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Abstract. We see the local content from peers organized in directories
(i.e., on local ordered lists) of local representations of entities from the
real world (e.g., persons, locations, events). Different local representa-
tions can give different “versions” of the same real world entity and use
different names to refer to it (e.g., George Lombardi, Lombardi G., Prof.
Lombardi, Dad). Although the data from these directories are related
and could complement each other, there are no links that allow peers
to share and search across them. We propose a Distributed Directory
System that constructs these connecting links and allows peers to: (i)
maintain their data locally and (ii) find the different versions of a real
world entity based on any name used in the network. We evaluate the
approach in networks of different sizes using PlanetLab and we show that
the results are promising in terms of the scalability.
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1 Introduction

We see Internet as a network of peers (a P2P network) organizing their content
in directories, which digitally represent their own versions of entities that exist
in the real world. Entities can be of different types (e.g., person, location, event
and others), they have a name, and are described by attributes (e.g., latitude-
longitude, size, birth date), which are different for different entity types [1].
Different versions of an entity can represent different points of view, they could
show different aspects of the entity or the same aspects with different level of
details. In a way, the local representations from peers can be seen as pieces of
information about a particular entity that are stored in a distributed manner in
the network.

In this network, the different directories contain related data and, to some
extent, they can complement each other. One problem that prevents us from
exploiting the relation between these data is that there are no links connecting
the local directories from peers. An effort to connect related data on the web is
that of Linked Data1, which allowed linking important datasets like, dbpedia,
Freebase, DBLP, ACM, and others. Nevertheless, this approach leaves out of

1 http://linkeddata.org/



the semantic web the individual users (i.e., simple normal peers) and the data
from their local directories stored in personal devices (e.g., smart-phones, PDAs,
notebooks, etc.). We propose building a distributed directory that constructs the
connecting links among the local directories at this level, i.e., the level of simple
peers with personal devices. It it important to note that the whole directory
can be seen as another dataset, which could be included as another node in the
Linked Data graph. In this way, the directory would become the bridge that
allows simple peers to participate as part of the semantic web as opposed to act
only as consumers of it.

As in any directory, a peer normally identifies and distinguishes an entity
from others by means of names (e.g., George Lombardi, Trento, Italy, University
of Trento), which play a different role from the other attributes because they are
identifiers rather than descriptions [2]. The values of other types of attributes
have a meaning that can be understood, e.g., by mapping them to concepts
from a knowledge base, like WordNet2. Names, on the other hand, are strings
that behave similarly to keywords. Real world entities can be called by multiple
names as a consequence of variations and errors. Moreover, the set of names
used in different local representations to identify the same real world entity can
be different, at the same time that the sets of names used to identify different
real world entities can overlap.

The approach we propose for a Distributed Directory System (DDS) incorpo-
rates the notion of a real world entity described by different local representations
from peers. This notion is used to organize the references to the local represen-
tations in order to allow finding all the available information about entities. Our
system offers two main features:

– First, it takes into consideration that multiple, possible different, names can
be used to identify the same real world entity (e.g., George Lombardi vs. G.
Lombardi and Italy vs. Italia).

– Second, it allows peers to have control over the privacy of their data be-
cause the DDS stores only the names of the entity and a link to the local
representation.

As a result, any name that is used in some local representation to identify an
entity can be used to find all the different versions of that entity that are stored
in the network of peers.

The paper is structured as follows. Section 2 presents a motivating example
that shows a world of related directories, while Section 3 formalizes the basic
notions that link the different directories. In Section 4, we explain the name
matching problem that arises when linking different directories. Then, a dis-
tributed entity directory is proposed in Section 5 and the algorithms to perform
search in such directory are explained in Section 6. The implementation and
the evaluation details are discussed in Section 7. Finally, the related works are
discussed in Section 8 and the conclusions are presented in Section 9.

