
9th International Workshop on Scalable Semantic

Web Knowledge Base Systems (SSWS 2013)

At the 12th International Semantic Web Conference (ISWC2013),
Sydney, Australia, October, 2013

SSWS 2013 PC Co-chairs’ Message

SSWS 2013 is the ninth edition of the successful Scalable Semantic Web Knowledge Base Systems
workshop series. The workshop series is focussed on addressing scalability issues with respect to
the development and deployment of knowledge base systems on the Semantic Web. Typically, such
systems deal with information described in Semantic Web languages such as OWL and RDF(S),
and provide services such as storing, reasoning, querying and debugging. There are two basic re-
quirements for these systems. First, they have to satisfy the applications semantic requirements by
providing sufficient reasoning support. Second, they must scale well in order to be of practical use.
Given the sheer size and distributed nature of the Semantic Web, these requirements impose addi-
tional challenges beyond those addressed by earlier knowledge base systems. This workshop brought
together researchers and practitioners to share their ideas regarding building and evaluating scalable
knowledge base systems for the Semantic Web.

This year we received 10 submissions. Each paper was carefully evaluated by four workshop
Program Committee members. Based on these reviews, we accepted seven papers for presentation.
We sincerely thank the authors for all the submissions and are grateful for the excellent work by
the Program Committee members.

October 2013 Thorsten Liebig
Achille Fokoue

Program Committee

Mihaela Bornea
IBM Watson Research Center, USA

Oscar Corcho
Univ. Politecnica de Madrid, Spain

Achille Fokoue
IBM Watson Research Center, USA

Raúl Garćıa-Castro
Univ. Politecnica de Madrid, Spain

Volker Haarslev
Condordia University, Canada

Pascal Hitzler
Wright State University, Ohio, USA

Anastasios Kementsietsidis
IBM Watson Research Center, USA

Pavel Klinov
Ulm University, Germany

Spyros Kotoulas
IBM Watson Research Center, USA

Adila A. Krisnadhi
Wright State University, Ohio, USA

Thorsten Liebig
derivo GmbH, Germany

Ralf Möller
Hamburg Univ. of Techn., Germany

Jeff Z. Pan
University of Aberdeen, UK

Bijan Parsia
University of Manchester, UK

Padmashree Ravindra
North Carolina State University, USA

Mariano Rodriguez
Free University of Bolzano, Italy

Sebastian Rudolph
Karlsruhe Inst. of Techn., Germany

Takahira Yamaguchi
Keio University, Japan

Additional Reviewers

Norman Heino
Leipzig University, Germany

Amit Joshi
Wright State University, Ohio, USA

Raghava Mutharaju
Wright State University, Ohio, USA

Andrea Reale
University of Bologna, Italy

Yuan Ren
University of Aberdeen, UK

Martin Rezk
Free University of Bolzano, Italy

Kejia Wu
Condordia University, Canada

Table of Contents

Count Aggregation in Semantic Queries . 1
Bogdan Kostov, Petr Křemen

DistEL: A Distributed EL+ Ontology Classifier . 17
Raghava Mutharaju, Pascal Hitzler, Prabhaker Mateti

Rule-based Reasoning on Massively Parallel Hardware . 33
Martin Peters, Christopher Brink, Sabine Sachweh, Albert Zündorf

TripleRush: A Fast and Scalable Triple Store . 50
Philip Stutz, Mihaela Verman, Lorenz Fischer, Abraham Bernstein

Eviction Strategies for Semantic Flow Processing . 66
Minh Khoa Nguyen, Thomas Scharrenbach, Abraham Bernstein

Scalable Linked Data Stream Processing via Network-Aware Workload Scheduling 81
Lorenz Fischer, Thomas Scharrenbach, Abraham Bernstein

A Distributed Directory System . 97
Fausto Giunchiglia, Alethia Hume

Count Aggregation in Semantic Queries

Bogdan Kostov, Petr Křemen

Department of Cybernetics, Czech Technical University,
Prague, Czech Republic

{bogdan.kostov,petr.kremen}@fel.cvut.cz

Abstract. In this paper we study the distinct count aggregation func-
tion used in queries into expressive ontologies. The main differences in
this settings opposed to aggregation in relational database systems are
the Open World Assumption and incomplete knowledge. We propose
different interpretations useful in different practical use-cases of the dis-
tinct count function, i.e. basic count, semantic count, epistemic count
and semantic tuple count some of which use knowledge derived from the
ontology in order to obtain results in accordance with the Open World
Assumption. We use interval semantics to model the uncertainty of the
distinct count function’s result induced by incomplete knowledge in the
ontology. We show that interval semantics are particularly useful in ag-
gregate queries with filtering clause and when we need the retrieval of
the boundaries of the uncertainty of the distinct count function’s result.
We study and present relationships among the different interpretations
and decidability of the semantic tuple count. We also propose a theoret-
ical approximation of the semantic tuple count. Our results are applica-
ble to a wide range of description logic formalisms allowing to express
equality/inequality between individuals, concepts and relations, e.g. Web
Ontology Language.

Keywords: semantic counting, count function, OWL, semantic query

1 Introduction

Aggregation functions are an important feature of modern query languages. Ag-
gregation is well understood in query languages of database systems with Unique
Name Assumption (UNA) principle, e.g. SQL for relational databases. Although
this simple well-known interpretation of aggregation can in some cases be used
correctly in queries over semantic knowledge bases, in general this interpreta-
tion will return incorrect results as it will not use knowledge inferred from the
knowledge base with the Open World Assumption (OWA). As opposed to that,
semantic aggregation relies on the knowledge inferred from the knowledge base
in order to provide correct result of aggregation functions.

Currently the research filed of semantic aggregation is in its infant state.
However the need of semantic aggregation is becoming apparent as more and
more applications of semantic technologies emerge. In this paper we propose the
need of different interpretations of the distinct count function in the settings

of OWA and ontology representing incomplete knowledge, i.e. basic count (BC),
semantic tuple count (ST C), epistemic count (EC) and semantic count (SC). We
study the relationships among the different interpretations. We also investigate
the decidability of the ST C interpretation.

2 Related Work

In recent years, expressive query languages, like SPARQL-DL [1], OWL-SAIQL
[2], SQWRL [3] for OWL 2 [4] or SeRQL [5], SPARQL [6] for RDF, have been
introduced and implemented in the field of semantic web. There have been deep
studies [7–11] evaluating conjunctive queries in RDF and OWL, but few efforts
have been spent on an algebra, as well as aggregation functions.

Recently the RDF query language SPARQL [6] has been extended towards
the new SPARQL 1.1 1 [12] including many new constructs, e.g. aggregation
functions or negation as failure. There are already publicly available implemen-
tations, e.g. ARQ [13], KGRAM [14], RDF::Query [15] or Sesame [16]. Inde-
pendently on SPARQL 1.1 authors of [17] discuss the topic of aggregation over
data structured as RDF graphs rather than on the relational data returned by
the query (the result set table). The authors stress the need of different modes
of aggregation. A few years ago the SQWRL query language for OWL [3] was
proposed. All these efforts implement or interpret aggregation using the basic
relational semantics, i.e. the result of aggregation functions is computed over the
results of the non-aggregate variant of the query and neglect the impact of the
interplay between aggregation functions and the inferred domain elements.

More closely related to our study is the work [18]. It shows that exact se-
mantics, of aggregate queries over a DL-LiteA ontology returns results only if
the Abox is not empty and if axioms in the Tbox resolve as constraints over car-
dinalities of the groups in the aggregate query. The authors propose epistemic
semantics of aggregate queries in the settings of data integration use-cases re-
turning the aggregate function’s results known from (inferred by) the ontology.
The authors propose an evaluation algorithm for a sub set of aggregate queries,
i.e. restricted epistemic aggregate queries, defined using functional dependency
of query variables w.r.t. the Tbox of the queried ontology.

Although not exactly in the same framework of query answering like in this
paper, the authors in [19] propose an approach using ontology design pattern
for incorporating a quantification over types without actually using explicit nu-
merical information.

In this paper we examine the distinct count aggregation function, its possible
interpretations and their use-cases. We focus our research on the distinct count
aggregation function alone as it is non-trivial but not too overly complicated. We
believe that better understanding of the distinct count function and its possible
interpretations will cover most of the peculiarities of aggregation in the con-
text of expressive knowledge bases assuming the OWA principle and incomplete
knowledge, thus contributing to OWL and RDF.

1 SPARQL 1.1 version recently became a W3C recommendation.

2

3 Motivation

In this section we present a simple ontology which describes a simple taxonomy
of teachers categories and contains assertions about teachers and courses. The
ontology is presented using the well known description logic syntax, see [20].

Example 1. A simple example ontology O1 about teachers and the courses they
teach.
Tbox
BusyTeacher v Teacher, Professor v Teacher, ∃teaches ·Course v Teacher,
BusyTeacher v ≥ 3 teaches, Professor v ≤ 3 teaches
Abox
BusyTeacher(Sara), Professor(Steve), Professor(John), BusyTeacher(John),
Course(math), Course(physics), Course(history), teaches(Dave, math),
teaches(Dave, physics), teaches(Dave, history), teaches(Sara, history),
math 6 .= history

We will use the following two aggregate queries throughout the paper to
demonstrate the differences in the results of the individual interpretations of the
distinct count function.

Q1 - Find all teachers and the number of distinct courses they teach.
Q2 - Find all teachers that teach more than one distinct courses.

Next we will discuss the need of different interpretations of the distinct count
function. The most natural interpretation of the distinct count function is the
semantics count interpretation. This interpretation enables users to query for
the distinct count function value or its constraints as entailed by the queried
ontology. For example using this interpretation in query Q1 we obtain that John
teaches exactly three courses or using it in query Q2 we will obtain that Dave,
Sara and John teach more than one course. We call this the semantics count
interpretation and we consider it suitable for knowledge retrieval oriented use-
cases. This interpretation is a natural extension of the certain answer semantics
for the distinct count function and it is monotonic.

Although that is the most natural and in fact correct extension of the seman-
tics of the distinct count function, there are some use-cases that need different
CWA interpretations. As argued in [18] for ontology based data access (OBDA)
use-cases, the certain answer semantics for aggregate queries is not practical as
they return trivial results, e.g. empty or very restricted result sets. The authors
propose that in this context a practical interpretation will be the one that re-
turns the least known number of courses they teach. This is called the epistemic
count interpretation. As opposed to the semantic count, the result set of query
Q1 with the epistemic count interpretation will contain for example that Dave

and Sara teach respectively two and three courses.
Note that the epistemic count interpretation may count both named and

unnamed entities. This makes the use of this interpretation inappropriate in
purely data-centric ontology applications. In [21] the authors use OWL to model

3

integrity constraints (IC) and propose IC CWA semantics to enable instance
data validation. We propose an extension to this semantics for the distinct count
function. We call this the semantic tuple count interpretation. As opposed to
the previous interpretations the result of Q2 with the semantic tuple count in-
terpretation will contain only Dave as he is the one for which the data in the
ontology O1 satisfies the condition in the query. The semantic tuple count can
be used to depict IC for n-ary relations.

The most common interpretation of the distinct count function is the basic
count interpretation. This interpretation is scalable and it is safe to be used in
data oriented use-cases in CWA and UNA systems. The usage of this interpreta-
tion in applications assuming OWA may return incorrect results, however, it can
still be used as an approximation. For example the result of query Q1 contains
the answer Dave teaches three courses, which may or may not be true according
to the ontology.

We continue with the formal definition of the different interpretations of the
distinct count function and the discussion of the results of queries Q1 and Q2 in
these interpretations.

4 Preliminaries

In this section we will define basic terms and notions used in the rest of the
paper. We will start with the definition of ontology followed by the definition
conjunctive queries and aggregate queries with distinct count function.

4.1 Ontology

Definition 1. An ontology O is a pair 〈S,A〉, where S is a signature and A
is a set of axioms. The semantics of ontologies use a first order interpretation
I = (∆I , ·I), where ∆I is an interpretation domain and ·I : S → ∆I is an inter-
pretation function mapping elements from the ontology signature S to elements
from the interpretation domain ∆I . An ontology O is satisfied by an interpreta-
tion I, denoted by I |= O, if all of its axioms are satisfied by the interpretation
I, such interpretation I is called a model of O. We say that a set of axioms A is
entailed by the ontology O, denoted by O |= A, if every model I of the ontology
O, is also a model of A, I |= A.

Next we define the notion of the monotonic extension O′ of the ontology O.

Definition 2. We say that O′ = 〈S′, A′〉 is an extension of O = 〈S,A〉 if A ⊂
A′ and S ⊂ S′. O′ is monotonic if the original ontology O is entailed by O′,
O′ |= O. A model I ′ = (∆I

′
, ·I′) of the ontology O is an extension of the model

I = (∆I , ·I) |= O if ∆I
′ ⊆ ∆I′ and ·I′ ⊆·I .

For a full description of the syntax and semantics of different description
logic formalisms see [20]. Note that our discussion is also applicable for OWL 2
ontologies [22, 23] since OWL 2 is backed by the SROIQ(D) description logic.

4

We consider description logics which allow only monotonic extensions. In
section 5.2 where we prove decidability of the semantic tuple count we further
restrict to a subfamily of description logics that enable expressing whether two
entity objects are different, the same or it is not known, which we will refer to
as equality/inequality relation. We require the OWA assumption over the equal-
ity/inequality relation because it provides means to model incomplete knowl-
edge, and it is the fundamental source of uncertainty of the semantic tuple count
function’s value.

4.2 Conjunctive Queries

The discussion in this paper about distinct count function and its proposed
interpretations is set in the context of conjunctive queries.

Definition 3. We will denote conjunctive queries using the following rule like
notation

Q(x̄)← φ(x̄, z̄). (1)

The head of the query Q(x̄) denotes the name of the query and the result variables
Rvar(Q) = x̄. The body of the query φ(x̄, z̄) is a comma separated list of query
atoms interpreted as a conjunctive query, as defined in the SPARQL-DL 2 query
language. The query atom list φ may contain non result variables z̄. Note that
the result variables must be distinguished. By Vvar(Q) we denote the list of all
variables in the query. A binding µ : Vvar(Q)→ S is a mapping of the variables
of the query to elements in the ontology’s signature and Q|µ is the substitution
of the variables in Q by the binding µ. The binding substitution of a tuple of
variables v̄ = (v1, . . . , vk) is denoted by µ(v̄) = (µ(v1), . . . , µ(vk)). We call Q a
ground query if there are no variables in the query. A solution to the query Q
w.r.t. the ontology O is a binding µ for which the substitution Q|µ is a ground
query, the body of which is entailed by the ontology (denoted by O |= Q|µ). The
set of all possible solutions of Q w.r.t. O or the model I of O is denoted by
SatOQ = {µ|O |= Q|µ} or SatIQ = {µ|I |= Q|µ} respectively . The result set
of query Q w.r.t. O denoted by QO, is a set of bindings of the result variables
Rvar(Q), formally QO = {ā|ā = µ(Rvar(Q)) ∧ µ ∈ SatOQ}.

4.3 Aggregate Queries

Here we define the types of aggregate queries along with their simple syntax used
for the purpose of representing aggregate queries in this paper. We also define
some additional terminology and symbols used later in the paper.

Definition 4. We will denote distinct count retrieval and distinct count filtering
queries respectively as follows:

Qa(x̄, countSdist(ȳ))← φ(x̄, ȳ, z̄) (2)

2 See [1] for list of atoms and their interpretations.

5

Qac(x̄)← (·opncountSdist(ȳ)), φ(x̄, ȳ, z̄) (3)

In the queries of the type Qa, the head Qa(x̄, countSdist(ȳ)) specifies the disjoint
sets of grouping Gvar(Qa) = x̄ and aggregation Avar(Qa) = ȳ variables. The
distinct count aggregation function which returns the number of distinct tuples
according to the semantics mode specified by the superscript S w.r.t. the ontology
O is denoted by countSdist. The body of Qa contains a query atom list.

We also consider distinct count filtering by comparison queries of the form
Qac show in (3). The head of queries of these type contain only the grouping
variables. The body of the query contains cardinality restriction atom3 where
·op ∈ {>,<,≤,≥,=, 6=}. By Q∗ we denote a non aggregate variant of Q, obtained
from Q by removing its aggregate function from the head or the comparison
predicate in the body. The result variables of Q∗ are the union of group and
aggregate variables of Q, Rvar(Q∗) = Gvar(Q) ∪ Avar(Q).

Before we define the general semantics of the result of aggregate queries
we clarify and define the auxiliary terms and notations in the following three
definitions.

Definition 5. Let N0,∞∞∞ be the extension of the set of natural numbers with
zero and infinity N0,∞∞∞ = N ∪ {0,∞∞∞}. Let L be a subset of N0,∞∞∞ and let Int(L)
denote the smallest interval containing L,Int(L) = 〈inf(L), sup(L)〉. We extend
the intuitive comparison between elements in N0,∞∞∞ with comparison between sets
L ⊆ N0,∞∞∞ and elements n ∈ N0,∞∞∞. L ≤ n (L < n) is be true if and only if
sup(L) ≤ n ∨ sup(L) = n =∞∞∞ (sup(L) < n). L ≥ n (L > n) is true if and only
if inf(L) ≥ n ∨ inf(L) = n = ∞∞∞ (inf(L) > n). Note that the symbol ∞∞∞ is an
element of N0,∞∞∞.

Next we define the interpretation a tuple and a set of tuples.

Definition 6. Let O = 〈S,A〉 be an ontology, I = (∆I , ·I) a model of O and
T be a set of tuples composed of elements in S. The interpretation of the of the
tuple t̄ = (t1, t2, . . . , tk), t̄ ∈ T is t̄I = (tI1 , t

I
2 , . . . , t

I
k). The interpretation of T is

T I = {t̄I |∀t̄ ∈ T}.

Next we define aggregate groups or simply groups as the set of tuples with
common grouping variable binding.

Definition 7. Let Q be an aggregate query of type Qa or Qac, O be an ontology,
I a model of O and let k̄ = µ(Gvar(Q∗)), where µ is an arbitrary binding. Then
the aggregate group, denoted by Γ (O, Q, k̄), with key k̄ is equal to the set of tuples
{µ(Avar(Q))|µ(Gvar(Q)) = k̄∧µ ∈ SatOQ∗}. The aggregate group with key k̄ in a

tuple set T is Γ (T, k̄) = {ā|∀t̄ ∈ T, (k̄, ā) = t̄}.

