events were grounded to timestamps, and artificial re-
lations like “before” and “after” were added. Nevertheless, an enhancement that
maintains the temporal semantics from the perspective of reasoning will be an
interesting addition.
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16. Krötzsch, M., Maier, F., Krisnadhi, A.A., Hitzler, P.: Nominal schemas for inte-
grating rules and description logics. In: Rosati, R., Rudolph, S., Zakharyaschev, M.
(eds.) Description Logics. CEUR Workshop Proceedings, vol. 745. CEUR-WS.org
(2011)

17. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In: Proceedings of the
Eighteenth International Conference on Machine Learning. pp. 282–289. ICML ’01,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2001)

18. Li, Y., Bontcheva, K.: Hierarchical, perceptron-like learning for ontology-based
information extraction. In: Proceedings of the 16th international conference on
World Wide Web. pp. 777–786. WWW ’07, ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1242572.1242677

19. Maedche, A., Maedche, E., Staab, S.: The text-to-onto ontology learning environ-
ment. In: Software Demonstration at ICCS-2000 - Eight International Conference
on Conceptual Structures (2000)

20. Maedche, A., Neumann, G., Staab, S.: Intelligent exploration of the web. chap.
Bootstrapping an ontology-based information extraction system, pp. 345–359.
Physica-Verlag GmbH, Heidelberg, Germany, Germany (2003), http://dl.acm.

org/citation.cfm?id=941713.941736
21. Marsh, E., Perzanowski, D.: Muc-7 evaluation of ie technology: Overview of re-

sults. In: Proceedings of the Seventh Message Understanding Conference (MUC-
7). http://www.itl.nist.gov/iaui/894.02/related projects/muc/index.html

(1998)
22. Petasis, G., Karkaletsis, V., Paliouras, G., Androutsopoulos, I., Spyropoulos, C.D.:

Ellogon: A New Text Engineering Platform. In: Proceedings of the 3rd Interna-
tional Conference on Language Resources and Evaluation (LREC 2002). pp. 72–
78. European Language Resources Association, Las Palmas, Canary Islands, Spain
(May 29–31 2002)

23. Petasis, G., Karkaletsis, V., Paliouras, G., Krithara, A., Zavitsanos, E.: Ontol-
ogy Population and Enrichment: State of the Art. In: Paliouras, G., Spyropou-
los, C.D., Tsatsaronis, G. (eds.) Knowledge-Driven Multimedia Information Ex-
traction and Ontology Evolution, Lecture Notes in Computer Science, vol. 6050,
pp. 134–166. Springer Berlin / Heidelberg (2011), http://dx.doi.org/10.1007/
978-3-642-20795-2\_6



16 Georgios Petasis, Ralf Möller, Vangelis Karkaletsis
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