2 http://wordnet.princeton.edu/
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2 A World of Directories

Nowadays, most of the organization of our data is done in terms of directories.
A well known and old example is the telephone book directory, used to organize
address and phone numbers of people and companies. Newer forms of directories
can be seen, for example, in contact lists, document directories, event directories
(i.e., calendars or agendas) used by peers in current devices (e.g., computers,
PDAs, smart-phones) to organize the local representation of entities of their
interest. Moreover, the data from different directories (possibly from different
peers) can be related. Different peers attending to the same event might store
local representations of the event. Each of them might also have the contact
information of the other peers attending to the event, e.g., a meeting.

Gerorge	
  Lombardi	
  
home:	
  0461444322	
  
address:	
  Via	
  Solteri	
  15,	
  Trento,	
  TN	
  
mobil:	
  3460087686	
  

Giulio	
  A.	
  Lombardi	
  
home:	
  0461915923	
  

Lombardi,	
  G.	
  
mobil:	
  3460087686	
  
email:	
  george@disi.unitn.it	
  

…	
  

Prof.	
  G.	
  Lombardi	
  
email:	
  george@disi.unitn.it	
  

…	
  

WE	
  

URI:	
   uri/enGty/1	
  

URLs:	
   p1/enGty/2	
  
p2/enGty/1	
  
p3/enGty/9	
  

DE	
  

URL:	
   p1/enGty/2	
  

Names:	
   • Prof.	
  G.	
  Lombardi	
  

DE	
  

URL:	
   p2/enGty/1	
  

Names:	
   • Lombardi,	
  G.	
  

Prof.	
  G.	
  Lombardi	
  

Lombardi,	
  G.	
  

George	
  Lombardi	
  

CONTACT LISTS 

ENTITY DIRECTORY 

DE	
  

URL:	
   p3/enGty/9	
  

Names:	
   • Gerorge	
  Lombardi	
  

p1 
p2 

p3 

Fig. 1. Contact Lists Example

Let us consider in details the example of contact lists in different devices from
the peers of a network that connects students, researchers and professors among
them (e.g., SmartCampus3), and with their family members. The first part of
Figure 1 (upper part) shows that the contact list of each device can be seen as
a local directory of people. Different peers in this network can have different
information about the people in their contact lists, like phone numbers, email
addresses, skype user and others, which show different ways to get in touch with
them. For example, suppose that p1 is a student that is taking a course with
prof. George Lombardi and therefore p1 has, in its contact list, the university
email address of the professor. A researcher p2 that is working with him could
have more information, like his email and mobile phone number. On the other
hand, a family member p3 may have his home address and phone number but
not the university email (because such information is not relevant for p3).

Now, suppose that another researcher in the network, let us call it p4, hears
about prof. Lombardi work and wants to contact him. We can see that:

3 http://www.smartcampuslab.it
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1. First, the information that p4 needs is distributed in the network and the
problem is knowing where the different pieces are stored

2. Second, the different peers can call the same person using different names,
e.g., Prof. Lombardi, George Lombardi, G. Lombardi. In our example, this
means that p4 need to be sure that the other peers (i.e., p1, p2 and p3) are
all referring to the same person as he is.

3. Third, the contact information can change in time. The work email of Prof.
Lombardi will change if his affiliation changes, his phone numbers can change
at any time, and his address will change if he changes residence.

4. Finally, the privacy and the sensitiveness of the information have to be con-
sidered. Most likely the phone number and address of the home of prof. Lom-
bardi would be more private than the university email. As a consequence,
p3 will not share such information with everyone.

3 Linking Directories

We define a Directory of Entities that formalizes the links between data from
different directories through the distinction between a Digital Entity (DE) and
a Real World Entity (WE). A DE is defined as a local representation of an
entity that exist in the real world. A URL (Uniform Resource Locator) is used
in order to uniquely identify a DE and it can be used (by dereferencing) to
obtain the full local description (i.e., based on attributes). We also consider a
set of names {N} as the human readable identifiers used in DEs to refer to a
WE and distinguish it from others. Formally,

DE = 〈URL, {N}〉 (1)

On the other hand, a WE represents the real world entity and is modeled as
a class of DEs. We use a URI (Uniform Resource Identifier) to uniquely identify
each WE. Formally,

WE = 〈URI, {URL}〉 (2)

where {URL} is a non-empty set of identifiers of different DEs that describe
WE. As a consequence of the composition of these definitions we can see that
multiple sets of names are given to a WE through DE definitions from different
peers that describe the same WE.