3 Note that we reuse the well known notation for property cardinality restrictions, see
[20].

6

Note that the definition of the aggregate group Γ (O, Q, k̄) w.r.t. to the on-
tology O can be used also to obtain an aggregate group w.r.t. to the model I of
O, i.e. Γ (I, Q, k̄).

Next we define results of aggregate queries in terms of the counting func-
tion fS[O,Q] and the set KS(O, Q). Informally the counting function fS[O,Q] is an
uncertainty aware generalization of the distinct count function, it takes as an
input the key of the group to be counted and returns a set of possible values
w.r.t. O and Q. The set KS(O, Q) is the set of keys of the groups to be counted.
The counting function and the key of sets will be defined in each of the concrete
distinct count interpretations. The superscript is used to distinguish among the
different interpretations.

Definition 8. Let D be the set of all tuples of arbitrary length and P(N0,∞∞∞) be
the power set of N0,∞∞∞. Let S be an aggregate semantic, fS[O,Q] : D → P(N0,∞∞∞)

be the counting function and KS(O, Q) ⊂ D be the key set in S. The result
of an aggregate query Q of type (2) w.r.t. the ontology O is QO = {(k̄ ∈
KS(O, Q), inf(L))|L := fS[O,Q](k̄) ∧ inf(L) = sup(L)} and the result set of an
aggregate query Q with comparison filtering, i.e. queries of the form Qac, is
QO = {k̄ ∈ KS(O, Q)|L := fS[O,Q](k̄) ∧ L ·op n}. The interpretation of the last
condition L ·op n is defined in Definition 5.

5 Distinct count function

In this section we formally define the semantics of each of the various interpreta-
tions of the counting function fS[O,Q] and the set of keys KS(O, Q). We present
this definitions in order to be able to show formally the relations between the
interpretations and in the case of SC and ST C to be able evaluate comparison
filtering queries in OWA. We show and discuss the results of the example queries
Q1 and Q2 from section 3 in each of the proposed semantics. We also study the
relationship between individual interpretations of the distinct count function.
We prove decidability of the semantic tuple count ST C interpretation. Finally
we show how to enable distinct count queries in the context of the description
logic SROIQ.

In (4) we show the queries Q1 and Q2 from example 1 in the notation defined
in Definition 4.

Q1(?t, countdist?c)← PropertyValue(teaches, ?t, ?c)
Q2(?t)← (>1countdist(?c)), PropertyValue(teaches, ?t, ?c)

(4)

The tables in this section showing the results of the queries have the following
notation. Only cells highlighted with grey background color 4 are part of the
result set of the query. The other cells have white background. Note that through
out this section O = 〈S,A〉 is an arbitrary ontology with a signature S and an
axiom set A, Q is an arbitrary aggregate query, O1 refers to the ontology in
example 1 and Q1 and Q2 refer to the queries shown in (4).

4 The use of colors in this paper is intended to be readable in gray scale copies.

7

5.1 Known interpretations of the Distinct Count

In this section we discuss three known interpretations of the distinct count func-
tion in aggregate queries.

Basic Count Interpretation The basic count interpretation (BC) is used
originally in the SQL query language, but it is also used in semantic query
languages, e.g. SPARQL and SQWRL. This interpretation is not adequate for
ontological knowledge as it does not infer the distinct count function’s value
from the ontology. The basic count interpretation can be implemented in n log n
time, where n is the size of the tuple set to be counted.

Definition 9. The set of keys KBC(O, Q) is the set of all syntactically distinct
result bindings of the grouping variables Gvar(Q) of the query Q over the ontology
O, i.e. KBC(O, Q) = {k̄|k̄ = µ(Gvar(Q)) ∧ µ ∈ SatOQ∗}. For k̄ ∈ KBC(O, Q) the

counting function is defined as fBC[O,Q] = {|Γ (O, Q, k̄)|}.

The result of the distinct count query Q1 is shown in table 1(a).

Table 1. The result set of the BC interpretation of the aggregate queries Q1 and Q2.

(a) result of Q1

?t countBC
dist(?c)

Dave 3

Sara 1

(b) result of Q2

?t (> 1countBC
dist(?c))

Dave true

Sara false

There are two group keys Dave and Sara. The number of courses Dave teaches
is three because there are three courses that Dave teaches asserted in the on-
tology, whose names are syntactically different. For Sara, who teaches only one
course according to the ontology, the result of the count function is one. We can
see that this interpretation ignores the implicit knowledge derived from the fact
that Sara is a BusyTeacher that teaches at least three courses.

Semantic Count Interpretation Informally the semantic count (SC) inter-
pretation counts the number of possible tuples entailed by the queried ontology.
This interpretation is similar to the exact semantics presented in [18]. However
our definition of SC presented here does not return a single value of the distinct
count function but a set of possible values. While this definition has no effect on
the results of queries of type Qa it ensures monotonic results in the queries of
type Qac. The decidability of the SC interpretation is an open problem. Never-
theless we believe that the minimum of the SC interpretation is more likely to
be decidable.

8

Definition 10. The semantic count interpretation is denoted by SC. Let l =
|Gvar(Q)| be the number of grouping variables in Q and S = Sl is the set of all
tuples of length l composed of elements from the signature S. The SC counting
function is defined as follows fSC[O,Q](k̄) = {|T I | |T := Γ (I, Q, k̄),∀I |= O}. The

SC key set is defined as follows KBC(O, Q) = {k̄ ∈ S| sup(fSC[O,Q](k̄)) > 0}.

Next we discuss the results of the example queries Q1 and Q2, with formal
representation shown in (4), over the ontology O1 from example 1. The last
columns in the tables 2(a) and 2(b) show the boundaries of the intervals found
for each of the group keys from the first column.

Table 2. The result of the aggregate queries Q1 Q2 in 4 with SC interpretation.

(a) result of Q1

?t countSC
dist(?c) Int(fSC

[O1,Q1]
)

Dave - 〈2,∞∞∞〉
Sara - 〈3,∞∞∞〉
Steve - 〈0, 3〉
John 3 〈3, 3〉
math - 〈0,∞∞∞〉

(b) result of Q2

?t (> 1countSC
dist(?c)) Int(fSC

[O1,Q2]
)

Dave true 〈2,∞∞∞〉
Sara true 〈3,∞∞∞〉
Steve false 〈0, 3〉
John true 〈3, 3〉
math false 〈0,∞∞∞〉

In table 2(a) we show the results of query Q1. Next we discuss the intuition
of the calculation of the values of the SC counting function for each of groups
in table 2(a). In order to obtain the final result of the query we need to apply
the comparison semantics from definition 8. The last row in both tables show
an unexpected group which the algorithm should process. In fact we have two
more groups that we omitted from the table which are with keys history and
physics. This is an effect of the OWA assumption. This anomaly is caused by
the fact that the ontology O1 does not explicitly state that math, history and
physics are not teachers and that only teachers can teach and thus allowing the
existence of models in which subjects teach something. Moreover the calculated
interval is zero to infinity because there are no axioms which constraint it. The
SC can be used to locate such unwanted behavior. The minimum in the first
row with group key Dave is obtained from the two semantically distinct courses
math and history that Dave teaches. The maximum of the first row is infinity
because the ontology does not constrain the number of courses Dave can teach.
The minimum of the second row with group key Sara is determined from the
constraint that a BusyTeacher teaches at least three courses and the fact that
Sara is a BusyTeacher and who teaches history. In this case there are two
restrictions, ’at least three’ and ’at least one’ which constraint the minimum
of courses Sara teaches. In such cases we should select the most specific one.
Therefore the minimum of the second row’s interval is three since the first re-
striction is more specific. The evaluation of the maximum in the second row’s
interval is analogous to the one in the first row. The third row’s minimum is

9

zero because Steve is not constrained to teach a minimum number of courses
as Dave and Sara were in the first and second rows. The maximum in the third
row is derived from the fact that Steve is a professor and the constraint of the
Professor class which limits its instances to teach at most three courses. Now
we apply interval semantics to the first three rows that we discussed. The three
rows are not included in the result of query Q1 with SC semantics because ac-
cording to the definition of the results of queries of type Qa in definition 8 which
states that set returned by the counting function must be singleton. The answer
contains only the last row because the return value of the counting function is
a singleton containing only the number three. This is true because the John is
both a Professor and a BusyTeacher the constraints of which were already
discussed.

The results of query Q2 as well as all the relevant group keys of Q2 are
shown in table 2(b). We have discussed the interval boundaries of the intervals
for groups of Q1 and since the Q2 has identical groups, note that KSC(O1, Q1) =
KSC(O1, Q2), we skip this explanation for query Q2. The result of Q2 contains
all rows except for the third one with group key Steve that does not satisfies the
comparison filter which limits the retrieval of groups with at least two distinct
tuples in all models of the ontology O1.

We point out the importance of interval semantics in the settings of incom-
plete knowledge. Note that in query Q2 we obtained results that were not present
in the result of Q1. This proves that the results of query Q2 obtained by filtering
the results of query Q1 won’t contain the full result entailed by the ontology.

Epistemic Count Interpretation The epistemic count (EC) interpretation is
introduced in the work [18]. Informally this interpretation of the distinct count
function returns a single value which represents the known number of distinct
tuples in an aggregate group. For the number k of known tuples holds that
in any model I of the ontology O there is at least k distinct tuples for the
counted group. Because countECdist interpretation is equivalent to the infimum of
the SC counting function here we define the countECdist interpretation in terms of
SC counting function and key set. The decidability of the EC interpretation is
an open problem an it is equivalent to the decidability of the minimum of the
SC interpretation problem.

Definition 11. The EC key set is defined as KEC(O, Q) = KSC(O, Q). The EC
counting function is defined as fEC[O,Q](k̄) = {inf(fSC[O,Q](k̄))}.

In tables 3(a) and 3(a) we can see the results of the aggregate queries Q1 and
Q2 respectively with distinct count function interpreted with the EC semantics.
The results are identical with those of the minimum of the interval in tables 2(a)
and 2(b) and are not discussed further.

5.2 Semantic Tuple Count Interpretation

The semantic tuple count (ST C) interpretation is defined using interval seman-
tics. Informally it counts the same tuples as the BC interpretation but it uses

10

Table 3. The result of the aggregate queries Q1 and Q2 in (4) with the EC interpre-
tation.

(a) result of Q1

?t countEC
dist(?c)

Dave 2

Sara 3

John 3

math 0

(b) result of Q2

?t (> 1countEC
dist(?c))

Dave true

Sara true

John true

math false

knowledge in the ontology to derive the equivalence/inequivalence relation be-
tween the counted tuples which is needed to remove semantically duplicate tuples
and also to deal with uncertainty of the count’s value.

Definition 12. The ST C key set KST C is defined as the key set of the BC
interpretation, i.e. KST C(O, Q) = KBC(O, Q). We define the ST C counting
function as follows fST C[O,Q](k̄) = {|Γ (O, Q, k̄)I ||∀I |= O}.

Table 4. The result of the aggregate queries Q1 and Q2 in (4) with the ST C interpre-
tation.

(a) result of query Q1

?t countST C
dist (?c) Int(fST C

[O1,Q1]
)

Dave - 〈2, 3〉
Sara 1 〈1, 1〉

(b) result of query Q2

?t (> 1countST C
dist (?(c)))

Dave true

Sara false

Next we discuss the results of queries Q1 and Q2 from example 1 with the
ST C interpretation. Here we also show all the group keys that should be consid-
ered during evaluation of the ST C interpretation and since the ST C interpreta-
tion is interval based we also show the evaluated intervals in the last columns of
the tables 4(a) and 4(b). In table 4(a) we have the results of Q1. Now we discuss
the values of the interval boundaries in rows one and two. The minimum in the
first row is based on the two distinct courses math and history. The maximum
is three because there are three entailed tuples in the group of the first row and
because there is no other axioms that constraints the maximum to be smaller.
The minimum in the second row is one because we have only one tuple for the
Sara group. This is also the only possible value for the maximum of row two
because there are no other entailed tuples in that group. Apparently from the
interval semantics only the second row is returned.

The results for the query Q2 are shown in table 4(b). We already discussed
the interval boundaries in the discussion of query Q1. Applying the interval
semantics we filter the second row because Sara teaches only one distinct course
and therefore it is not contained in the result. The first is contained in the result

11

because the minimum boundary, which is 2, is bigger than the less than operand
in the filtering atom, which is one.

Decidability of the ST C Interpretation In this section we prove decidability
of the ST C interpretation. We present only the statements of the most relevant
lemmas and the proof of the theorem at the end of the section. The omitted
proofs and lemmas can be found in the technical report [24]. First we define the
family of formalisms for which we prove that the ST C interpretation is decidable.

Definition 13. We assume that the supported formalisms F (i) are capable
of expressing the equality/inequality relation among elements of the ontology
(ii) consistency check of ontologies and query answering is decidable in F and
(iii) that F is monotonic.

Implementing the evaluation of the ST C counting function based on defini-
tion 5.2 is not feasible because the ontology O might have an infinite number
of models. We show that there is a finite number of models sufficient for the
calculation of the boundaries of the value of the ST C counting function.

The next proposition states that the interval of the distinct count function
with SC and ST C interpretation w.r.t. the ontology O will be more specific if we
extend the queried ontology. The interval calculated w.r.t. the original ontology
will include the one calculated from the extended ontology.

Note that in this section we will use identical equality and inequality axioms,
denoted by =a and 6=a respectively, for all type of entities, i.e. individuals,classes
and properties. In the following section we show an equivalent representation of
this axioms in the concrete logic SROIQ.

Definition 14. Let O = 〈S,A〉 be an ontology, T be a tuple set composed of
elements in the set D ⊆ S. Let I = (∆I , ·I) be an interpretation such that ·I is
defined on D then the complete set of equality/inequality axioms satisfied by I
is denoted as A#(I, D) = {a =a b|∀a, b ∈ D, aI = bI} ∪ {a 6=a b|∀a, b ∈ D, aI 6=
bI}. We denote the set all complete sets of equality/inequality axioms between
elements in D w.r.t. the ontology O as A#(O, D) = {A#(I, D)|∀I |= O}. The

cannonic model of A# = A#(I, D), denoted by IA#
= (∆IA# , ·IA#) is a model

with an interpretation function ·IA# the domain of which is D.

Note that adding equality/inequality axioms to the complete set A#(I, D)
wont change the original set or if it does the resulting set is unsatisfiable. Note
also that the cannonic interpretation function ·IA# can be constructed in poly-
nomial time.

Lemma 1. Let O = 〈S,A〉 be an ontology, D ⊆ S, then A#(O, D) is finite. �

Lemma 2. Let T be a tuple set composed of elements from set D and two inter-
pretations ·I1 and ·I2 which agree on the equivalence and inequivalence between
elements in D. Then the number of elements in the sets T I1 and T I2 is the
same, |T I1 | = |T I2 |. �

12

The next lemma states that for extensions of the ontology O with an axiom
set from A#(O, D) the ST C counting function returns a singleton set and that
the only value in the set can be calculated in polynomial time.

Lemma 3. Let O = 〈S,A〉 be an ontology, Q be an aggregate query, k̄ ∈ KST C,
T = Γ (Q∗O, k̄) and D be the set of elements composing tuples in T , I = (∆I , ·I)

be a model of O, A# = A#(I, D), O′ = 〈S,A ∪ A#〉 and ·IA# be the cannonic

interpretation function of A#. Then fST C[O′,Q](k̄) = {c}, where c = |T I | = |T IA# |.
�

Instead of looking for the boundaries of the ST C interval in the set of all
models as the definition 12 suggests, we can search for the boundaries in the
finite set of representations of the equality interpretation. We first describe an
algorithm which terminates in a final number of steps and then we prove its
correctness.

Algorithm 1 : STC - Semantic Tuple Count procedure

PROCEDURE STC

INPUT : O // the queried ontology,

T // set of tuples to be counted

OUTPUT : <a,b> // the calculated interval

a := inf; b := 0;

D := {elements used in tuples in T};

FORALL A# IN A#(O,D) DO

A’ := union(A, A#);

IF A’ is consistent

construct cannonic interpretation I#(A#);

c := |T interpreted by I#(A#)|;

IF a > c THEN a := c;

IF b < c THEN b := c;

END-IF

END-FORALL

RETURN <a,b>;

END

We will prove decidability by proving correctness and termination of algo-
rithm 1.

Theorem 1. The algorithm 1 terminates and evaluates correctly the interval
Int(fST C[O,Q](k̄)) for an ontology O and aggregate query Q and group key k̄.

Proof. Algorithm 1 terminates since there is a finite number of extensions to
check. From lemma 3 we have that the ST C counting function is a subset of the
calculated interval. Also from lemma 3 we have that the interval is the smallest
because the boundaries correspond to some model of O.�

Corollary 1. Calculation of the ST C interval is decidable in the family of for-
malisms defined in Definition 13. �

13

ST C Interpretation approximation The proposed algorithm 1 is searching
trough all the possible extensions for the set of elements D. As we show in corol-
lary 1 there are n = 2|D|

2

possible extensions for each of which we need to make
a consistency check. In this section we propose an approximation of the ST C
interpretation which can be used for example as optimization of an evaluation
algorithm. The approach presented here utilizes the knowledge inferred from the
ontology. The prove of the correctness of the approximation is presented in the
technical report [24].

Definition 15. Let G = (V,E) be an undirected graph with nodes V and edges
E. A connected component K in G is a subgraph in G maximal with the property,
for each pair of nodes in K there is a path in K. A (maximal) clique C is a graph
maximal with the property C is a subgraph of G and is complete. The biggest
clique C in G is called maximum.

In order to define the approximation formally we need first to define the
auxiliary term difference graph, and the notion of maximum clique.

Definition 16. Let O = 〈S,A〉 be an ontology, let T be a set of tuples of length
l and composed of elements from the set D ⊆ S. Let s̄, t̄ ∈ T , equality s̄ =a t̄
and inequality of tuples w.r.t. the ontology O is defined respectively as O |=
{s1 =a t1, . . . , sl =a tl} and O |= si 6=a ti for some 1 ≤ i ≤ l. Let G=(O, T) =
(D,E=(O, T)) be the graph with edges E=(O, T) = {(a, b)|∀(a, b) ∈ T 2,O |=
a =a b}. The difference graph is denoted by ∆G(O, T) = (V,E) w.r.t. O and T .
The set nodes is the set of connected components of G=(O, T), there is an edge
between the nodes u and v in V , {u, v} ∈ E if and only if the ontology entails
6=a axiom between some pair of the set u× v.

Theorem 2. Let O be an ontology, Q an aggregate query, k̄ ∈ KST C(O, Q) and
let T = Γ (O, Q, k̄) be the group to be counted. Let the ∆G(O, T) = (V,E) be the
difference graph w.r.t. O and T and Cmax = (VC , EC) be the maximum clique
graph of ∆G(O, T). Int(fST C[O,Q](Vvar(k))) ⊆ 〈|VC |, |V |〉. �

ST C interpretation in SROIQ In this section we discuss the countST Cdist

function in a concrete description logic SROIQ. The ST C interpretation is
decidable in this description logic since SROIQ satisfies all the requirements
shown in Definition 13. We consider any query language which supports con-
junctive queries with mixed Abox, Tbox, Rbox terms, e.g. SPARQL-DLNOT

[25]. In order to apply the ST C interpretation in this scenario we need to show
representations of equality and inequality between elements of the signature of
the ontology which will be used to generate the complete set of axioms in A#.

5.2 shows the representations for each of the three term types. Individuals
ik, k ∈ 1, 2, 3..., are unique and not contained in the ontology. Note that classes
and properties have two possible ways of representing the inequality relation.
If one of the representations fails we must also test the other when checking
whether two terms of type class or property need to be compared for inequality.

14

Table 5. Semantics of comparison of different ontology elements

type =a 6=a

individuals i1
.
= i2 i1 6

.
= i2

classes C1 ≡ C2 {C1(i1),¬C2(i1)} or {C2(i2),¬C1(i2)}
properties p1 ≡ p2 {p1(i1, i2),¬∃p2.{i2}(i1)}) or {p2(i3, i4),¬∃p1.{i4}(i3)}

6 Conclusion

We investigated the distinct count function in the context of different semantics,
i.e. BC, SC and EC. We introduced a new interpretation ST C and compared
its behavior with the other interpretations. We found the following relation-
ships between SC and EC, inf(fSC[O,Q]) = EC and also between SC and ST C,
inf(fST C[O,Q](k̄)) ≤ inf(fSC[O,Q](k̄)) and sup(fST C[O,Q](k̄)) ≤ sup(fSC[O,Q](k̄)). We proved
decidability of the ST C interpretation in the context of the selected family of
formalisms, provided an approximation using basic graph problems and showed
how to apply the ST C in the SROIQ description logic.

In future work we would like to focus on the implementation of the evaluation
of the ST C interpretation into the SPARQL-DLNOT [25] query language. In
order to provide practical implementation research in optimizing the evaluation
is needed. In the worst case algorithm 1 will issue 2n

2

consistency checks where
n is the number of counted tuples. We are also interested in the investigation of
the decidability of SC and EC.

Acknowledgments This work has been supported by the grant by the grant of the
Czech Technical University in Prague No. SGS13/204/OHK3/3T/13 Effective
solving of engineering problems using semantic technologies. Authors also want
to express thanks to the anonymous reviewers for providing useful comments
during manuscript preparation.

References

1. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL Query for OWL-DL. In: 3rd OWL
Experiences and Directions Workshop (OWLED-2007). (2007)

2. Kubias, E., Schenk, S., Staab, S., Pan, J.Z.: OWL SAIQL - an OWL DL Query
Language for Ontology Extraction. In: In Proc. of OWLED-07. (2007)

3. O’Connor, M.J., Das, A.K.: SQWRL: A query language for OWL. In: OWLED.
(2009)

4. Group, W.O.W.: OWL 2 Web Ontology Language Document Overview. W3C
Recommendation, W3C (October 2009) http://www.w3.org/TR/2009/REC-owl2-
overview-20091027, cit. 04.12.2012.

5. Broekstra, J., Kampman, A.: An rdf query and transformation language. In
Staab, S., Stuckenschmidt, H., eds.: Semantic Web and Peer-to-Peer. Springer
Berlin Heidelberg (2006) 23–39

6. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C
Recommendation, W3C (January 2008) http://www.w3.org/TR/2008/REC-rdf-
sparql-query-20080115, cit. 3.2013.

15

7. Horrocks, I., Kutz, O., Sattler, U.: The Even More Irresistible SROIQ. In Doherty,
P., Mylopoulos, J., Welty, C.A., eds.: KR, AAAI Press (2006) 57–67

8. Sirin, E., Parsia, B.: Optimizations for Answering Conjunctive ABox Queries. In:
Description Logics. Volume 189 of CEUR. (2006)

9. Křemen, P., Kouba, Z.: Conjunctive Query Optimization in OWL2-DL. In: Pro-
ceedings of the 22th International Conference on Database and Expert System
Applications (DEXA 2011). Volume 6861 of LNCS., Springer Verlag (2011)

10. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive Query Answering in
the Description Logic SHIQ. In: Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI 2007). (2007)

11. Kollia, I., Glimm, B., Horrocks, I.: Query Answering over SROIQ Knowledge Bases
with SPARQL. In: Proceedings of the 2011 International Workshop on Description
Logic (DL 2011). (2011)

12. Seaborne, A., Harris, S.: SPARQL 1.1 Query. W3C Working Draft, W3C (October
2009) http://www.w3.org/TR/2009/WD-sparql11-query-20091022, cit. 3.2013.

13. Apache: ARQ - A SPARQL Processor for Jena, web site (April 2011)
http://jena.apache.org/documentation/query/index.html, cit. 3.2013.

14. Corby, O.: Kgram: a knowledge graph abstract machine, web site
http://wimmics.inria.fr/corese, cit. 3.2013.

15. Williams, G.T.: RDF Query 2.909 - RDF::Query - A complete SPARQL 1.1 Query
and Update implementation for use with RDF::Trine, web site (November 2012)
http://search.cpan.org/dist/RDF-Query/, cit. 3.2013.

16. Arjohn Kampman, Christiaan Fluit, J.B.: Sesame, web site (January 2013)
http://sourceforge.net/projects/sesame, cit. 3.2013.

17. Seid, D.Y., Mehrotra, S.: Grouping and aggregate queries over semantic web
databases. In: ICSC. (2007) 775–782

18. Calvanese, D., Kharlamov, E., Nutt, W., Thorne, C.: Aggregate queries over on-
tologies. In: ONISW. (2008) 97–104

19. Mart́ınez, D.C., Janowicz, K., Hitzler, P.: A logical geo-ontology design pattern
for quantifying over types. In: SIGSPATIAL/GIS. (2012) 239–248

20. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The Description Logic Handbook: Theory, Implementation, and Applications.
In Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: Description Logic Handbook, Cambridge University Press (2003)

21. Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity constraints in owl. In:
AAAI. (2010)

22. Motik, B., Parsia, B., Patel-Schneider, P.F.: OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax. W3C recommendation,
W3C (October 2009) http://www.w3.org/TR/2009/REC-owl2-syntax-20091027,
cit. 12.12.2012.

23. Patel-Schneider, P.F., Motik, B., Grau, B.C.: OWL 2 Web Ontol-
ogy Language Direct Semantics. W3C Recommendation, W3C (Oc-
tober 2009) http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027,
cit. 12.12.2012.

24. Kostov, B., Kremen, P.: Count aggregation in semantic queries - technical re-
port. Technical report, Czech Technical University in Prague, Dept. of Cybernetics
(2013)

25. Kremen, P., Kostov, B.: Expressive OWL Queries: Design, Evaluation, Visualiza-
tion. International Journal On Semantic Web and Information Systems (2012) IGI
Publishing. To appear in 2013.

16

DistEL: A Distributed EL+ Ontology Classifier

Raghava Mutharaju, Pascal Hitzler, and Prabhaker Mateti

Kno.e.sis Center, Wright State University, Dayton, OH, USA

Abstract. OWL 2 EL ontologies are used to model and reason over data
from diverse domains such as biomedicine, geography and road traffic.
Data in these domains is increasing at a rate quicker than the increase
in main memory and computation power of a single machine. Recent
efforts in OWL reasoning algorithms lead to the decrease in classification
time from several hours to a few seconds even for large ontologies like
SNOMED CT. This is especially true for ontologies in the description
logic EL+ (a fragment of the OWL 2 EL profile). Reasoners such as Pellet,
Hermit, ELK etc. make an assumption that the ontology would fit in the
main memory, which is unreasonable given projected increase in data
volumes. Increase in the data volume also necessitates an increase in
the computation power. This lead us to the use of a distributed system,
so that memory and computation requirements can be spread across
machines. We present a distributed system for the classification of EL+

ontologies along with some results on its scalability and performance.

1 Introduction

The OWL 2 EL profile [4] is used for modeling in several domains like biomedi-
cine,1 sensors and road traffic [7], and herein we work on a subset called EL+

[1]. Even though there are not yet any existing very large ontologies in the EL+

profile, we can very well imagine ontologies with large ABoxes in those domains.2

Consequently, reasoners should be able to handle very large amounts of data.
And although there are some very efficient reasoners available [3, 6], there is only
so much a single machine can provide for.

In this paper, we describe a distributed approach to EL+ ontology classifi-
cation. Similar to other distributed systems, the design decisions and the per-
formance of our distributed system, DistEL3 involve answering the following
questions effectively.

Synchronization Is synchronization among the distributed processes required?
If so, how is it achieved?

Termination What is the termination condition for the distributed processes
and how is it detected?

1 http://bioportal.bioontology.org
2 EL+ extended with ABoxes can be handled with essentially the same algorithm.
3 The source code is available at https://github.com/raghavam/DistEL.

Communication How do the distributed processes communicate and how can
this be minimized?

Data Duplication Is data duplication required? How many copies are main-
tained?

Result Collection After all the processes terminate, will the results be spread
across the cluster?

Note that several other characteristics of a distributed system such as fault
tolerance, transparency, etc. have been excluded since they are not yet supported
by our system. In the following sections, we describe how our system solves the
issues mentioned above, and show that our system can handle large ontologies.

The plan of the paper is as follows. In Section 2 we recall preliminaries
concerning EL+. In Section 3 we describe our distributed approach. In Section
4 we present and discuss our experimental evaluation. In Section 5 we discuss
limitations of our approach and future work. In Section 6 we discuss related
work, and in Section 7 we conclude.

2 Preliminaries

EL+ Profile We present a brief introduction to the EL+ profile. For further
details, please refer to [1]. Concepts in the description logic EL+ are formed
according to the grammar

C ::= A | > | C uD | ∃r.C,

where A ranges over concept names, r over role names, and C,D over (possibly
complex) concepts. An ontology in EL+ is a finite set of general concept inclusions
C v D and role inclusions r1 ◦ · · · ◦ rn v r, where r, r1, . . . , rn are role names,
n ∈ Z+. For a general introduction to description logics, and for the formal
semantics of the constructors available in EL+, please refer to [5].

Classification Classification is one of the standard reasoning tasks. The clas-
sification of an ontology refers to the computation of the complete subsumption
hierarchy involving all concept names occurring in the ontology.

A classification algorithm for EL+ using forward-chaining rules is given in [1],
and Table 1 presents a slightly modified set of completion rules which is easily
checked to be sound and complete as well [10]. We use these rules to compute
the classification of input EL+ ontologies. For our modification, we divided the
rule R3 from [1] into R3-1 and R3-2, as follows.

R3-1: If A ∈ S(Y) and ∃r.A v B ∈ O, then ∃r.Y v B
R3-2: If ∃r.Y v B and (X,Y) ∈ R(r), then S(X) := S(X) ∪ {B}
This helps in the division and distribution of work that needs to be done

by our reasoner. The axioms in the ontology are in one of the normal forms
given on the left column of Table 1. S(X) contains all the subsumers of X i.e.,
A ∈ S(X) means X v A. Likewise, R(r) stands for {(X,Y)|X v ∃r.Y }. Our

18

Normal Form Completion Rule

A v B R1-1 If A ∈ S(X), A v B ∈ O, and B 6∈ S(X)
then S(X) := S(X) ∪ {B}

A1 u · · · uAn v B R1-2 If A1, . . . , An ∈ S(X), A1 u · · · uAn v B ∈ O, B 6∈ S(X)
then S(X) := S(X) ∪ {B}

A v ∃r.B R2 If A ∈ S(X), A v ∃r.B ∈ O, and (X,B) 6∈ R(r)
then R(r) := R(r) ∪ {(X,B)}

∃r.A v B R3-1 If A ∈ S(Y), ∃r.A v B ∈ O
then P = P ∪ {∃r.Y v B}

∃r.A v B R3-2 If (X,Y) ∈ R(r), ∃r.Y v B ∈ P and B 6∈ S(X)
then S(X) := S(X) ∪ {B}

r v s R4 If (X,Y) ∈ R(r), r v s ∈ O, and (X,Y) 6∈ R(s)
then R(s) := R(s) ∪ {(X,Y)}

r ◦ s v t R5 If (X,Y) ∈ R(r), (Y,Z) ∈ R(s), r ◦ s v t ∈ O, (X,Z) 6∈ R(t)
then R(t) := R(t) ∪ {(X,Z)}

Table 1. Axioms (in normal forms) and modified completion rules of CEL

Algorithm 1 Pseudocode for CEL classification fixpoint iteration

S(X)← {X,>}, for each concept X in the ontology.
R(r)← {}, for each role r in the ontology.
P ← {}
repeat

Used below, Old.S(X) stands for S(X) now, and Old.R(r) stands for R(r) and
Old.P stands for P ;

S(X)← apply R1-1 using S(X);
S(X)← apply R1-2 using S(X);
R(r)← apply R2 using S(X) and R(r);
P ← apply R3-1 using S(X);
S(X)← apply R3-2 using R(r) and P ;
R(r)← apply R4 using R(r);
R(r)← apply R5 using R(r);

until ((Old.S(X) = S(X)) and (Old.R(r) = R(r)) and (Old.P = P))

goal is to compute S(X) for each concept X in the ontology O. The R(r) is used
in deriving all such subclass relationships. P is a set which holds the axioms
generated by rule R3-1. Instead of representing these axioms by P , the other
option is to add these axioms back in the ontology O, but we would like to keep
the ontology read only.

For classifying EL+ ontologies, all the rules from Table 1 are processed iter-
atively until no new output is generated, as shown in Algorithm 1.

Notations We use U(X) to refer to the “inverse” of S(X) i.e., U(X) = {A |
X w A}. The advantage and performance benefit that is obtained by using U(X)
instead of S(X) is explained later in Section 3. It is typical in computer science
to think of U(X) as applying the definition of a function U to the argument X
and thus U(X) does not yield different results on repeated use. In constrast with

19

Fig. 1. Node assignment to rules and dependency among the completion rules. Each
oval is a collection of nodes (rectangles).

this, we use U [X] to stand for the value stored in an associative array U indexed
by a possibly non-integer value X. The same applies to R(r). Hence U [X] and
R[r] are conceptually treated as associative arrays, but implementation details
might vary. In the rest of the paper we use U [X] and R[r] instead of S(X) and
R(r). Sometimes, we refer to all R[r] collectively as R-data.

3 Distributed Approach

Architecture Each group of nodes in the cluster (see Figure 1) is dedicated
to work on only one particular completion rule Ri, i.e., on axioms belonging to
Ri’s normal form. Axioms of the ontology are split into disjoint collections based
on their normal form. Each disjoint set of axioms are assigned to a particular
group, Gi, responsible for processing rule Ri. Within each group, axioms are
again split among the nodes of the group. Nodes of Group11, Group12, Group32
produce results which are collected by a single node. We use a set of key-value
pairs to represent the axioms and the sets U [X], R[r] that are distributed over
the cluster. Figure 1 also shows the dependency among the completion rules i.e.,
the axioms that are to be processed in the next iteration are determined by the
updates done by other nodes. For example, the axioms that will be considered
in rule R2 in the next iteration will depend on the output from rules R1-1, R1-2
and R3-2. This is explained further in the optimization section.

20

Algorithm 2 Pseudocode for rule R1-1
K ← 0
for all axioms of the form A v B do

K ← K + (U [B] ∪= U [A]) //add U[A] to U[B]
end for
return K

Algorithm 3 Pseudocode for rule R1-2
K ← 0
for all axioms of the form A1 u · · · uAn v B do

K ← K + (U [B] ∪= U [A1] ∩ · · · ∩ U [An])
end for
return K

Algorithm 4 RolePairHelper({r, X}, B)

K ← Send triplet ({r, B}, X) to Group32 //send to D1

if there exists s such that r v s then
K ← Send ({r, X}, B) to Group4 //send to D1

end if
if there exist s and t such that r ◦ s v t then

K ← Send ({r, B}, X) to Group5 //send to D0

end if
if there exist s and t such that s ◦ r v t then

K ← Send ({s, X}, B) to Group5 //send to D1

end if
return K

Key-Value Store Redis4 is an open source, high performance key-value store
implementation. It provides several data structures like sets, sorted sets, hash,
lists. It also supports atomic operations and server-side Lua5 scripting along with
client-side sharding. All these features are used in our implementation. Redis
runs on each node of the cluster holding the axioms, R[r] and U [X] values.

We use a Java client named Jedis6 to interact with Redis.

Pseudocode for completion rules Pseudocode for some rules use a notation
such as D0, D1. They denote databases of Redis. Each Redis instance can have
several databases associated with it. If not mentioned specifically then all the
data goes into database-0 (or D0). Pseudocode for all the rules captures the total
number of updates made and returns this number.

The pseudocode of R1-1 is given in Algorithm 2. The operator ∪= per-
forms the set union and returns the number of elements that were added to
the destination set – the latter is needed for termination checking, discussed

4 http://redis.io
5 http://www.lua.org
6 https://github.com/xetorthio/jedis

21

Algorithm 5 Pseudocode for rule R2
K ← 0
for all axioms of the form A v ∃r.B do

for all X ∈ U [A] do
K ← K + RolePairHelper({r, X}, B)

end for
end for
return K

Algorithm 6 Pseudocode for rule R3-1
K ← 0
for all r, A, B in axioms of the form ∃r.A v B do

for all Y ∈ U [A] do
K ← K + (Send axiom ∃r.Y v B to Group32)

end for
end for
return K

Algorithm 7 Pseudocode for rule R3-2
K ← 0
for all axioms of the form ∃r.Y v B received from R3-1 do

Tr := {X | ({r, Y }, X) ∈ D1}; //received from RolePairHelper
K ← K + (U [B] ∪= Tr)

end for
return K

Algorithm 8 Pseudocode for rule R4
K ← 0
T3 := set of triplets received from RolePairHelper();
Tr := {r | ({r,X}, Y) ∈ T3};
for all r ∈ Tr do

for all roles s such that r v s is an axiom do
K ← K + RolePairHelper({s, X}, Y)

end for
end for
return K

below. All U [X] are stored on the result node. So ∪= also implicitly involves
contacting the result node for read (U [A]) and write (U [X]) operations.