In the second part of Figure 1 (lower part) we show how the example from
Section 2 can be formalized in terms of these notions (i.e., DEs and WEs). We
can see a one-to-one mapping between the WE from an entity directory and the
real person represented in different contact lists. Moreover, we see that an entry
from a contact list is translated into a DE in the directory (i.e., also a one-to-
one mapping). There is a one-to-many relation between WEs and DEs which
shows that each single entry in a contact list correspond to one person but one
person can be described in many different entries (possibly from different peers).
Finally, the relation between Names and WEs introduces a name matching
problem that is better discussed in the following section.

100



Note that these notions allow the separation between “what” is being rep-
resented and “where” is being represented. This separation is needed in order
to model the issues stated in items 1 and 2 from the example of Section 2. The
DEs model the different pieces of information that p4 needs and their URLs
tell us where they are. The WE models the link that connects different DEs
and its URI identify what they represented. Regarding item 2, we can see that
different sets of names are given in DEs, which models the fact that p1, p2 and
p3 can define the different names that they use to call an entity.

On the other hand, the distinction between the two notions (DE and WE)
also provide the infrastructure to deal with the issues introduced by the other two
items (i.e., items 3 and 4 in Section 2). The dynamism of the information about
the entities and the privacy of local data are constrained to affect DEs. In this
way, when the email of Prof. Lombardi changes (see Figure 1), p2 (the researcher)
updates its local representation (i.e., the DE). The corresponding WE definition
is not affected by this update, nevertheless the information (available in the P2P
network) about Prof. George Lombardi is updated. Similarly, access control can
be implemented over the data associated to each single DE representation, which
do not affect WE definitions. Note that such implementation (i.e., access control
implementation) is out of the scope of this paper, but the interested readers are
invited to see (for example) [3].

4 Name Matching

Names are human readable identifiers that serve the purpose of distinguish an
entity from others. They are labels composed by a combination of words, num-
bers and symbols [2]. In the context of our entity directory, we define the set of
names that identify a WE as the union of the names used in DEs that locally
represent that WE in different peers. Names are different from other attributes
because they play the role of keywords rather than been mapped to concepts
from a knowledge base. As such, names can suffer from different types of varia-
tions. Following the results from the study performed in [4], we can distinguish
among the following types:

– Format. The format variations have a strong dependence with entity type
and affect mostly to people names. They include the variation of the order
in which the words of a name can be written (e.g., George Lombardi and
Lombardi, George) and the multiple abbreviations that can exist for the
same full name (e.g., Giulio Augusto Lombardi can be abbreviated as G. A.
Lombardi, Giulio A. Lombardi and others). It is also important to notice that
the abbreviation of a name can be a valid reference to many different full
names (e.g., G. Lombardi is valid for George Lombardi but also for Giulio
Lombardi).

– Full translations. Names sometimes are written differently in different lan-
guages (e.g., Trento in Italian, Trient in German or Trent in English).

– Part-of translations. In other cases only one part of the name changes
in different languages. This is the case of names composed by common and
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proper nouns, where the common noun is called trigger word in [4] and is
the only part that is affected by the translation (e.g., University of Trento
vs. Università di Trento).

– Misspellings. Names can be misspelled, either in the definition of a DE or
during the specification of a search query. The misspellings can be a conse-
quence of variations in the punctuation, capitalization, spacing, omissions,
additions, substitutions, phonetic variations (e.g., Fasuto vs. Fausto, G Lom-
bardi vs. G. Lombardi).