The pseudocode of R1-2 is given in Algorithm 3. As mentioned below, it suf-
fices to find the intersection of all U [A] involved in the conjuncts, i.e., A1 . . . An.

Expanding on these two rules, let us briefly come back to an issue mentioned
earlier, namely why we chose to use U [X] instead of S[X] for our implementation.

Let O be an ontology and let K u L uM v N ∈ O. Furthermore, assume
that there are five concepts in the ontology, K,L,M,N and P . During some
iteration of the classification assume S(K) = {K,L,N,>}, S(L) = {L,P,M,>},

22

Algorithm 9 Pseudocode for rule R5
K ← 0
T0 := set of triplets received from RolePairHelper(); //in D0

for all ({r, Y }, X) ∈ T0 do
Tr := {r | ({r, Y }, Z) ∈ D1};
for all t ∈ axioms r ◦ s v t do

K ← K + RolePairHelper({t, X}, Z)
end for

end for
return K

S(M) = {M,N,K,>}, S(N) = {N,>}, and S(P) = {P,K,L,M,>}. Now,
according to rule R1-2, we have to check for the presence of K,L and M in each
of the five S(X), where X = K,L,M,N, P . Since only S(P) has K,L,M , we
have to add N to S(P).

On the other hand, use instead U [K] = {K,M,P}, U [L] = {L,K,P},
U [M] = {M,L, P}, U [N] = {N,K,M,P}, U [P] = {P,L}. In this case, instead
of checking all U [X], we can compute the intersection of U [K], U [L], U [M],
which is P . So, P v N which means U [N] ∪= {P}. In large ontologies, the
number of concepts would be in the millions or more, but the number of con-
juncts in axioms like A1 u · · · u An v B would be very less in number. So the
performance is better by using U [X] since set intersection needs to be performed
only on a very small number of sets in this case.

Rules R2, R4 and R5 deal with R[r] values. RolePairHelper, with pseudocode
given in Algorithm 4, provides functionality that is common to these three rules.
The R-data, R[.], is an associative array indexed by roles. RolePairHelper({role
r, concept X}, concept B) is invoked in rules R2, R4 and R5. RolePairHelper() in-
forms all nodes (namely Group32, Group4 and Group5) of these updates. Group4
does not care to know the updates to R[r] unless role r has a super role s, that
is for some s, r v s. Similarly, Group5 does not care to know of these updates
unless there exist roles s and t such that r ◦ s v t. Note that the R[.] across all
the nodes will, in general, not be the same because of these selective updates.
Note also that replicating R[.] across all nodes causes no semantic harm. This
is done to facilitate local reads of R-data on nodes dealing with role axioms,
i.e., Group32, Group4 and Group5. The Send primitive in Algorithms 4 and 6,
returns 0 if the message sent is duplicate, or 1 otherwise.

Nodes handling rule R2, i.e., Group2, do not make use of R[r] values. So
they do not need to be stored locally on Group2 nodes as shown in Algorithm 5.
Rules R2, R4 and R5 potentially add new entries to the R-data, and every such
update implies a triggering of rules R3-2, R4, and R5. RolePairHelper({r, X},
B) broadcasts such updates.

The pseudocode for rule R3-1 is given in Algorithm 6. Here, newly formed
axioms do not need to be sent to all the nodes in Group32 but can be sent to
only a specific node. For the sake of clarity, this is not shown in the pseudocode
and is explained in the section on optimizations.

23

Algorithm 10 Modeling of One Iteration, OIPi(D)

K ← apply rule Ri using (D)
if K == 0 then

return true
else

return false
end if

Algorithm 11 Modeling of a Process, Pi

repeat
isNew← OIPi(D)
broadcast isNew to all Pj

receive tj from all Pj

t← t1 ∨ t2 ∨ ... ∨ tj
until ¬t

The pseudocode for rule R3-2 is given in Algorithm 7. Here, database-1 (D1)
is queried with key {r, Y } and Tr holds all such X.

Regarding R4, in Algorithm 8, T3 receives only such triples whose r partici-
pates in an axiom of the form r v s. Tr is formed for each r found in T3.

Concerning R5, in Algorithm 9, using the key {r, Y }, the database D1 is
queried and the results are referenced by Tr. All axioms of the form r ◦ s v t
in which r participates in, are retrieved. Note, that the value of s does not
matter, since it is already taken care of in RolePairHelper. The following example
illustrates how Algorithms 4 and 9 are connected. Let k,m and n be roles, where
k ◦m v n, (X,Y) ∈ R(k), (Y,Z) ∈ R(m). RolePairHelper({k, X}, Y) sends ({k,
Y}, X) to D0 of Group5. RolePairHelper({m, Y}, Z) sends ({k, Y}, Z) to D1 of
Group5. In Algorithm 9, Tk contains ({k, Y}, X). D1 is queried with {k, Y} as
the key and ({n, X}, Z) is produced. n is obtained from the Rolechain axiom.

Termination One iteration of the process, OIP, is modeled by the pseudocode
shown in Algorithm 10. Each OIP reads and writes to a Redis instance D
(database).

The appropriate pseudocode for rule Ri is processed and the return value
is collected in K, which holds the number of updates made. Depending on the
value of K, either true or false is returned.

Each process Pi performs the computations in Algorithm 11. The receive()
is a blocking operation; i.e., until a message is received, the calling process (Pi)
does not proceed to the next state. However, even though the pseudocode does
not show it, we assume that the messages from Pj can be received in any order.

On each node, Ni, the process Pi processes all the axioms local to it and
keeps track of whether this resulted in any changes (isNew) to either its local
Redis database or to the one on other nodes. This boolean value is broadcast
to all the processes. When all the isNew messages are received, each process on
all the nodes knows whether any of the other process made some updates or

24

not. If at least one process makes an update then all the processes continue with
the next iteration. If none of the processes makes an update then all processes
terminate.

All the nodes in the cluster keep processing the axioms over several iterations
until no new output is generated by any of the nodes. In sequential computation,
this is fairly easy to check, but in a distributed system, all the nodes should be
coordinated in order to check whether any of them have produced a new output.

The coordination among the processes on all nodes is achieved by message
passing. Process Pi on each node is associated with a channel Ci. At the end of
each iteration, Pi broadcasts its status message to channels on all the nodes. It
then does a blocking wait until it receives messages from all the processes on its
channel. This is generally known as barrier synchronization.7 If all the messages
that Pi receives are false, i.e., none of the processes made an update to any of
the key-value pairs, then Pi terminates.

Optimizations The following optimizations were put in place to speed up the
processing of rules.

1. All the concepts and roles in the ontology are assigned numerical identifiers.
This saves space and is easier to process.

2. If X v A, normally this would be stored in a set whose key would be X and
value would be A. But we reverse it, and make A the key and X its value.
This makes the check A ∈ S(X), a single read call. This check is required in
rules R1-1, R1-2, R2 and R3-1.

3. As shown in Figure 1, the output of a rule can affect the processing of
another rule. For example, rule R2 works on axioms of the form A v ∃r.B.
R2 then depends on the rules which affect A, which are R1-1, R1-2 and R3-2.
If R1-1, R1-2 and R3-2 do not make any changes to U [A], then the axiom
A v ∃r.B need not be considered in the next iteration. We keep track of
these dependencies and thereby reduce the number of axioms to work on in
subsequent iterations.

4. Extending on the optimization just mentioned, if there is a change in U [A],
then not all elements of U [A] need to be considered again. In fact, we need to
consider only the newly added elements. This can be achieved by assigning
scores to each element in the set U [A]. A node working on rule R2 and axiom
A v ∃r.B keeps track of the scores of elements in U [A], i.e., up to what it
has read in the previous iteration, and only considers elements whose scores
are greater than that.

5. In the pseudocode of Algorithm 6 and Algorithm 4, it is shown that the
newly formed axiom and the triple is sent to all the nodes of a particular
group. Instead, they can only be sent to a particular node in the group, and
this node is selected based on the key. For the same key within the same
group, however, we can ensure that always the same node gets selected. This
reduces duplication of data.

7 http://en.wikipedia.org/wiki/Barrier_(computer_science)

25

Ontology #Logical Axioms #Concepts #Roles

Not-Galen 8,015 4,242 413
GO 28,897 20,465 1
NCI 46,870 27,653 70
SNOMED 1,038,481 433,106 62
SNOMED-DUP-2 2,076,962 866,212 124
SNOMED-DUP-3 3,115,443 1,299,318 186
SNOMED-GALEN-GO 1,075,393 456,319 476

Table 2. Sizes of (normalized) ontologies we used

4 Evaluation

To evaluate our implementation, we made use of the seven ontologies that
are listed in Table 2. The numbers in Table 2 are obtained after normaliz-
ing the ontologies. The first three ontologies have been obtained from http:

//lat.inf.tu-dresden.de/~meng/toyont.html. SNOMED is from http://

www.ihtsdo.org/snomed-ct. SNOMED-DUP-2 and SNOMED-DUP-3 are on-
tologies with axioms from SNOMED, but each axiom replicated twice and thrice,
respectively, while concept and role names are systematically renamed for each
copy. SNOMED-GALEN-GO is a merge of the three ontologies, SNOMED, Not-
Galen and GO, which was obtained synthetically as follows: Upon normalization
of each of these ontologies, new class names and role names were created which
were assigned to a local namespace. However, class names and role names intro-
duced in the normalization are shared between the ontologies. We thus obtain a
merged ontology which, albeit the merge is synthetic, retains some of the real-life
character of each of these ontologies.

DistEL is implemented in Java and makes use of Redis for storage. Our cluster
consists of 13 Linux nodes, but our implementation scales to larger clusters. Each
node has two quad-core AMD Opteron 2300MHz processors with 16GB RAM.
DistEL treats a Redis instance as a node, so in order to show the scalability
aspect of our implementation, we ran 2-3 Redis instances on a single node.
This allowed us to effectively run tests for more than 13 nodes on the cluster.
Since each node has 8 cores, and data on an instance of Redis generally doesn’t
go beyond 5GB (for our experiments), running 2-3 Redis instances does not
adversely affect the evaluation.

Table 3 has the classification time of ontologies when run on Pellet (version
2.3.0), jCEL (0.18.2) and ELK (version 0.3.2). Heap space given to run all the
ontologies is 12GB. Timeout limit given was 2 hours. All the reasoners are in-
voked through the OWL API. Time taken by the OWL API to load the ontology
is not taken into consideration. Note that SNOMED-GALEN-GO could not be
processed by any of the state-of-the-art systems. This is remarkable because the

26

Ontology Pellet jCEL ELK

Not-Galen 12.0 3.0 1.0
GO 5.0 5.0 2.0
NCI 6.0 7.0 3.0
SNOMED 1,845.0 327.0 24.0
SNOMED-DUP-2 OutOfMemory 687.0 64.0
SNOMED-DUP-3 OutOfMemory 1149.0 93.0
SNOMED-GALEN-GO OutOfMemory TIME OUT TIME OUT

Table 3. Classification time of ontologies using Pellet, jCEL and ELK

Ontology 7 nodes 9 nodes 12 nodes 15 nodes 18 nodes

Not-Galen 6.76 6.44 6.67 6.67 7.09
GO 11.58 11.65 11.74 12.59 12.51
NCI 21.13 21.57 21.53 22.15 22.80

SNOMED 382.77 385.09 392.09 398.07 393.57
SNOMED-DUP-2 774.34 767.85 787.10 798.58 826.50
SNOMED-DUP-3 2,160.00 2,160.00 2,113.57 2,194.80 2,233.12

SNOMED-GALEN-GO — — — — 411.72

Ontology 21 nodes 25 nodes 28 nodes 32 nodes

Not-Galen 6.78 6.83 6.74 6.77
GO 12.30 12.46 12.87 12.93
NCI 22.53 22.63 22.66 22.15

SNOMED 396.66 405.94 410.07 412.39
SNOMED-DUP-2 803.43 805.81 828.55 828.78
SNOMED-DUP-3 2,177.13 2315.19 2163.17 2257.94

SNOMED-GALEN-GO 416.99 418.99 419.58 428.43
Table 4. Load times (in seconds) of DistEL

ontology is hardly larger than SNOMED itself.8 In fact, it shows that realis-
tic handcrafted ontologies of a size which cannot be handled by state-of-the-art
reasoners are not far out of reach.

Pre-processing times (in seconds) for the ontologies on DistEL are given in
Table 4. Pre-processing includes the time taken by the OWL API9 to load the
ontology in-memory and the time taken to insert the axioms into the nodes
of the cluster, and it is approximately constant with respect to the number of
nodes. Time taken by SNOMED-GALEN-GO is not mentioned for 7, 9, 12 and
15 nodes because the classification time on these nodes times out.

Table 5 shows the classification times of DistEL with varying numbers of
nodes, and a corresponding visualization is given in Figure 2. For the larger
ontologies, i.e., SNOMED and larger, we see a steady decrease of classification
time with increasing number of nodes used. Note that, for the larger ontologies,

8 We are not entirely certain yet what causes this explosion. Our guess is that it is
caused by the large number of role chains in Galen, together with the sheer size of
SNOMED.

9 http://owlapi.sourceforge.net

27

Ontology 7 nodes 9 nodes 12 nodes 15 nodes 18 nodes

Not-Galen 43 42.27 41.06 39.12 36.70
GO 46.20 49.39 51.83 52.44 53.62
NCI 275 168.96 157.36 156.45 156.82

SNOMED 1,610.00 1,355.81 865.89 886.44 613.53
SNOMED-DUP-2 3,238.19 2,687.75 1,699.73 1,765.31 1,255.87
SNOMED-DUP-3 4,880.78 4,052.00 2,570.29 2,644.40 1,825.51

SNOMED-GALEN-GO TIME OUT TIME OUT TIME OUT TIME OUT 1,336.28

Ontology 21 nodes 25 nodes 28 nodes 32 nodes

Not-Galen 37.51 36.69 36.11 35.09
GO 51.89 56.76 39.70 50.80
NCI 155.19 154.75 161.41 160.12

SNOMED 529.30 441.74 442.81 383.01
SNOMED-DUP-2 1,064.44 887.19 893.96 755.38
SNOMED-DUP-3 1,571.43 1278.62 1286.50 1146.71

SNOMED-GALEN-GO 1,241.96 702.02 693.51 618.18
Table 5. Classification time (in seconds) of DistEL

the effect of parallelization is very good indeed. E.g., using twice the number of
nodes almost halves the runtime in most cases – so the effect of the parallelization
is indeed near optimal.

As expected, for the smaller ontologies, the parallelization does not have
much effect as soon as a certain threshold is reached. We see, however, that
even when using many more nodes than necessary to reach optimal runtime, we
do not get a significant amount of additional time lost due to communication
overhead.

After having retrieved the runtime figures just discussed, we noticed that
some of the measured times for 15 nodes were in fact higher than those of 12
nodes, and a similar effect showed for 28 versus 25 nodes. When additional
nodes are added to the cluster, they should ideally be assigned to the slowest
processing nodes. But if this is not the case, then we do not see any noticeable
improvement in performance. On the contrary, there is a possibility of reduction
in performance because of additional communication overhead. Since we are
currently assigning nodes by intuition and rule-of-thumb, we have to expect to
get such performance drops sometimes.

To further check on this effect, we repeated the run of SNOMED on 15 nodes
using a different assignment of nodes to rules, and it resulted in a classification
time of 606.05 seconds, which is a significant improvement compared to the
timing obtained by the node assignment in Table 5. In fact, it is better than
using 18 nodes in the previous assignment. This shows that our manual rule-of-
thumb assignments are likely not optimal, and that, in fact, a signifcantly better
performance should be achievable by automating the node assignment, or by
using methods for dynamic load balancing. However, in this paper we only want
to show that significant parallelization can be achieved, and do not yet focus on
a most efficient implementation. This is left for future work.

28

Fig. 2. Visualization of number of nodes vs runtimes

Correctness of the results produced by DistEL is verified by comparing the
output with that of ELK, in the cases where ELK does not time out.

There is a significant difference in performance between our distributed im-
plementation and ELK. One of the primary reasons for this difference is that
our implementation requires cross-node communication (key-value pairs are sent
across the nodes) and among the nodes. On the other hand, our architecture can
be extended by adding more nodes, and thus can scale up to datasets which ELK
cannot handle, such as SNOMED-GALEN-GO.

We list some further insights which we gained from our implementation and
system.

1. For our manual assignment of nodes to rules, it is very important to figure
out the slowest processing nodes in the cluster, so that, if additional nodes
are available, it would be easy to determine, to which group these new nodes
should be assigned to.

29

2. The majority of the time is in fact spent on reading and writing to local as
well as remote databases. Design choices and architecture should be formu-
lated in such a way so as to reduce cross-node communication.

3. We cannot estimate the runtime or node assignment to rules just by counting
the number of axioms. Some axioms are harder to process than others al-
though their number might be less. A case in point is SNOMED-GALEN-GO
compared with SNOMED-DUP-3.

5 Limitations and Future Work

Some of the limitations and planned next steps are presented below.

1. Compared to other popular distributed frameworks like Hadoop,10 our ar-
chitecture does not currently provide support for fault tolerance.

2. Axioms are distributed across the cluster by type rather than load. This
leads to improper load balancing. To improve load balancing we plan to
implement work stealing so that the idle nodes can work on axioms from
other nodes.

3. Completion rules are assigned to nodes manually, for now. This could be
done automatically by considering ontology statistics such as the number of
role axioms and subclass axioms, or other measures.

4. The OWL API is used to read the axioms from an ontology, and by design
it loads the entire ontology into memory. With the size of ontologies that we
hope to deal with using our work, this becomes a bottleneck. Going forward,
we plan to use a streaming API for XML11 to read the axioms.

5. We plan to extend our work to include ABox reasoning [11] where there is
a greater scope of getting large ontologies and our distributed system could
be put to test.

6. We also intend to use multicore threading to take advantage of the number
of cores in modern machines.

7. Another possible line of future work is to apply our distributed approach
to other EL+classification algorithms such as the materialization procedure
used by ELK.