– Pseudonyms. Entities also have pseudonyms that are not (necessarily) vari-
ations of a name but rather alternative names for an entity, which can be
defined (and used) in different contexts. This is the case for some arbitrary
nicknames that are sometimes used by peers to refer to a DE (e.g., Fede
is commonly used as a nickname for Federico or Federica and The King of
Rock and Roll is a common nickname for Elvis Presley).

The name variations together with the DE definition presented above, show
that the relation between names and DEs is of the type many-to-many. In
turn, this leads to a name-matching problem when we intend to search an entity
based on its names [2]. This problem, in the context of the entity directory, can
be decomposed in:

1. The problem of matching names inside the network: A name used in a DE
can be a variation of the name used in another DE that represent the same
WE. We need to take into consideration all the multiple names (including
name variations) used in the network to identify a WE and match them
to all the different DEs that describe WE. In the example from Figure 1,
if the user is searching an entity with the name “George Lombardi”, the
directory should be able to return all the DEs (i.e, p1/entity/2, p2/entity/1
and p3/entity/9 ) that represent the different versions of uri/entity/1 rather
than only returning the one that give it such name (i.e., p3/entity/9 ).

2. The problem of matching queries with the names used in the network: This
case considers query names that are unknown to the entity directory, but
that are however variations of one or more known names. We say that a
name is unknown to the directory if there is no DE in the network that uses
such name to identify a WE. The easiest example is a query name that is
misspelled with regard to the DEs of the directory. In the example from
Figure 1, if the user input the query “Goerge Lombardi”, the search should
be able to find that “George Lombardi” is a candidate match.

5 A Distributed Directory System

In this paper we propose a Distributed Directory System (DDS) that organizes
information about entities incorporating the notions of WE and DE, which
were presented in Section 3. These notions allow the separation of the problem
of finding the DEs that represent different versions of a WE from the problem of
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finding WEs that are identified with multiple names. We exploit this separation
by building two different indexes, one to deal with each problem.

A DEindex is created to map WEs (i.e., URIs) to DEs (i.e., URLs) and
can be formally defined as,

DEindex = {WE → DE |6 ∃WE′ → DE ∈ DEindex s.t.,WE′ 6= WE} (3)

We can see that this index encodes the one-to-many relation between WEs and
DEs because the mapping of different WEs to the same DE is not allowed. On
the other hand, a WEindex is created to map the names that are given (in local
representations) to WEs (i.e., URIs). Let us call {NDE} to the set of names of
a digital entity DE. Then, the WEindex can be formally defined as,

WEindex = {N → WE | ∃WE → DE ∈ DEindex s.t., N ∈ {NDE}} (4)

We can see that this index encodes the many-to-many relation between Names
and WEs because the only constraint on the mappings is related to the existence
of a local representation that gives “support” to such mapping.

Let us now discuss in more details how the publication, maintenance and
search of entities are done in the DDS :

The publication and deletion of DEs in the network are the two main events
that modify the DDS by affecting the content of the indexes defined above. The
publication of a DE affects both indexes in a straightforward manner. First,
the DE is associated to the WE that it represents by adding the corresponding
mapping (i.e., WE → DE) to the DEindex. Second, the mappings NDE

i →
WE, of each name NDE

i in {NDE} to the WE that is associated to the DE,
are added to the WEindex. In order to do this, we assume that the peer locally
caches the identifier (i.e., the URI) of the WE that is represented by its DE4.
On the other hand, when a DE is deleted from the network, only the DEindex
is directly affected. The same mapping WE → DE that is added when the
DE is published, is then removed from the DEindex when the peer deletes the
DE. Regarding the WEindex, we say that it is not directly affected because the
mappings of names can be removed only after verifying that they are no longer
valid to identify the corresponding WE. Such verification is further discussed as
part of the DDS maintenance.