6 Related Work

Most of the distributed reasoning approaches in the literature are focussed on
RDFS inference but there are a few that deal with a fragment of OWL, namely
OWL Horst. In [17], Urbani et al., use MapReduce for reasoning over OWL
Horst. They look to carry over their work from distributed reasoning over RDFS
to OWL Horst, which was possible only to a certain extent. Soma et al., [15]
investigate partitioning approaches for parallel inferencing in OWL Horst. Al-
though not distributed, a backward chaining approach [16] is used to scale up

10 http://hadoop.apache.org
11 http://en.wikipedia.org/wiki/StAX

30

to a billion triples in the OWL Horst fragment. A distributed approach to fuzzy
OWL Horst reasoning has also been investigated in [8].

Distributed resolution techniques were used by Stuckenschmidt et al., to
achieve scalability of various OWL fragments such as ALC [12] and ALCHIQ
[13]. There have been attempts at achieving distributed reasoning on the EL+pro-
file in [10] and [14], but they do not provide any evaluation results. Distribution
of OWL EL ontologies over a peer-to-peer network and algorithms based on
distributed hash table have been attempted in [2], but again, no evaluation
results are provided. Reasoning over Fuzzy-EL+ ontologies using MapReduce
[18] has also been attempted but implementation and experiment details are not
provided.

We have tried several distributed approaches for EL+ontology classification,
some of which have been unsuccessful. Here, we presented an approach which
gave encouraging results due to increase in the number of axioms that are pro-
cessed locally and decrease in the cross-node communication, when compared to
our previous approaches [9]. Our earlier approaches include use of MapReduce
(involved many redundant computations) and distributed queue (distribution of
CEL’s queue approach). The latter approach involves a lot of cross-node com-
munication.

7 Conclusions

With ever increasing data generation rates, large ontologies challenge reasoners
from the perspective of memory and computation power. In such scenarios, dis-
tributed reasoners offer a viable solution. We presented our distributed approach
to EL+ ontology classification, called DistEL, where we show that our classifier
can handle large ontologies and the classification time decreases with the in-
crease in nodes. The results are encouraging, and we plan to go ahead with
adding ABox reasoning support to our work as well as explore other possible
distributed classification approaches.

Acknowledgements. We would like to thank members of the Redis mailing
list redis-db@googlegroups.com for their helpful suggestions. This work was
supported by the National Science Foundation under award 1017225 ”III: Small:
TROn – Tractable Reasoning with Ontologies.” Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.

References

1. Baader, F., Lutz, C., Suntisrivaraporn, B.: Is Tractable Reasoning in Extensions
of the Description Logic EL Useful in Practice? In: Proceedings of the 2005 Inter-
national Workshop on Methods for Modalities (M4M-05) (2005)

2. Battista, A.D.L., Dumontier, M.: A Platform for Reasoning with OWL-EL Knowl-
edge Bases in a Peer-to-Peer Environment. In: Proceedings of the 5th International
Workshop on OWL: Experiences and Directions, Chantilly, VA, United States, Oc-
tober 23-24 2009. CEUR Workshop Proceedings, vol. 529. CEUR-WS.org (2009)

31

3. Dentler, K., Cornet, R., ten Teije, A., de Keizer, N.: Comparison of Reasoners for
large Ontologies in the OWL 2 EL Profile. Semantic Web 2(2), 71–87 (2011)

4. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.):
OWL 2 Web Ontology Language: Primer. W3C Recommendation (27 October
2009), available from http://www.w3.org/TR/owl2-primer/

5. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2009)

6. Kazakov, Y., Krötzsch, M., Simancik, F.: Concurrent Classification of EL Ontolo-
gies. In: 10th International Semantic Web Conference, Bonn, Germany, October
23-27. Lecture Notes in Computer Science, vol. 7031, pp. 305–320. Springer (2011)

7. Lécué, F., Schumann, A., Sbodio, M.L.: Applying Semantic Web Technologies for
Diagnosing Road Traffic Congestions. In: International Semantic Web Conference
(2). Lecture Notes in Computer Science, vol. 7650, pp. 114–130. Springer (2012)

8. Liu, C., Qi, G., Wang, H., Yu, Y.: Large Scale Fuzzy pD* Reasoning Using MapRe-
duce. In: 10th International Semantic Web Conference, Bonn, Germany, October
23-27. Lecture Notes in Computer Science, vol. 7031, pp. 405–420. Springer (2011)

9. Mutharaju, R.: Very Large Scale OWL Reasoning through Distributed Computa-
tion. In: International Semantic Web Conference (2). Lecture Notes in Computer
Science, vol. 7650, pp. 407–414. Springer (2012)

10. Mutharaju, R., Maier, F., Hitzler, P.: A MapReduce Algorithm for EL+. In: Pro-
ceedings of the 23rd International Workshop on Description Logics (DL 2010),
Waterloo, Ontario, Canada, May 4-7, 2010. CEUR Workshop Proceedings, vol.
573. CEUR-WS.org (2010)

11. Ren, Y., Pan, J.Z., Lee, K.: Parallel ABox reasoning of EL ontologies. In: Proceed-
ings of the 2011 Joint International Conference on the Semantic Web. pp. 17–32.
JIST’11, Springer, Heidelberg (2012)

12. Schlicht, A., Stuckenschmidt, H.: Distributed Resolution for ALC. In: Proceedings
of the 21st International Workshop on Description Logics (DL2008), Dresden, Ger-
many, May 13-16. CEUR Workshop Proceedings, vol. 353. CEUR-WS.org (2008)

13. Schlicht, A., Stuckenschmidt, H.: Distributed Resolution for Expressive Ontology
Networks. In: Proceedings of the Third International Conference on Web Reasoning
and Rule Systems, RR 2009, Chantilly, VA, USA, October 25-26, 2009. Lecture
Notes in Computer Science, vol. 5837, pp. 87–101. Springer (2009)

14. Schlicht, A., Stuckenschmidt, H.: MapResolve. In: Web Reasoning and Rule Sys-
tems – 5th International Conference, RR 2011, Galway, Ireland, August 29-30,
2011. Lecture Notes in Computer Science, vol. 6902, pp. 294–299. Springer (2011)

15. Soma, R., Prasanna, V.K.: Parallel Inferencing for OWL Knowledge Bases. In:
2008 International Conference on Parallel Processing, ICPP 2008, September 8-12,
2008, Portland, Oregon, USA. pp. 75–82. IEEE Computer Society (2008)

16. Urbani, J., van Harmelen, F., Schlobach, S., Bal, H.E.: QueryPIE: Backward Rea-
soning for OWL Horst over Very Large Knowledge Bases. In: 10th International
Semantic Web Conference, Bonn, Germany, October 23-27, 2011. Lecture Notes in
Computer Science, vol. 7031, pp. 730–745. Springer (2011)

17. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.E.: OWL Reasoning
with WebPIE: Calculating the Closure of 100 Billion Triples. In: Proceedings of
the 8th Extended Semantic Web Conference (ESWC2010), Heraklion, Greece, May
30–June 3, 2010. Springer (2010)

18. Zhou, Z., Qi, G., Liu, C., Hitzler, P., Mutharaju, R.: Reasoning with Fuzzy-EL+
Ontologies Using MapReduce. In: Proceedings of the 20th European Conference
on Artificial Intelligence (ECAI 2012). Frontiers in Artificial Intelligence and Ap-
plications, vol. 242, pp. 933–934. IOS Press (2012)

32

Rule-based Reasoning on Massively Parallel
Hardware

Martin Peters1, Christopher Brink1, Sabine Sachweh1, and Albert Zündorf2

1 University of Applied Sciences Dortmund, Germany,
Department of Computer Science

{martin.peters ‖ christopher.brink ‖ sabine.sachweh}@fh-dortmund.de
2 University of Kassel, Germany, Software Engineering Research Group,

Department of Computer Science and Electrical Engineering
zuendorf@cs.uni-kassel.de

Abstract. In order to enable the semantic web as well as other time
critical semantic applications, scaleable reasoning mechanisms are indis-
pensable. To address this issue, in this paper we propose a rule-based
reasoning algorithm which explores the highly parallel hardware of mod-
ern processors. In contrast to other approaches of parallel reasoning, our
algorithm works with rules that can be defined depending on the applica-
tion scenario and thus is able to apply different semantics. Furthermore
we show how vector-based operations can be used to implement a perfor-
mant match algorithm. We evaluate our approach by applying the ρdf,
RDFS and pD* rule sets to different data sets and compare our results
with other recent work. The evaluation shows that our approach is up
to 9 times faster depending on the rule set and the used ontology and is
able for example to apply the ρdf rules to an ontology with 2.2 million
triples (and 1.3 million inferred triples) in less than 6 seconds.

Keywords: rule-based reasoning, GPU, parallel reasoning, Rete algo-
rithm

1 Introduction

The use of ontologies is widely spread whether they are used in scientific ap-
plications or to enable the semantic web. One key characteristic of ontologies
is the possibility to reason about the given data and to create new knowledge
by inferring facts that are implicitly given by the ontology. Depending on the
size and the structure of the data, the reasoning process may be very resource
consuming, especially with regard to the continuously growing amount of data
of the semantic web. On the other side, applications using ontologies for example
in the field of ambient assisted living [1] [2] or smart spaces [3] [4] [5] may be
time critical and need to process incoming data very fast.

Different approaches exist to speedup the reasoning process and to provide
scalable solutions for different levels of expressivity, varying from improvements
on the reasoning process itself to distributed reasoning over clusters of compu-
tational units. Especially the number of approaches using parallel structures has

increased in the past few years. The ELK reasoner [6] for example takes advan-
tage of multi-core and multi-processor systems of modern computers to perform
OWL EL3 reasoning. Other approaches rely on a distributed cluster and use the
MapReduce framework to perform RDFS and pD* (also know as OWL Horst)
[7] reasoning on RDF graphs with millions of triples [8] [9].

While these approaches perform very well for a predefined set of rules that
define the strength of the semantics and thus the expressivity of the resulting
ontology, the use of a cluster of machines for computation may not always be
desirable due to the high costs. In addition the predefined set of rules that is
implemented may not always be exactly what is needed for a specific application.
In this paper we present an approach which uses the massively parallel hard-
ware of a modern graphic processor unit (GPU) to apply a set of freely defined
rules to an RDF-based ontology. While a single core of a GPU has not as much
computation power like on a CPU, a GPU provides much more processors that
are able to perform simple computation tasks in parallel. Thus it makes sense to
exploit this highly parallel hardware and to break down the complex workload
into fine grained tasks for parallelisation. Our approach uses an adapted version
of the Rete algorithm [10] and thus implements a forward chaining rule engine,
which is able for example to materialise the complete finite RDFS closure as well
as to apply the pD* rules in a scaleable manner on a single machine. Also this
approach is more flexible than most other reasoners, because it is not dedicated
to a predefined semantic, we achieve a very high performance due to the paral-
lelisation of the time consuming steps. In addition our approach is not required
to be executed on a GPU, but also can be executed on a multicore CPU.

The main contribution of this paper will be to show how the Rete algorithm
can be used to reason on ontologies in a highly parallel manner. The use of a
rule-engine-based approach allows us to provide a reasoner that is not dedicated
to one predefined semantic nor to a specified rule order, and thus can be used for
different rule sets of various complexity and semantics. We are also going to in-
troduce a concept for an efficient vector-based match algorithm which is one key
factor for the performance of our reasoner, called AMR (act-mobile reasoner).
In the next section we are starting with taking a deeper look on the related work
on high performance and parallel reasoning. In section 3 we describe the Rete
algorithm and show, how it can be used for parallel inferencing on parallel pro-
cessors. We will also provide more details on the OpenCL4 programming model
and show how this has an impact to our approach. To evaluate our concept we
use different rule sets applied to some well known ontologies of different sizes.
Finally we are going to discuss our results and give a conclusion.

3 http://www.w3.org/2007/OWL/wiki/EL
4 OpenCL: open standard for parallel programming of heterogeneous systems,

http://www.khronos.org/opencl/

34

2 Related Work

Particularly with regard to large ontologies of hundreds of millions of triples
recently the use of clusters for applying finite rules like for RDFS or OWL Horst
semantics were a focus of interest in the research community. In [9] and [8]
the authors presented WebPie, an inference engine based on the open-source
MapReduce implementation Hadoop, which is able to compute RDFS as well as
the pD* semantics on data sets containing billions of triples. The parallelisation is
achieved by encoding the necessary rules as a set of Map and Reduce operations
which are executed in a given order while the distribution of the workload is
handled by Hadoop. Other papers propose similar approaches also based on
MapReduce differing in the implemented semantics like OWL 2 EL [11] or Fuzzy
pD [12]. Another approach relying on multiple computing machines is presented
in [13], where a divide-conquer-swap strategy is applied. The input data is stored
on a shared location and divided into smaller chunks which are processed by a
grid of compute nodes. The results are exchanged between those nodes for further
processing. Just like the previous mentioned approaches, the strategy relies on
a predefined semantic. Another strategy for parallel reasoning is presented in
[14] where the input data is also partitioned and processes running on a cluster
computing the finite RDF schema closure for each partition.

Besides the use of a cluster to increase the scaleability, other approaches try
to take advantage of the parallel structures of a single machine like available
through modern multicore CPUs and GPUs. [15] and [16] for example propose
an approach for concurrent classification (TBox) and parallel ABox reasoning for
OWL 2 EL. Another interesting reasoning mechanism is presented in [17], where
the ρdf vocabulary, which represents a subset of the RDFS rules, is encoded to
be applied highly parallel on the graphic processor. While this approach does
not only consider ABox or TBox information of an ontology and shows great
performance, it still relies on a pre-defined semantic. Nevertheless, this work is
most related to our work and will be used for evaluation in section 4.

As outlined by the discussed approaches, many scaleable solutions exists for
reasoning on a cluster as well as on a single machine which support different
semantics. Nevertheless, as far as we know, there is no scaleable solution using
parallel inferencing for a general purpose reasoning process, where the semantic
can be defined by the application in terms of simple rules, irrespective of whether
these semantics are based on a RDFS or OWL profile or include application
specific rules.

3 Parallelising Rule Execution

3.1 OpenCL programming model

OpenCL is a heterogeneous programming framework that allows to develop ap-
plications that execute across a range of device types and supports a wide range
of parallelism. While the device refers to the typically parallel processors like a
multicore CPU or a GPU, the host can be seen as the outer control logic that

35

prepares the execution of logic on the device. The logic executed on the device
is called kernel and thus is that part of an OpenCL program, that typically is
executed in parallel. To parallelise an application, the workload needs to be par-
titioned into small chunks where each chunk can be computed by the same code
in parallel. Each chunk is handled by a work-item which runs in its own thread
and has a unique global identifier which can be used to identify that part of the
input data, that shall be processed by a work-item. In addition, work-items are
grouped into work-groups which have a limited size but can share local mem-
ory which can be accessed much faster than global memory. Nevertheless, local
memory is very limited such that it needs to be used wisely. To achieve a high
performance it is important to have a kernel with as less control structures that
might be evaluated by two work-items in a different way as possible, because
this would lead to idling threads during the parallel execution.

3.2 The Rete algorithm

What distinguishes the AMR reasoner from the aforementioned parallel reason-
ers is that we do not know which rules shall be applied to an ontology and
thus can not provide dedicated methods that each implement one rule. Thus,
we have to implement a generic rule engine which is able to handle ontological
data. One widely used algorithm for this complex task was provided by Charles
L. Forgy [10], the Rete Match algorithm, which is able to find all the objects
matching a given pattern. The Rete algorithm builds a network of nodes where
each node corresponds to a pattern occurring on the left hand side (LHS) of a
rule (that part, that defines the match conditions). Thus, each pattern on the
LHS corresponds to a match condition such as (?p rdfs:domain ?c). For each
single pattern an alpha node is created, while more than one pattern on the LHS
in addition leads to at least one beta node. Thus, a beta node always has more
than one pattern. For each node a list of matching objects is stored which is
created by propagating the working memory and thus the input data through
the network.

Considering the following rules from the RDFS semantic:

(?x ?p ?y)→ (?p rdf:type rdf:Property) (R1)

(?x ?p ?y) (?p rdfs:domain ?c)→ (?x rdf:type ?c) (R2)

The Rete algorithm would create one alpha node from the left hand side of the
first rule R1, and one more alpha node for the second pattern of the second rule
R2. Because the first pattern of R2 is equal to the pattern of R1, both rules
would share one node. Because R2 consists of two patterns, in addition one beta
node would be created connecting the two other alpha nodes. Further considering
the following working memory from a simple university example, which contains
three triples consisting of a subject, predicate and object (s, p, o):

Bob uni:publishes Paper1 (WM1)

36

Alice uni:publishes Paper2 (WM2)

uni:publishes rdfs:domain Researcher (WM3)

The Rete network resulting by parsing R1 and R2 to alpha- and beta nodes and
propagating the working memory through the network can be seen in figure 1.

α1

WM1
WM2
WM3

WM3

WM1
WM2

WM3
WM3

α2

β1

Fig. 1: Rete network for rules R1 and R2 after the working memory has been
propagated

The Rete network in figure 1 has three nodes in total, while the final node
of R1 is α1 and the final node of R2 is β1. A final node always represents a
complete rule such that the results stored by that node can be used to fire the
corresponding rule. Thus, R1 would fire three times and produce two new triples
(and one duplicate) while R2 would fire two times and produce also two new
triples. The final working memory would be extended by the following triples:

uni:publishes rdf:type rdf:Property (WM4)

rdfs:domain rdf:type rdf:Property (WM5)

Bob rdf:type Researcher (WM6)

Alice rdf:type Researcher (WM7)

The new triples would also be propagated through the network until no new
triples are derived and the rule engine has finished his job (fixpoint iteration).

3.3 Definitions

As can be seen from the previous introduction, the Rete algorithm basically
performs three steps to apply rules to a working memory: an alpha-match, a
beta-match and the rule firing. Before continuing, we have to define some terms
that are used throughout this paper:

Definition 1. An alpha node specifies a node of the Rete network that directly
corresponds to one pattern of a rule. An alpha node always has exactly one
pattern that consists of three (pattern-)terms.

37

Definition 2. A beta node specifies a node of the Rete network that has exactly
two parents (p1 and p2). The parents in turn may be alpha- or beta nodes.
Depending on the position of a beta node in the network, it has a depth >= 1
that is calculated by the longest distance to an alpha node.

Definition 3. The pattern-width defines the number of terms of the pattern
of one node. Thus, an alpha node always has a pattern-width of 3. A beta node
whose parents are both alpha nodes has a pattern-width of 6 and so on.