The maintenance of the DDS is performed through periodic checks over the
indexes in order to detect and remove entries that are no longer valid. In the
DEindex, an entry can be considered invalid if it contains mapping to a DE
that has been unreachable for a long time. In order to detect this situation, each
entry is attached with a timestamp corresponding to the last time when the
DE was reachable. This timestamp is updated in every periodic check. When
the DE is not reachable, the interval between the last reachable time and the
current time is verified. The corresponding entry is removed from the DEindex
if such interval exceeds a given threshold. An entry from the WEindex, on the

4 Note that the initial identification of the WE described by a DE is a problem of
identity management and is out of the scope of this work. See for example [5, 6]
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other hand, is considered invalid if it contains a mapping that do not complies
with the constraint established by the index definition presented in equation 4.
This means that a mapping between N and WE has to be removed from the
WEindex when there are no DEs in the network using the name N to refer to
such WE. In other words, when none of the available entities provide support
to such mapping.

Search in the DDS can be performed using two different types of identifiers,
URIs and names. In this context, having as input a URI means that the target
WE has been uniquely and fully identified. Therefore, the goal of the search is
to obtain all the different representations (i.e., the DEs) of the WE. On the
other hand, in a search based on names, we need to find the candidates WEs
(to be the right answer) as a consequence of the many-to-many relation between
names and WEs. After the candidates WEs has been found, we can use the
search by URI to find the different representations of them. In what follows,
the search by names is considered in more details while the search by URIs is
included as a part of the former.

A query is formally defined as Q = {NQ}, where {NQ} is the non-empty
set of names used to identify one target WE. Then, the problem of searching
entities based on their names can be seen as retrieving WEs that are described
in the network by at least one DE, such that, the intersection between {NDE}
and {NQ} is not empty. This definition considers a partial matching between
{NDE} and {NQ} in order to allow finding a WE from any of the names given
to it on different DEs. In turn, this can be translated in the formal definition of
the Query Answer (QA) as follows:

QA = {〈WE, {DE}〉 | ∃N ′ ∈ {NQ} : N ′→WE ∈ WEindex

∧ ∀DE′ ∈ {DE} : WE → DE′ ∈ DEindex}
(5)

As we mentioned before, this answer is build in two steps. The algorithms that
perform the two steps are presented in Section 6.

6 Algorithms

We assume that the indexes offer non-blocking APIs (to allow the parallelization
of index lookups), which mean that a call to the GET function on the indexes
returns immediately a reference to an object that will be filled with the results
from the index lookup. In Algorithm 1, we define the global data structures,
which are strictly related to the indexes. They are used across the different func-
tions involved in the search. We use the statement for all (line 6 in Algorithm 2
and line 8 in Algorithm 3) to denote the concurrent execution of the statements
that are in its body (i.e., line 7 in Algorithm 2 and lines 9 to 24 in Algorithm 3).

The Search Entity function is presented in Algorithm 2 and is the main
entry point for the search by names. This function receives the query names and
returns a set of candidate WEs according to the constraints given in Equation 5.
In order to measure how relevant each candidate WE is, we count the number of
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query names that match with the names associated to the WE. This relevance
is associated to each candidate WE and included in the resultset. In line 7, the
first step of the search by names is initiated with the call to the GetWEindex
function of the WEindex. The object returned by the function is given to the
corresponding handler function, which knows how to process it.

Algorithm 1 Global Data Structures

1: WEAnswer : 〈isComplete, name, weAnsValues〉
2: DEAnswer : 〈isComplete, URI, deAnsValues〉
3: isComplete : boolean . TRUE when the index lookup is finished
4: weAnsValues : NULL OR {URI} OR {URL} OR {{URI} ∪ {URL}}
5: deAnsValues : {URL} . not empty set of URLs

Algorithm 2 Search Entity

1: function SearchEntity(names : {name}) → {〈WE, relevance〉}
2: WEs : {〈WE, relevance〉} . stores search results
3: WE : 〈URI, {URL}〉 . {URL}.size == 1 when URI == NULL
4: relevance : integer
5: WEs := {}
6: for all name ∈ names do . Parallel threads
7: HandleWEAnswer(GetWEindex(name), WEs)
8: end for
9: return WEs