Definition 4. The matches of a node are referred to as a set A. Accordingly
the number of matches is defined by |A|.

Definition 5. Match-conditions are created for each node and define a func-
tion C(m, ...) with m ∈ A, that evaluates to true if a triple or a set of triples (in
case of a beta node) conform to the pattern of that node.

3.4 Rete on Parallel Hardware

To parallelise the overall reasoning process, different strategies were proposed by
other approaches which essentially consists of data partitioning and rule parti-
tioning [18]. While data partitioning means the dividing of the data into smaller
units and the independent processing of each unit, the rule partitioning approach
applies only a subset of the overall rules to the complete data set. Both types
of parallelisation require a synchronisation of the results and especially the data
partitioning approach may produce duplicates. Nevertheless, these drawbacks
might be unavoidable in a cluster-based environment where each of the parallel
processes runs in an independent environment.

Using the parallel structures on a single computer, a parallelisation can take
place on a different level than rule or data partitioning. This is because in the
case of a single computer a synchronisation of interim results of the parallel
threads can be performed much more efficient by a single host application. Fur-
thermore, to achieve a high performance for example on a GPU it is important
to have lots of tasks that can be computed independently and where each task
consists only of a small workload. In order to take these considerations into
account, our approach parallelises the reasoning process on a deeper level. For
alpha-matching, one kernel is executed where for each triple that needs to be
considered a single thread (work-item) is created. This thread checks whether
the corresponding triple matches one or more of the alpha node patterns and
creates a list containing the matching nodes. Thus, each thread needs to iterate
over all of the alpha nodes. Finally the resulting list can simply be transformed
to create a match-list for each alpha node containing the matching triples. That
means that the number of threads that are executed in parallel is equal to the
number of triples available for processing.

Because of its complexity, the beta-match is handled in a different way. Just
like the rule partitioning approach it would not be desirable to simply execute one
thread for each beta node in parallel because of the low number of nodes and the
high computation load. On the other side the number of match-steps, that need

38

to be computed heavily rises with the number of matches of the parents of one
beta node. Considering the example from figure 1, for β1 only 3x1 possibilities
needed to be computed. If α1 and α2 both had ten matches, the number of
possible combinations would arise to 100. By taking this complexity as well as
the fact, that the GPU is able to handle millions of work-items in a very efficient
way, into account, it is a natural way to apply the parallelism for the beta-step
during this match-algorithm. That means, that for each match of one parent of
a beta node a work-item is created which iterates over all matches of the second
parent of the beta node. Thus, the number i of work-items is defined by:

Def : i = |Ap1|, with |Ap1| >= |Ap2| (1)

and the number of iterations j each work-item has to perform by:

Def : j = |Ap2|, with |Ap2| < |Ap1| (2)

Finally the match-algorithm for a beta node is defined as:

C(mi,mj), mi ∈ Ap1, mj ∈ Ap2 (3)

where mi denotes the parallelism and i corresponds to the rank of the thread.
By defining |Ap1| >= |Ap2| and |Ap2| < |Ap1| we ensure, that the number of
parallel threads is at least as high as the number of iterations each thread has
to perform, which can be computed more efficient on the GPU. Furthermore the
match-algorithm needs to be performed for Ap1 ×Ap2.

α1

WM1
...

WM2000

α2

β1

WM2001
...

WM2700

W
M
20
01

W
M

20
02

 ..
. W
M

26
99

W
M

27
00

work-load j

w
or

k-
ite

m
s i

WM1

WM2

...

WM1999

WM2000

Fig. 2: Parallelise the match process

Figure 2 shows an example where Aβ1 shall be computed. Because |Aα1| =
2000 and |Aα2| = 700 it follows that C(m1,m2) needs to be executed 1.4 million
times. To do this, 2000 work-items are created (from each match of α1) where
each work-item iterates over 700 matches (from α2) and validates C(m1,m2).
This task needs to be performed for each beta node, while the beta-match of
nodes of the same depth can also run in parallel.

39

3.5 Applying the OpenCL Programming Model

Programming parallel hardware with OpenCL imposes some restrictions. First
of all, strings can not be computed in an efficient way and thus are not suitable
for a fast match-algorithm. Thus, all triple terms s, p, and o are transformed
into integer values, where each term is mapped to one value. Non literal terms
are mapped only once such that there is only one index for each term, even if
it is used a multiple times within the ontology. Furthermore, the memory used
by a kernel needs to be allocated before kernel execution with the consequence,
that each alpha- and beta-step has to be performed twice. The first time, only
the number of matches is calculated (called match-count) while for the second
execution the number of matches is used to allocate the required memory for all
matches and thus the final results can be created. Finally, the overall reasoning
process consists of an alpha-count where the resulting triples of an alpha match
are calculated, an alpha-match, where the final results of the alpha-step are
created and an beta-count and beta-match for each depth (see definition 2 in
section 3.3). The last step is to fire the rules using the working memories of
the final nodes and to create new triples. Eventually the algorithm iterates over
the complete process until no new triples are derived (fixpoint). In addition the
beta-count processes as well as the beta-match processes can be executed at
the same time for all beta nodes of one depth (non blocking operations). This
allows an out-of-order execution where the GPU may define the order of given
commands to optimise the throughput and is the reason, why we first start all
beta-count and beta-match operations and read the result back in a following
loop.

3.6 Vector-based Matching

The most computation intensive task during the reasoning process is the beta-
matching. Thus it is essential to speed this task up and make the computation as
simple as possible. To achieve this, our approach uses a vector-based operation
to check, if a combination of triples matches the pattern of a beta node. Vector-
based operations can be computed by a GPU in a very efficient way which is
why it is desirable to use them. To do this, first of all we use so called unrolled
kernels for rules with up to four patterns (which is for example the max pattern-
width occurring in the OWL Horst rule set). This means, that instead of using
loops iterating over a defined number of items (where in this case the number
of items depends on the number of patterns that a beta node has) we just write
the command to execute as often as it is needed. The kernels on the other hand
are executed by using a kernel implementation depending on the characteristics
of the beta node. This also allows us to exactly know the pattern-width of each
parent of a beta node during kernel implementation which is the basis for the
vector-based match algorithm.

(?x ?p ?y) (?p rdfs:domain ?c)→ (?x rdf:type ?c) (R2)

40

Recapturing rule R2, where the final beta node has two alpha nodes as par-
ents, an unrolled kernel can be executed which assumes a pattern-width of three
for both parents. Furthermore it can be seen, that to verify a match only the
second term of the first pattern and the first term of the second pattern needs
to be checked, such that the value for ?p in the first pattern is equal to the value
of ?p of the second pattern. To do this, in each work-item a vector v1 is created
such that those elements from m1, that need to be compared to elements of
m2, are placed at the location in v1 where their corresponding element of m2

is located. In addition the elements in v1 need to be negated such that a later
performed addition can result in a null vector if the elements of both vectors
are equal except of their sign. Besides v1, another vector u is created which has
the same number of elements than v1 and is filled with elements equal to 1 at
those positions, where the second pattern holds an element that needs to be
considered to verify a match. All other elements of u are defined as 0. Finally
the loop which runs over all matches of Ap2 only has to create a vector v2 which
holds all elements of m2. This vector is used to verify for a match as follows:

(v2 ∗ u) + v1 (4)

This operation is performed in a component based manner (meaning that a con-
current, component based multiplication as well as a component based addition
is performed) and results in a null-vector, if a match was found. Otherwise, at
least one element of the resulting vector is unequal to 0. Furthermore only a
simple operation and a minimum of data transfer is necessary within the inner
loop of a kernel, which allows a very efficient execution even for a large |Ap2|.

To continue the example illustrated in figure 1 the working memory of α1
and α2 looks like depicted in figure 3. To improve the readability, not only the

α1

WM1
WM2
WM3

Bob uni:publishes Paper1
Alice uni:publishes Paper2
uni:publishes rdfs:domain Researcher

(1, 2, 3)
(4, 2, 5)
(2, 6, 7)

α2

WM3 uni:publishes rdfs:domain Researcher (2, 6, 7)

Fig. 3: Working memory of α1 and α2

working memory reference (row 1) is given, but also the data (row 2) as well as
the internal representation of that data (row 3). The internal representation, like
described before, is a mapping of each subject, predicate and object to an integer
value, which is used for computation. Based on the aforementioned description,
three parallel threads would be executed to calculated Aβ1. Because every item
in the working memory of α1 matches the pattern (?x ?p ?y) and every item
in the working memory of α2 matches the pattern (?p rdfs:domain ?c) (see
rule R2) the only calculation necessary to see, if a combination of an α1 and an
α2 match also is a match of the beta node β1, is to compare the corresponding
?p values. To do this, in each thread a constant vector v1 is created using the
corresponding match of α1. Looking at the first thread, v1 holds the negated

41

?p-value of the WM1 element, which is positioned at the first vector component,
because the corresponding ?p-element of the α2 match is also positioned at the
first element. This results in v1 = (−2, 0, 0). Because only the first component
of the vectors need to be considered for R2 (only the ?p elements have to be
compared), the vector u is created as u = (1, 0, 0). Now, for each element of
Aα2 a vector v2 is created which simply holds the numeric representation of the
corresponding triple such that v2 results in v2 = (2, 6, 7). The final (component
based) calculation is as follows:2

6
7

 ∗
1

0
0

 +

−2
0
0

 =

0
0
0

 (5)

Using the same calculation to match WM3 against WM3 (WM3 is a match of
α1 as well as of α2) would not result in a null vector and thus would not be a
match: 2

6
7

 ∗
1

0
0

 +

−6
0
0

 6=
0

0
0

 (6)

In addition to the unrolled and vector based kernels, we also implemented kernels
that can be used with a pattern-width larger than 4 which allows to write even
more complex rules with an arbitrary size.

4 Evaluation

4.1 ρdf, RDFS and OWL Horst

Because our approach is able to handle a given set of rules independent of the
semantic that those rules belong to, we used three different rule sets with a vary-
ing complexity, which often were implemented by other reasoners in a manual
way. The ρdf vocabulary [19] is a simplified version of the RDFS semantic which
consists of all rules of RDFS with at least two rule body-terms. This semantic
imposes a more efficient reasoning, while the results of the missing rules are
supposed to be created on the fly by a reasoner, if resources are queried. These
rules were also implemented by the MapReduce-based approach presented in
[9] as well as the by the GPU based approach proposed in [17]. Due to space
restrictions, we also refer to [17] for the ρdf rules.

The second rule set consists of the complete RDFS rules like defined by
the W3C5. This rule set consists of 13 rules with one or two antecedents and
is used in several other publications for evaluation purpose [14] [8]. The last
rule set formally known as pD* was proposed by Herman J. ter Horst which
incorporates RDFS and D entailment and extends these semantics with some
basic support for OWL [7]. It provides a complete set of entailment rules and
has become a promising ontology language for the semantic web because of its

5 http://www.w3.org/TR/rdf-mt/#RDFSRules

42

expressiveness on the one side and its relatively low computation complexity on
the other side. For a complete overview of the 22 rules (some of them can be
combined as they share the same antecedents resulting in 16 rules) we refer due
to space restrictions to [8].

4.2 Test Environment

To achieve comparable results we choose ontologies with various sizes that were
already used to evaluate other approaches. Thus, we are using the Vicodi6 on-
tology which is an ontology of European history used for semantical indexing of
historical documents [20]. The TBox is of a moderate size while the ABox con-
tains a large number of instances. In total, the ontology consists of 146,280 triples
and thus is compared to our second ontology, known from the Lehigh University
benchmark (LUBM)7, a small sized ontology. LUBM is a benchmark ontology
and defines an TBox for a university scenario. A generator allows to generate
university data sets while the number of universities that are created can be de-
fined as an input. Thus, we created 3 LUBM data sets with 268,794 triples which
contains two universities (LUBM2), a LUBM5 ontology with 727,265 triples and
a LUBM10 ontology with 1,480,366 triples. To use another large ontology we
used the DBPedia8 3.7 which is a lightweight ontology containing structured
data extracted from Wikipedia. For this data set we used a similar setup like
described by [17] containing the DBpedia Ontology, Infobox Types and Infobox
Properties. We also limited the size of the data set in a similar way by scaling
the instance triples by 1/8th, 1/16th, and 1/32nd of the original size.

Our implementation is Java based and integrates with Jena9 applications.
Thus, we use the Jena framework to parse the ontologies and create our own
data structures for the reasoning process by reading an ontology graph from
Jena. To be able to use OpenCL from our Java application, we use jocl10 as
Java bindings. The tests are performed on a work station with a 2.0 GHz Intel
Xeon processor with 6 cores and an AMD 7970 gaming graphic card with 3GB
of memory running an Ubuntu 12.04. In order to compare our results to other
approaches, we performed the same tests with the ρdf rule set with the GPU
based reasoner proposed in [17]. In the following we refer to that reasoner as
grdfs reasoner. Other parallel reasoners also implementing the complete RDFS or
OWL Horst rules on a single computer considering the ABox as well as the TBox
were not available. We also run our experiment using the non-vector-based kernel
and compare the results with the vector-based version. For each experiment the
total time except data transformation (i.e. loading the Jena-graph to AMR and
file parsing for grdfs) were measured, which also includes the non parallel rule
firing. A dedicated kernel execution time on the GPU is not given due to the

6 http://www.vicodi.org/about.htm
7 http://swat.cse.lehigh.edu/projects/lubm/
8 http://dbpedia.org/About
9 http://jena.apache.org/

10 http://www.jocl.org/

43

execution of multiple kernels which are launched asynchronously such that no
precise information are available. Furthermore each test was performed ten times
while the average is presented.

4.3 Results and Comparison

The first experiment shows the impact of using the vector-based operations
during the beta-match. Therefore we used all three LUBM data sets and executed
it using the pD* rule set with the naive implementation of the kernel and with the
vector-based kernel. Notice that both kernels are unrolled and the only difference
is, that the second kernel uses vector operations instead of calculating each
element in a single step. We choose the pD* vocabulary because it is the most
computation intensive one of the three used rule sets.

2 5 10

3

10

25

50

100

200

LUBM data set

re
a
so

n
in
g
ti
m
e
(s
)

nvb

vb

LUBM triples entailed nvb vb speedup

2 268,794 38,584 6.05 s 3.72 s 1.63
5 727,265 102,618 40.01 s 23.69 s 1.69

10 1,480,366 207,677 160.80 s 95.39 s 1.69

Fig. 4: Comparison of non-vector-based operations (nvb) and vector-based (vb)
operations

The results in figure 4 show that the vector-based kernel provides a constantly
better performance. The calculation using the vector-based method is round
about 1.7 times faster than using the naive implementation which simply applies
the comparison for two matches of the corresponding parent-nodes using single
operations. On a different hardware (MacBook Pro) even a speedup of more
than 4 could be measured using the vector-based operation.

The next test shall show the scaleability of our approach. Therefore we use
the Vicodi ontology as well as the LUBM2 ontology and run our algorithm on
the CPU of our test environment. The CPU has less cores than the GPU and
is not that fast, but OpenCL allows us to use only a defined number of cores
of the CPU. This way it is possible to show the speedup which is achieved by
increasing the number of used cores. Because the used CPU has 6 cores where
each core can run 2 threads through hyper-threading (resulting in 12 virtual
cores), we applied the pD* vocabulary to the input data using 1 to 12 cores.

As can be seen from figure 5 the speedup nearly doubles with a doubling
of the number of used processors for both datasets until 6 cores are used. The

44

1 2 3 4 5 6 7 8 9 10 11 12

50

100

150

200

250

300

cores

time (s) Vicodi

LUBM2

Fig. 5: Scaleability test using the Vicodi and the LUBM2 ontology on the CPU

other 6 cores still contribute to a better performance, but the impact is not that
reasonable anymore. We assume that this is because two (virtual) cores always
share some resources on one processor and thus do not provide such a speedup
as is would be achieved if each core had physically exclusive resources.

Finally we want to compare our results to other approaches. For this we
performed a set of tests with the GPU based grdfs reasoner proposed in [17]
as well as with AMR. Both reasoners used the same hardware like described
before. Because the grdfs reasoner implements the ρdf semantic, the tests were
only performed using the corresponding rules. While we can not prove that our
implementation works correct, we still get exactly the same results using the
general purpose rule engine provided by the Jena framework for ontologies with
a limited size which that rule engine is able to handle. The largest ontology we
were able to test with Jena using the ρdf vocabulary was the LUBM2 ontology
with 268,794 triples (and 146 entailed triples), which took about 27 minutes,
while our approach entails exactly the same triples in about 270 ms. We also
tested for example the Vicodi ontology using the Jena framework and the RDFS
vocabulary which took about 12 minutes and inferred 127,886 triples to a total
of 274,233. Our approach again provides exactly the same results using the GPU
in less than a second. The final results of our tests including parallel and serial
work (the complete reasoning process excluding parsing) are listed in table 1.

triples AMR grdfs entailed AMR entailed grdfs speedup

LUBM2 268,794 276 ms 1,383 ms 146 22 5.02
LUBM5 727,265 447 ms 3,153 ms 146 22 7.05
LUBM10 1,480,366 676 ms 6,207 ms 146 22 9.22
DBPedia 1/32 1,087,364 3,061 ms 7,554 ms 1,087,364 1,085,309 2.47
DBPedia 1/16 2,276,510 5,931 ms 14,681 ms 1,936,950 1,934,887 2.48
DBPedia 1/8 4,523,729 10,954 ms 27,739 ms 3,083,513 3,081,433 2.53

Table 1: Reasoning time for different data sets using AMR and grdfs reasoner

45

The experiment shows that our approach provides a speedup of a factor of
up to 9.2 compared to the grdfs reasoner. While the speedup for the LUBM data
sets is more significant than for the DBPedia data sets, it is still more than two
times faster. The different speedup factor results from the fact that using the
DBPedia data sets many new triples are inferred, such that up to 60% of the
reasoning time of the AMR reasoner is needed for the serial implemented rule
firing, which also includes operations like dictionary lookup to not infer duplicate
triples.

Further results from other work for comparison can be used for example from
[14], where the authors evaluated an approach to parallelise the RDFS closure
using an Opteron blade cluster, each server in the cluster having two dual-core
2.6 GHz AMD Opteron processors. The LUBM10k/1024 data set from that
paper has a slightly smaller size and a similar complexity like the LUBM10 data
set used for this paper. While the approach from [14] took about 2 seconds in
total to calculate the closure using a cluster of 128 cores, our approach calculates
the RDFS closure on a single machine in about 3 seconds. On a MacBook Pro
with a Core i7 processor, which has a less powerful GPU but due to the CPU a
faster architecture for serial calculations, the same test could even be finished in
less than 2.6 seconds using the AMR reasoner. Nevertheless, the approach from
[14] is able to handle much larger data sets.