10: end function

The Algorithm 3 shows the HandleWEAnswer function, which is in charge
of processing the values retrieved from the WEindex. We can see from lines
4 to 6 the loop that waits until the answer is completed. Then, in line 8, we
start one execution thread to process each retrieved value. A value returned
from the WEindex represents a WE, it can be a URI or a URL (see line 4
from Algorithm 1). In the former case, we say that the WE identity is known.
The corresponding instance is created (line 10 in Algorithm 3) with the global
identifier and an (up to now) empty set of DEs. In the later case, the URL
identifies a WE with no global identifier and we assume that there is only one
DE that describes it (line 18 in Algorithm 3).

In lines 11 and 19, we check whether the WE is already in the result-set. If
it is, we call the function relevanceWE++, which increments the count of the
relevance that is associated with the WE. Otherwise, we add the WE to the
result-set with a relevance count initiated to 1 (lines 14 and 22). At this point,
if we are in the case of a WE with global identifier (i.e., with a URI), the
second step of the search is initiated with the call to the GetDEindex function
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of the DEindex (see line 15). The object returned by the function is given to
the HandleDEAnswer function, which then process it.

Algorithm 3 Handler of the WE Answers

1: function HandleWEAnswer(weAnswer : WEAnswer, WEs : {〈WE, relevance〉})
2: waitingTime : integer
3: waitingTime := 5 . parameterizable waiting time
4: while weAnswer.isComplete = FALSE do
5: WAITms(waitingTime) . specified in milliseconds
6: end while
7: if weAnswer.weAnsValues 6= NULL then
8: for all weAnsValue ∈ weAnswer.weAnsValues do . Parallel threads
9: if isURI(weAnsValue) then

10: wEntity := 〈weAnsValue,{}〉
11: if wEntity ∈ WEs then
12: relevanceWE++(WEs, wEntity)
13: else
14: add(WEs,〈wEntity,1〉)
15: HandleDEAnswer(GetDEindex (weAnsValue), WEs)
16: end if
17: else
18: wEntity := 〈NULL,{weAnsValue}〉
19: if wEntity ∈ WEs then
20: relevanceWE++(WEs, wEntity)
21: else
22: add(WEs, 〈wEntity,1〉)
23: end if
24: end if
25: end for
26: end if
27: end function

Algorithm 4 Handler of the DE Answers

1: function HandleDEAnswer(deAnswer : DEAnswer, WEs : {〈WE, relevance〉})
2: waitingTime : integer
3: waitingTime := 5
4: while deAnswer.isComplete = FALSE do
5: WAITms(waitingTime)
6: end while
7: addDE2WE(WEs, deAnswer.key, deAnswer.deAnsValues)
8: end function
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Finally, the Algorithm 4 shows how the values retrieved from the DEindex
are handled. First, we wait until the answer is completed (see the loop from line
4 to line 6) and then the values are used to update the resultset. Note that the
function addDE2WE takes the key (i.e., the URI) to identify, in the resultset,
the WE that has to be updated. The values (i.e., the URLs) are then associated
to such WE in order to complete the QA. We say that this function (called in
line 7 in Algorithm 4) adds DEs to a given WE from a given set.

7 Implementation and Evaluation

We implement the distributed directory on top of a P2P network, where the
distribution of the indexes is done using a Distributed Hash Table (DHT). DHTs5

allow the peers participating in the network to store and retrieve pairs of key and
value. In particular, we use TomP2P6, an advanced DHT library that extends the
basic functions of DHTs. The library supports storing multiple values mapped to
the same key and distinguishes between different index domains. The execution
of the operations over different index domains can be seen as having different
DHTs, i.e., one for the DEindex and other for the WEindex.

We are interested in the evaluation of the approach under realistic network
conditions and we want to measure how much the performance decreases when
the size of the network grows (i.e., the scalability). The performance is considered
here in terms of the time that takes the system to process a query. We use
PlanetLab7 as a testbed because we believe it gives us the realistic network
conditions that we need. PlanetLab provides a network of computers (i.e., nodes)
that are distributed around the world, connect to each other through the internet
and are available for research purposes. We perform the evaluations on networks
of 50, 100 and 150 peers and the data extracted from the proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI)8 are used to
generate the data-sets. We use the titles of publications, names of authors and
names of locations related to the conference.

Each data-set is produced by generating triples of 〈Name,URI, URL〉. The
names and URIs are replicated in order to simulate different WEs having the
same name and different peers storing DEs that describe the same WE. Let us
call pn to the popularity of a name n (i.e., number of WEs that are called by n)
and pwe to the popularity of a WE (i.e., number of DEs that represent WE).
First, for each name n, we generate pn triples with the same name (different
URI and URL). Second, for each URI, we generate pwe triples with the same
name and URI but with different URLs. The popularities pn and pwe follow
a Zipf9 distribution, which means that there is a long tail of unpopular names
and WEs. The distribution of both popularities are independent, which means

5 http://en.wikipedia.org/wiki/Distributed_hash_table
6 http://www.tomp2p.net/
7 https://www.planet-lab.eu/
8 http://ijcai.org/
9 http://en.wikipedia.org/wiki/Zipf’s_law
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that a popular WE do not necessarily has a popular name and vice versa. We
assume that the local entity base of each peer contains, in average, 2000 DEs.
We have overall around 100000, 200000 and 300000 DEs. The query set for each
peer is generated by randomly selecting a set of 1400 names from the initial set
of entity names.

During the evaluation, we first index the data-set for the corresponding
network size and then the peers begin the search evaluation process pseudo-
simultaneously. In this process, each peer performs the following steps: (i) takes
a query from the query set, (ii) runs the search, (iii) measures and logs the time
that the system takes to respond to the query, (iv) waits a random interval of
time (between 1 and 3 seconds), and (v) go back to step (i). These steps are
repeated until the end of the set of queries. Once all the peers end the search
process, we compute the average query time for the network. We show the results
for the different network sizes in Table 1. The values for the average query times

Table 1. Average query time

Network Size 50 peers 100 peers 150 peers

Avg. Query Time (in seconds) 2.77 2.75 2.61

are stable with the network growth and we believe this is a promising result re-
garding the scalability of the directory. On the other hand, when comparing to
information retrieval systems (in general), the average times for search are still
high.

In order to have better understanding of the query times that contribute to
these averages, we analyze the distribution of the query time in the different
networks. In Figure 2 we show the results of this analysis, where we can see that
also the query time distribution is stable with regard to the network growth.
Also in Figure 2 we can notice that more than 55% of the queries are actually
answered in less than a second, while in almost 70% of the cases the response
arrives in less than 2 seconds (which is less than the average time). Moreover,
only 9% of queries take more than 5 seconds to be answered.
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Fig. 2. Query time of different networks

It has to be noted that the results are returned after the query answer is com-
plete, i.e., once all the lookups involved in the query have ended. This means that
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a single slow lookup is enough to delay the computation of a query answer and
therefore increase the query time. Furthermore, we know that particularly slow
peers can produce this problem when a lookup has to be routed through them.
We believe that, in the big picture, the scalability of the approach is a promising
and important result. On the other hand, there are some techniques to perform
result catching or to avoid routing through slow peers (see for example [7]) that
can be implemented to reduce the effect of slow peers at query time.

8 Related Work

The work introduced in this paper involve the approaches that are capable of
managing information about entities in a P2P network. More specifically, our
approach deals with the distributed indexing and searching of entities based
on their identifiers. To the best of our knowledge there are no approaches that
integrates these areas, i.e., that performs search of entities over a p2p network.
Nevertheless, we give an overview of related approaches from both areas.