5 Discussion and Future Work

The results in section 4.3 show that our approach offers a good and scaleable
performance using a single computer, also for data sets with millions of triples.
Nevertheless, there are still restrictions regarding the size of an ontology. On
the one hand for a performant execution the main memory of the host com-
puter needs to be large enough to hold the complete ontology as well as inferred
matches and data structures that are used for the rule execution. On the other
hand the use of integers for the created index structures limits the number of
processable triples. This limitation is even stronger regarding the matches-arrays
of the single nodes which easily needs to hold a multiple of elements as triples
are available. To overcome this issues, the use of 64bit datatypes as well as ap-
propriate collection types to hold the triples and matches should be considered.
In addition the use of collection oriented matching like describe in [21] could
be considered, where matches are calculated and stored in a collection-oriented
way instead of using single tuples. Furthermore a partitioning strategy could
be implemented that allows to distribute the workload of large ontologies over
multiple GPUs as well as over multiple machines. Thus, a combination of the
cluster-based approach used in [14] and the low level parallelisation like described
in this paper might be an interesting approach. Another optimisation might be
possible by parallelising the rule firing, too, which will require thread safe data
structures and a concept to detect duplicates.

Besides optimisations regarding the performance and the ability to handle
larger data sets, in the future we are also going to investigate how we can ex-

46

tend the functionality of our rule-based system to also support operants like
greaterThan(?x, ?y) within a rule body. This way our system would offer much
more flexibility for scenarios with application specific rules like used in different
kinds of smart environments like [2] [5].

6 Conclusion

In the past most of the approaches to parallelise the reasoning process have fo-
cused on distributing the workload over multiple machines to use a large number
of processors. Only a few approaches already considered the use of the parallel
structures available on a single machine. All approaches have in common, that
they implement a defined set of rules and can not be configured in an application
specific way. In this paper we proposed a rule-based approach that is indepen-
dent from a specific semantic and uses the parallel structures of modern CPUs
as well as of GPUs. The high performance is achieved by parallelising the Rete
algorithm and breaking the match-steps into fine grained tasks which can be
computed highly parallel. We also introduced a vector-based operation to com-
pute the beta matches, which easily doubles the performance of the algorithm
running on a GPU. Finally our results show, that the approach scales well with
the number of used cores and can apply a set of rules to an ontology in a very
performant way. Thus the parallelisation of a generic rule-based approach to ap-
ply rules on ontological data can be very efficient, if the workload is partitioned
into an adequate number of units which can be computed highly parallel.

References

1. Auśın, D., Castanedo, F., López-de Ipiña, D.: Benchmarking results of seman-
tic reasoners applied to an ambient assisted living environment. In: Proceed-
ings of the 10th international smart homes and health telematics conference on
Impact Ananlysis of Solutions for Chronic Disease Prevention and Management.
ICOST’12, Berlin, Heidelberg, Springer-Verlag (2012) 282–285

2. Agostini, A., Bettini, C., Riboni, D.: A performance evaluation of ontology-based
context reasoning. In: Pervasive Computing and Communications Workshops,
2007. PerCom Workshops ’07. Fifth Annual IEEE International Conference on.
(2007) 3–8

3. Pantsar-Syvaniemi, S., Simula, K., Ovaska, E.: Context-awareness in smart spaces.
In: Computers and Communications (ISCC), 2010 IEEE Symposium on. (2010)
1023–1028

4. Reinisch, C., Kofler, M., Kastner, W.: Thinkhome: A smart home as digital ecosys-
tem. In: Digital Ecosystems and Technologies (DEST), 2010 4th IEEE Interna-
tional Conference on. (2010) 256–261

5. Peters, M., Brink, C., Sachweh, S., Zündorf, A.: Performance considerations in
ontology based ambient intelligence architectures. In: Proceedings of the 4th In-
ternational Symposium on Ambient Intelligence. (2013)

6. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: ELK: a reasoner for OWL EL ontologies.
System description, University of Oxford. In: Technical Report (2012)

47

7. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. Web Semantics:
Science, Services and Agents on the World Wide Web 3(2-3) (October 2005) 79–115

8. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: Owl reasoning
with webpie: calculating the closure of 100 billion triples. In: Proceedings of the
7th international conference on The Semantic Web: research and Applications -
Volume Part I. ESWC’10, Berlin, Heidelberg, Springer-Verlag (2010) 213–227

9. Urbani, J., Kotoulas, S., Oren, E., Harmelen, F.: Scalable distributed reasoning us-
ing mapreduce. In: Proceedings of the 8th International Semantic Web Conference.
ISWC ’09, Berlin, Heidelberg, Springer-Verlag (2009) 634–649

10. Forgy, C.L.: Rete: a fast algorithm for the many pattern/many object pattern
match problem. In Raeth, P.G., ed.: Expert systems. IEEE Computer Society
Press, Los Alamitos, CA, USA (1990) 324–341

11. Maier, F., Mutharaju, R., Hitzler, P.: Distributed reasoning with EL++ using
mapreduce. Technical report, Kno.e.sis Center, Wright State University, Dayton,
Ohio (2010)

12. Liu, C., Qi, G., Wang, H., Yu, Y.: Reasoning with large scale ontologies in fuzzy
pd* using mapreduce. Computational Intelligence Magazine, IEEE 7(2) (2012)
54–66

13. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.:
Marvin: A platform for large-scale analysis of semantic web data. In: Proceedings
of the WebScience ’09, Society On-Line (2009)

14. Weaver, J., Hendler, J.: Parallel materialization of the finite RDFS closure for
hundreds of millions of triples. In Bernstein, A., Karger, D., Heath, T., Feigen-
baum, L., Maynard, D., Motta, E., Thirunarayan, K., eds.: The Semantic Web -
ISWC 2009. Volume 5823 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2009) 682–697

15. Kazakov, Y., Krötzsch, M., Simanćık, F.: Concurrent classification of EL ontolo-
gies. In: Proceedings of the 10th international conference on The semantic web -
Volume Part I. ISWC’11, Berlin, Heidelberg, Springer-Verlag (2011) 305–320

16. Ren, Y., Pan, J.Z., Lee, K.: Parallel abox reasoning of EL ontologies. In: Pro-
ceedings of the 2011 joint international conference on The Semantic Web. JIST’11,
Berlin, Heidelberg, Springer-Verlag (2012) 17–32

17. Heino, N., Pan, J.: RDFS reasoning on massively parallel hardware. In: The
Semantic Web ISWC 2012. Volume 7649 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2012) 133–148

18. Soma, R., Prasanna, V.: Parallel inferencing for OWL knowledge bases. In: Parallel
Processing, 2008. ICPP ’08. 37th International Conference on. (2008) 75–82

19. Muoz, S., Prez, J., Gutierrez, C.: Minimal deductive systems for RDF. In Fran-
coni, E., Kifer, M., May, W., eds.: The Semantic Web: Research and Applications.
Volume 4519 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2007) 53–67

20. Nagypl, G., Motik, B.: A fuzzy model for representing uncertain, subjective, and
vague temporal knowledge in ontologies. In Meersman, R., Tari, Z., Schmidt,
D., eds.: On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and
ODBASE. Lecture Notes in Computer Science. Springer Berlin Heidelberg (2003)
906–923

21. Acharya, A., Tambe, M.: Collection oriented match. In: Proceedings of the second
international conference on Information and knowledge management. CIKM ’93
(1993) 516–526

48

TripleRush: A Fast and Scalable Triple Store

Philip Stutz, Mihaela Verman, Lorenz Fischer, and Abraham Bernstein

DDIS, Department of Informatics, University of Zurich, Zurich, Switzerland
{stutz, verman, lfischer, bernstein}@ifi.uzh.ch

Abstract. TripleRush is a parallel in-memory triple store designed to
address the need for efficient graph stores that quickly answer queries
over large-scale graph data. To that end it leverages a novel, graph-based
architecture.
Specifically, TripleRush is built on our parallel and distributed graph pro-
cessing framework Signal/Collect. The index structure is represented
as a graph where each index vertex corresponds to a triple pattern. Par-
tially matched copies of a query are routed in parallel along different
paths of this index structure.
We show experimentally that TripleRush takes less than a third of the
time to answer queries compared to the fastest of three state-of-the-art
triple stores, when measuring time as the geometric mean of all queries
for two benchmarks. On individual queries, TripleRush is up to three
orders of magnitude faster than other triple stores.

1 Introduction

Many applications such as social network analysis, monitoring of financial trans-
actions or analysis of web pages and their links require large-scale graph compu-
tation. To address this need, many have researched the development of efficient
triple stores [1, 14, 11]. These systems borrow from the database literature to in-
vestigate efficient means for storing large graphs and retrieving subgraphs, which
are usually defined via a pattern matching language such as SPARQL. This av-
enue has had great success both in research [1, 14, 11] and practice.1 However,
many of these systems are built like a centralized database, raising the question
of scalability and parallelism within query execution. One way to increase the
efficiency of parallel pipelined joins in such centralized databases is the use of
sideways information passing [10].

Other approaches focus on adapting triple stores to a distributed setting:
MapReduce [3] has been used to aggregate results from multiple single-node
RDF stores in order to support distributed query processing [5].

Others have mapped SPARQL query execution pipelines to chains of MapRe-
duce jobs (e.g., [6]). Whilst this provides scalability, the authors point out that
the rigid structure of MapReduce and the high latencies when starting new jobs
constrain the possibilities for optimizations [6]. Distributed graph processing
frameworks such as Pregel [8], GraphLab/Powergraph [7, 4], Trinity [12], and

1 http://virtuoso.openlinksw.com, http://www.ontotext.com/owlim

our own Signal/Collect [13] can offer more flexibility for scalable querying
of graphs.

Among the existing triple stores we only know of Trinity.RDF [15] to be
implemented on top of such an abstraction. Trinity.RDF is a graph engine for
SPARQL queries that was built on the Trinity distributed graph processing
system. To answer queries, Trinity.RDF represents the graph with adjacency
lists and combines traditional query processing with graph exploration.

In this paper we introduce TripleRush, a triple store which is based on an
index graph, where a basic graph pattern SPARQL query is answered by rout-
ing partially matched query copies through this index graph. Whilst traditional
stores pipe data through query processing operators, TripleRush routes query de-
scriptions to data. For this reason, TripleRush does not use any joins in the tradi-
tional sense but searches the index graph in parallel. We implemented TripleRush
on top of Signal/Collect, a scalable, distributed, parallel and vertex-centric
graph processing framework [13].

The contributions of this paper are the following: First, we present the
TripleRush architecture, with an index graph consisting of many active pro-
cessing elements. Each of these elements contains a part of the processing logic
as well as a part of the index. The result is a highly parallel triple store based on
graph-exploration. Second, as a proof of concept, we implemented the TripleRush
architecture within our graph processing framework Signal/Collect, benefit-
ing from transparent parallel scheduling, efficient messaging between the active
elements, and the capability to modify a graph during processing. Third, we
evaluated our implementation and compared it with three other state-of-the-
art in-memory triple stores using two benchmarks based on the LUBM and
DBPSB datasets. We showed experimentally that TripleRush outperforms the
other triple stores by a factor ranging from 3.7 to 103 times in the geometric
mean of all queries. Fourth, we evaluated and showed data scalability for the
LUBM benchmark. Fifth, we measured memory usage for TripleRush, which is
comparable to that of traditional approaches. Last, we open sourced our imple-
mentation.2

In the next section we discuss the infrastructural underpinnings of TripleRush.
This is followed by a description of the TripleRush architecture, as well as the
functionality and interactions of its building blocks. We continue with a descrip-
tion of the optimizations that reduce memory usage and increase performance.
We evaluate our implementation, discuss some of this paper’s findings as well as
limitations, and finish with some closing remarks.

2 Signal/Collect

In this section we describe the scalable graph processing system Signal/Col-
lect and some of the features that make it a suitable foundation for TripleRush.

2 Apache 2.0 licensed, https://github.com/uzh/triplerush

51

Signal/Collect [13]3 is a parallel and distributed large-scale graph pro-
cessing system written in Scala. Akin to Pregel [8], it allows to specify graph
computations in terms of vertex centric methods that describe aggregation of
received messages (collecting) and propagation of new messages along edges (sig-
nalling). The model is suitable for expressing data-flow algorithms, with vertices
as processing stages and edges that determine message propagation. In contrast
to Pregel and other systems, Signal/Collect supports different vertex types
for different processing tasks. Another key feature, also present in Pregel, is that
the graph structure can be changed during the computation. The framework
transparently parallelizes and distributes the processing of data-flow algorithms.
Signal/Collect also supports features such as bulk-messaging and Pregel-like
message combiners to increase the message-passing efficiency.

Most graph processing systems work according to the bulk-synchronous par-
allel model. In such a system, all components act in lock-step and the slowest part
determines the overall progress rate. In a query processing use-case, this means
that one expensive partial computation would slow down all the other ones that
are executed in the same step, which leads to increased latency. Signal/Col-
lect supports asynchronous scheduling, where different partial computations
progress at their own pace, without a central bottleneck. The system is based
on message-passing, which means that no expensive resource locking is required.
These two features are essential for low-latency query processing.

With regard to the representation of edges, the framework is flexible. A vertex
can send messages to any other vertex: Edges can either be represented explicitly
or messages may contain vertex identifiers from which virtual edges are created.
TripleRush uses this feature to route query messages.

3 TripleRush

The core idea of TripleRush is to build a triple store with three types of Sig-
nal/Collect vertices: Each index vertex corresponds to a triple pattern, each
triple vertex corresponds to an RDF triple, and query vertices coordinate query
execution. Partially matched copies of queries are routed in parallel along differ-
ent paths of this structure. The index graph is, therefore, optimized for efficient
routing of query descriptions to data and its vertices are addressable by an ID,
which is a unique [subject predicate object] tuple.

We first describe how the graph is built and then explain the details of how
this structure enables efficient parallel graph exploration.

3.1 Building the Graph

The TripleRush architecture is based on three different types of vertices. In-
dex and triple vertices form the index graph. In addition, the TripleRush graph
contains a query vertex for every query that is currently being executed. Fig. 1
shows the index graph that is created for the triple [Elvis inspired Dylan]:

3 http://uzh.github.io/signal-collect/

52

4

3

2

1

DylanElvis inspired

*Elvis inspired DylanElvis *

Dylan* **Elvis * ** inspired

** *

Dylan* inspired

Fig. 1. TripleRush index graph that is created for the triple vertex
[Elvis inspired Dylan].

Triple vertices are illustrated on level 4 of Fig. 1 and represent triples in the
database. Each contains subject, predicate, and object information.

Index vertices, illustrated in levels 1 to 3 in Fig. 1, represent triple patterns
and are responsible for routing partially matched copies of queries (referred
to as query particles) towards triple vertices that match the pattern of the
index vertex. Index vertices also contain subject, predicate, and object in-
formation, but one or several of them are wildcards. For example, in Fig. 1
the index vertex [* inspired *] (in the middle of the figure on level 2) routes
to the index vertex [* inspired Dylan], which in turn routes to the triple
vertex [Elvis inspired Dylan].

Query vertices, depicted in the example in Fig. 2, are query dependent. For
each query that is being executed, a query vertex is added to the graph. The
query vertex emits the first query particle that traverses the index graph. All
query particles—successfully matched or not—eventually get routed back to
their respective query vertex. Once all query particles have succeeded or
failed the query vertex reports the results and removes itself from the graph.

The index graph is built by adding a triple vertex for each RDF triple that
is added to TripleRush. These vertices are added to Signal/Collect, which
turns them into parallel processing units. Upon initialization, a triple vertex will
add its three parent index vertices (on level 3) to the graph and add an edge
from these index vertices to itself. Should any parent index vertex already exist,
then only the edge is added from this existing vertex.

When an index vertex is initialized, it adds its parent index vertex, as well as
an edge from this parent index vertex to itself. Note that the parent index vertex
always has one more wildcard than its child. The construction process continues
recursively until the parent vertex has already been added or the index vertex
has no parent. In order to ensure that there is exactly one path from an index

53

vertex to all triple vertices below it, an index vertex adds an edge from at most
one parent index vertex, always according to the structure illustrated in Fig. 1.

Next we describe how the index graph allows parallel graph exploration in
order to match SPARQL queries.

3.2 Query Processing

The index graph we just described is different from traditional index structures,
because it is designed for the efficient parallel routing of messages to triples that
correspond to a given triple pattern. All vertices that form the index structure
are active parallel processing elements that only interact via message passing.

A query is defined by a list of SPARQL triple patterns. Each query execution
starts by adding a query vertex to the TripleRush graph. Upon initialization, a
query vertex emits a single query particle. A query particle consists of the list of
unmatched triple patterns, the ID of its query vertex, a list of variable bindings,
a number of tickets, and a flag that indicates if the query execution was able
to explore all matching patterns in the index graph. Next, we describe how the
parts of the query particle are modified and used during query execution.

The emitted particle is routed (by Signal/Collect) to the index vertex
that matches its first unmatched triple pattern. If that pattern is, for example,
[Elvis inspired ?person], where ?person is a variable, then it will be sent to the
index vertex with ID [Elvis inspired *]. This index vertex then sends copies of
the query particle to all its child vertices.

Once a query particle reaches a triple vertex, the vertex attempts to match
the next unmatched query pattern to its triple. If this succeeds, then a variable
binding is created and the remaining triple patterns are updated with the new
binding. If all triple patterns are matched or a match failed,4 then the query
particle gets routed back to its query vertex. Otherwise, the query particle gets
sent to the index or triple vertex that matches its next unmatched triple pattern.

If no index vertex with a matching ID is found, then a handler for unde-
liverable messages routes the failed query particle back to its query vertex. So
no matter if a query particle found a successful binding for all variables or if it
failed, it ends up being sent back to its query vertex.

In order to keep track of query execution and determine when a query has
finished processing, each query particle is endowed with a number of tickets. The
first query particle starts out with a very large number of tickets.5

When a query particle arrives at an index vertex, a copy of the particle is
sent along each edge. The original particle evenly splits up its tickets among
its copies. If there is a remainder, then some particles get an extra ticket. If a
particle does not have at least one ticket per copy, then copies only get sent

4 A match fails if it creates conflicting bindings: Pattern [?X inspired ?X] fails to bind
to the triple [Elvis inspired Dylan], because the variable ?X cannot be bound to both
Elvis and Dylan.