Some entity aware approaches concentrate the attention on the definition
of models and structures for the representation of entities [1]. In [6] an entity
name system (ENS) is proposed in order to provide support for the generation
and reuse of globally unique identifiers for entities across different and indepen-
dent RDF repositories. The local repository of a single user is not considered
as a source of data and the users need a special access permit in order to con-
tribute with the definition of entities. As a first step towards searching, the work
presented in [8] proposes a model that analyzes the query specification and per-
forms the disambiguation of the desired type of entity. In [9], named entities are
extracted by analyzing queries based on syntactic matching of patterns. These
approaches do not directly address the search, but their results are relevant for
the definition of the directory proposed in this paper.

Other approaches that perform search following an entity centric perspective
can be found in the literature [10–12]. Entity search engines are proposed in [10,
12], heuristic rules are used in [11] to identify entities appearing in a collection of
documents and a service to find documents that contain statements about par-
ticular resources is provided in Sindice [13]. Most of these approach collect data
from multiple web sources (i.e., by crawling) but do not consider distribution
at the level of single users (i.e., a p2p network). In particular, [12] automati-
cally aggregates descriptions from the different sources and allows subsequent
navigation to related entities. Distribution is considered in terms of clusters of
computers that allow parallel processing and scalable storage but the search is
centralized (i.e., they build centralized indexes). In contrast to these approaches,
our approach performs a distributed search in a P2P network and allows users
to maintain their data locally.

On the other hand, we have P2P approaches, which perform distributed
search but are not aware of entities [14, 15]. They are mainly classified as un-
structured and structured approaches. The first unstructured networks (e.g.,

109



Gnutella10) have scalability problems due to the number of messages generated
and do not guarantee that all answers will be found. Other approaches use clus-
tering techniques [16–20], their goal is to find the best group to answer a query
and then send the query to the peers in that group. Our approach can find all
available answers and has proven to be promising in terms of scalability.

We can find also more structured approaches that aim to guarantee the lo-
cation of the content shared on the network (e.g., CAN [21], Chord [22] Pastry
[23] and Tapestry [24] They store pairs of 〈key, value〉 in a Distributed Hash
Table (DHT) and then retrieve the value associated with a given key. Other ap-
proaches perform multi-keyword search using DHTs but they can be very expen-
sive in terms of required storage and generated traffic (e.g., see [25]). Hierarchical
structures combine clustering techniques with the structure of DHTs [26–29]. In
general, P2P approaches provide the techniques needed in order to build our
solution. The novelty of our approach is in the domain of application of such
techniques.

9 Conclusions

We presented and approach for a distributed directory of entities that introduces
the notions of DE and WE in order to link local directories of different peers.
The directory provides search services based on entity identifiers. In particular,
we presented the algorithms for searching entities based on their names. We
discussed the name matching problem that appears as a consequence of the
many-to-many relation between names and WEs. Then, we showed that, by
its design, our directory deals with the problem of matching names inside the
network (i.e., the first part of the name matching problem).

The data from peers are stored locally, only the identifiers and the links
to the local representations are indexed. This infrastructure allows the imple-
mentation of access control mechanisms on the local representations in order to
deal with privacy issues. At the same time, the changes made by peers in local
representations, are available in the directory in a straightforward manner. The
indexes are distributed using a Distributed Hash Table (DHT) but the directory
definition is independent from a specific underlying DHT implementation.

The evaluation of the search was performed on networks of 50, 100, and
150 peers running on PlanetLab. The average query time (as a measure of the
performance) for different network sizes were presented as well as the distribution
of the query times. The results can be considered promising in terms of scalability
because the performance is stable with the network growth.

As part of the future works, we want to study and integrate (possibly existing)
approaches to deal with the problem of matching queries with the names used in
the network (i.e., the second part of the naming problem). Additionally, we want
to better understand the different elements that influence the search performance
in order to find and implement techniques to reduce the query times.

10 http://en.wikipedia.org/wiki/Gnutella
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