5 We use Long.MaxValue, which has been enough for a complete exploration of all
queries on all datasets that we have experimented with so far.

54

along edges for which at least one ticket was assigned, and those particles get
flagged to inform the query vertex that not all matching paths in the graph
were explored. Query execution finishes when the sum of tickets of all failed and
successful query particles received by the query vertex equals the initial ticket
endowment of the first particle that was sent out.

Once query execution has finished, the query vertex reports the result that
consists of the variable bindings of the successful query particles, and then re-
moves itself from the graph.

Query Vertex *Dylan inspired

DylanElvis inspired

** inspired

Jobs* inspired Dylan* inspired

Elvis inspired Dylan
Dylan inspired ?ZElvis inspired Dylan

Dylan inspired Jobs

Dylan inspired Jobs
Jobs inspired ?Z

No vertex with id
[Jobs inspired *]

Success

Failure

?X inspired ?Y
?Y inspired ?Z

JobsDylan inspired

1 2

3

4

5

6

Fig. 2. Query execution on the relevant part of the index that was created for the
triples [Elvis inspired Dylan] and [Dylan inspired Jobs].

As an example illustrating a full query execution, consider the relevant sub-
graph created for the triples [Elvis inspired Dylan] and [Dylan inspired Jobs],
shown in Fig. 2 along with the query processing for the query: (unmatched =
[?X inspired ?Y], [?Y inspired ?Z]; bindings = {}). Execution begins in the
query vertex.

1 Once the query vertex has been added to the graph, it emits a query particle,
which is illustrated in blue. Given its first triple pattern, the query particle
is routed to the index vertex with ID [* inspired *].

2 Inside the index vertex, the query particle is split into two particles, one
colored green and the other one orange (for illustration). The tickets of the
blue particle are evenly split among the green and the orange particle. Both
particles are sent down to their respective index vertex, the green one to [*
inspired Dylan] and the orange one to [* inspired Jobs]. These index vertices,
in turn, send the particles further down to their corresponding triple vertices.

3 The first pattern of the green particle gets matched in the triple vertex [Elvis
inspired Dylan]. The triple vertex sends the updated particle (unmatched = [
Dylan inspired ?Z]; bindings = { ?X=Elvis, ?Y=Dylan }) to the index vertex
with ID [Dylan inspired *], which in turn routes the particle towards all
triples that match the next unmatched pattern, [Dylan inspired ?Z].

4 From the index vertex, the green particle is routed down to the triple ver-
tex [Dylan inspired Jobs], which binds ?Z to Jobs. As there are no more
unmatched triple patterns, the triple vertex routes the particle containing
successful bindings for all variables back to its query vertex.

55

5 The first pattern of the orange particle gets matched in the triple vertex
[Dylan inspired Jobs]. The triple vertex sends the updated particle (un-
matched = [Jobs inspired ?Z]; bindings = { ?X=Dylan, ?Y=Jobs }) to the
index vertex with ID [Jobs inspired *]. The message cannot be delivered,
because no index vertex with that ID is found. The handler for undeliverable
messages reroutes the failed query particle to its query vertex.

6 The query vertex receives both the successfully bound green and the failed
orange particle. Query execution has finished, because all tickets that were
sent out with the initial blue particle have been received again. The query
vertex reports the successful bindings { ?X=Elvis, ?Y=Dylan, ?Z=Jobs } and
then removes itself from the graph.

The architecture and query execution scheme we described captures the
essence of how TripleRush works. Next, we explain how we improved them with
regard to performance and memory usage.

3.3 Optimizations

The system, as previously shown, already supports parallel graph exploration.
Here we describe how we implemented and optimized different components.

Dictionary Encoding While the examples we gave so far represented triple
patterns in terms of strings, the actual system implementation operates on a
dictionary encoded representation, where RDF resource identifiers and literals
are encoded by numeric IDs. Both wildcards and variables are also represented
as numeric IDs, but variable IDs are only unique in the context of a specific
query.

Index Graph Structure We remove triple vertices, and instead store the
triple information inside each of the three third level index vertices that have a
compatible triple pattern. We hence refer to these index vertices as binding index
vertices, because they can bind query particles to triples, which was previously
done by the triple vertices. This change saves memory and reduces the number
of messages sent during query execution.

One question that arises from this change is: If the subject, predicate and ob-
ject of the next unmatched pattern of a particle are already bound, where should
that particle be routed to? With no single triple vertex responsible anymore,
TripleRush load balances such routings over the three binding index vertices
into which the triple information was folded.

Index Vertex Representation In Fig. 1, one notices that the ID of an index
vertex varies only in one position—the subject, the predicate, or the object—
from the IDs of its children. To reduce the size of the edge representations, we do
not store the entire ID of child vertices, but only the specification of this position

56

consisting of one dictionary encoded number per child. We refer to these numbers
as child-ID-refinements. The same reasoning applies to binding index vertices,
where the triples they store only vary in one position from the ID of the binding
index vertex. Analogously, we refer to these differences as triple-ID-refinements.

Binding index vertices need to be able to check quickly if a triple exists. This
requires fast search over these triple-ID-refinements. We support this by storing
them in a sorted array on which we use the binary search algorithm.

Index vertices of levels 1 and 2 do not need to check for the existence of
a specific child-ID, as these levels always route to all children. Routing only
requires a traversal of all child-ID-refinements. To support traversal in a memory-
efficient way, we sort the child-ID-refinements, perform delta encoding on them,
and store the encoded deltas in a byte array, using variable length encoding.

Note that these array representations are inefficient for modifications, which
is why we initially store the child/triple-ID-refinements in tree sets and switch
the representation to arrays once the loading is done. This design supports fast
inserts at the cost of increased memory usage during loading.

Query Optimization The number of particle splits performed depends on the
order in which the triple patterns of a query are explored. One important piece of
information to determine the best exploration order is the number of triples that
match a given triple pattern, which we refer to as the cardinality of the pattern.
Because only relative cardinality differences matter for ordering, we can assume
a very large number for the root vertex. The binding index vertices already store
all the triples that match their pattern and thus have access to their cardinalities.
So we only need to determine the cardinality of index vertices on level 2, below
the root vertex and above the binding index vertices. A level 2 index vertex
requests cardinality counts from its binding index vertex children and sums up
the replies. We do this once after graph loading and before executing queries,
but it can be done at any time and could also be done incrementally.

Query optimization happens only once inside the query vertex before the
query particle is emitted. To support it, the query vertex first sends out cardi-
nality requests to the vertices in the index graph that are responsible for the
respective triple patterns in the query. These requests get answered in parallel
and, once all cardinalities have been received, we greedily select the pattern with
the lowest cardinality to be matched first. If this match will bind a variable, we
assume that the cardinality of all other patterns that contain this variable is
reduced, because only a subset of the original triples that matched the pattern
would be explored at that point. To this end, we divide the cardinality estimate
for each triple pattern containing bound variables by a constant per bound vari-
able. In our experiments we set the constant to 100, based on exploration.6 If
all variables in a pattern are bound (meaning that all its variables appear in

6 We tried different factors and this one performed well on the LUBM benchmark. It
also performed well on the DBPSB benchmark, which suggests that it generalizes at
least to some degree.

57

patterns that will get matched before it), then we assume a cardinality of 1,
designating that at most one triple could match this pattern.

Repeating the procedure we choose the next pattern with the lowest cardinal-
ity estimate, until all patterns have been ordered. Next, the initial query particle
and all its copies explore the patterns in the order specified by the optimization.

Optimizations to Reduce Messaging Each TripleRush vertex is transpar-
ently assigned to a Signal/Collect worker. Workers are comparable to a
thread that is responsible for messaging and for scheduling the execution of
its assigned vertices.

Sending many individual messages between different Signal/Collect work-
ers is inefficient, because it creates contention on the worker message queues. In
order to reduce the number of messages sent, we use a bulk message bus that
bundles multiple messages sent from one worker to another. In order to reduce
message sizes and processing time in the query vertex, we do not send the ac-
tual failed particle back to the query vertex, but only its tickets.7 We also use a
Pregel-like combiner that sums up the tickets in the bulk message bus, to again
reduce the number of messages sent.

Because the query vertex is a bottleneck, we further reduce the number of
messsages it receives and the amount of processing it does by combining multiple
successful particles into one result buffer before sending them. The query vertex
can concatenate these result buffers in constant time.

4 Evaluation

In the last section we described the TripleRush architecture and parallel query
execution. In this section we evaluate its performance compared to other state-
of-the-art triple stores.

4.1 Performance

TripleRush was built and optimized for query execution performance. In order
to evaluate TripleRush, we wanted to compare it with the fastest related ap-
proaches. Trinity.RDF [15] is also based on a parallel in-memory graph store,
and it is, to our knowledge, the best performing related approach. Thus, our
evaluation is most interesting in a scenario where it is comparable to that of
Trinity.RDF. As Trinity.RDF is not available for evaluation, we decided to make
our results comparable by closely following the setup of their published parallel
evaluations. The Trinity.RDF paper also includes results for other in-memory
and on-disk systems that were evaluated with the same setup, which allows us
to compare TripleRush with these other systems in terms of performance.

7 The flag is also necessary and in practice we encode it in the sign.

58

Datasets and Queries Consistent with the parallel Trinity.RDF [15] evalu-
ation, we benchmarked the performance of TripleRush by executing the same
seven queries on the LUBM-160 dataset (∼21 million triples) and the same eight
queries on the DBPSB-10 dataset (∼14 million triples). The LUBM (Lehigh Uni-
versity Benchmark) dataset is a synthetic one, generated with UBA1.7,8 while
the DBPSB (DBpedia SPARQL Benchmark) dataset is generated based on real-
world DBpedia data [9].9 The queries cover a range of different pattern car-
dinalities, result set sizes and number of joins. The queries L1-L7 and D1-D8
are listed in the Appendix. These queries only match basic graph patterns and
do not use features unsupported by TripleRush, such as aggregations or filters.
More information about the datasets and the queries is found in [2] and [15].

Evaluation Setup In the Trinity.RDF paper, all triple stores are evaluated in
an in-memory setting, while RDF-3X and BitMat are additionally evaluated in
a cold cache setting [15].

For evaluating TripleRush, we executed all queries on the same JVM running
on a machine with two twelve-core AMD Opteron

TM
6174 processors and 66 GB

RAM, which is comparable to the setup used for the evaluation of Trinity.RDF.10

The whole set of queries was run 100 times before the measurements in order
to warm up the JIT compiler, and garbage collections were triggered before the
actual query executions. All query executions were complete, no query particle
ever ran out of tickets. We repeated this evaluation 10 times.11

The execution time covers everything from the point where a query is dis-
patched to TripleRush until the results are returned. Consistent with the Trin-
ity.RDF setup12, the execution times do include the time used by the query
optimizer, but do not include the mappings from literals/resources to IDs in the
query, nor the reverse mappings for the results.

Result Discussion The top entries in Tables 1 and 2 show the minimum
execution times over 10 runs. According to our inquiry with the authors of the

8 http://swat.cse.lehigh.edu/projects/lubm
9 http://aksw.org/Projects/DBPSB.html, dataset downloaded from http:

//dbpedia.aksw.org/benchmark.dbpedia.org/benchmark_10.nt.bz2
10 The evaluation in [15] was done on two Intel Xeon E5650 processors with 96 GB

RAM. The review at http://www.bit-tech.net/hardware/cpus/2010/03/31/amd-
opteron-6174-vs-intel-xeon-x5650-review/11 directly compares the processors
and gives our hardware a lower performance score.

11 The operating system used was Debian 3.2.46-1 x86 64 GNU/Linux, running the Or-
acle JRE version 1.7.0 25-b15. More details are available in the benchmarking code
on GithHub at https://github.com/uzh/triplerush/tree/evaluation-ssws,
classes com/signalcollect/triplerush/evaluation/LubmBenchmark.scala and
com/signalcollect/triplerush/evaluation/DbpsbBenchmark.scala, using depen-
dency https://github.com/uzh/signal-collect/tree/evaluation-ssws. The
full raw results are available at https://docs.google.com/spreadsheet/ccc?key=

0AiDJBXePHqCldEVWVU05blNLUHhTM1hhVTYySHp2MkE
12 We inquired about what is included in the execution time for the systems in [15].

59

Trinity.RDF paper [15], this is consistent with their measures. Additionally, we
also report the average execution times for TripleRush. TripleRush performs
fastest on six of the seven LUBM queries, and on all DBPSB queries. For the
query where TripleRush is not the fastest system, it is the second fastest system.

On all queries, TripleRush is consistently faster than Trinity.RDF. In the
geometric mean of both benchmarks, TripleRush is more than three times faster
than Trinity.RDF, between seven and eleven times faster than RDF-3X (in mem-
ory) and between 31 and 103 times faster than BitMat (in memory). For indi-
vidual queries the results are even more pronounced: On query L7 TripleRush
is about ten times faster than Trinity.RDF, on L1 it is more than two orders of
magnitude faster than RDF-3X (in memory) and on L4 TripleRush is more than
three orders of magnitude faster than BitMat (in memory).

These results indicate that the performance of TripleRush is competitive
with, or even superior to other state-of-the-art triple stores.

Fastest of 10 runs L1 L2 L3 L4 L5 L6 L7 Geo. mean

TripleRush 80.9 53.7 78.5 1.5 0.8 1.5 63.2 12.1

Trinity.RDF 281 132 110 5 4 9 630 46
RDF-3X (in memory) 34179 88 485 7 5 18 1310 143
BitMat (in memory) 1224 4176 49 6381 6 51 2168 376

RDF-3X (cold cache) 35739 653 1196 735 367 340 2089 1271
BitMat (cold cache) 1584 4526 286 6924 57 194 2334 866

Average over 10 runs

TripleRush 89.3 60.1 84.1 1.7 1.3 2.3 69.4 14.8

Table 1. LUBM-160 benchmark, time in milliseconds for query execution on ∼21
million triples. Comparison data for Trinity.RDF, RDF-3X and BitMat from [15].

Fastest of 10 runs D1 D2 D3 D4 D5 D6 D7 D8 Geo. mean

TripleRush 1.8 73.3 1.1 1.3 1.2 6.1 6.4 8.2 4.1

Trinity.RDF 7 220 5 7 8 21 13 28 15
RDF-3X (in memory) 15 79 14 18 22 34 68 35 29
BitMat (in memory) 335 1375 209 113 431 619 617 593 425

RDF-3X (cold cache) 522 493 394 498 366 524 458 658 482
BitMat (cold cache) 392 1605 326 279 770 890 813 872 639

Average over 10 runs

TripleRush 2.0 82.8 1.3 1.8 1.5 8.4 9.1 12.4 5.3

Table 2. DBPSB-10 benchmark, time in milliseconds for query execution on ∼14
million triples. Comparison data for Trinity.RDF, RDF-3X and BitMat from [15].

60

4.2 Data Scalability

Performance is a very important characteristic for a triple store, but it is also
important that the query execution time scales reasonably when queries are
executed over more triples.

We evaluate the data scalability of TripleRush by executing the LUBM
queries L1-L7 with the same setup as in subsection 4.1, but ranging the dataset
sizes from 10 to 320 universities and measuring the average time over 10 runs.
The execution time for queries L1-L3 and L7 should increase with the size of the
dataset, which is proportional to the number of universities. Queries L4-L6 are
tied to a specific university and, given a good query plan, should take approxi-
mately the same time to execute, regardless of the dataset size. The left chart in
Fig. 3 shows the execution times on a linear scale, while for queries L1-L3 and L7
both number of universities and the execution times are shown on a logarithmic
scale. We see that queries L2 and L7 scale slightly sublinearly. Queries L1 and L3
scale almost linearly until LUBM-160, and then with a factor of more than three
on the step to LUBM-320. We are uncertain about what causes this difference.
As expected, the results in the left chart in Fig. 3 show that for queries L4-L6
the query execution time does not increase with the dataset size.

Overall, this evaluation suggests that TripleRush query execution times scale
as expected with increased dataset sizes, but leaves an open question related to
the scaling of queries L1 and L3 on LUBM-320.

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

10	 20	 40	 80	 160	 320	

Av
g.

 e
xe

cu
tio

n
tim

e
(m

s)
!

LUBM Universities!

L4	
L5	
L6	

4	

8	

16	

32	

64	

128	

256	

512	

10	 20	 40	 80	 160	 320	

Av
g.

 e
xe

cu
tio

n
tim

e
(m

s)
!

LUBM Universities!

L1	
L2	
L3	
L7	

Fig. 3. Average execution times (10 runs) for queries L1-L7 on different LUBM sizes.

4.3 Memory Usage

Another important aspect of a triple store is the memory usage and how it
increases with dataset size. In order to evaluate this aspect, we measured the
memory usage of TripleRush after loading LUBM dataset sizes ranging from 10
to 320 universities and optimizing their index representations (smallest memory
footprint of entire program from 10 runs). Figure 4 shows that the memory usage
increases slighly sublinearly for this dataset. The memory footprint of TripleRush

61

is 5.8 GB when the 21 347 998 triples in the LUBM-160 datset are loaded. This
is equivalent to ∼272 bytes per triple for this dataset size. TripleRush requires
3.8 GB for the DBPSB-10 dataset with 14 009 771 triples, which is equivalent
to ∼271 bytes per triple. This is between a factor of 2 up to 3.6 larger than the
index sizes measured for these datasets in Trinity.RDF [15], but far from the
index size of 19 GB measured for DBPSB-10 in BitMat [15].

Currently, graph loading and index optimization for LUBM-160 takes as
little as 106 seconds (without dictionary encoding, average over 10 runs). This
is because the tree set data structure we use during graph loading supports
fast insertions. The flip side is the high memory usage, which causes the graph-
loading of the LUBM-320 dataset to take excessively long. Most of that time is
spent on garbage collection, most likely because the entire assigned 31 GB heap
is used up during loading. After loading is finished, the index representation
optimizations reduce the memory usage to a bit more than 11 GB.

Overall, the index size of TripleRush is rather large, but that is in many cases
a reasonable tradeoff, given the performance.

0.5	

1	

2	

4	

8	

16	

10	 20	 40	 80	 160	 320	

M
em

or
y

U
sa

ge
 (G

B)
!

LUBM Universities!

Fig. 4. Memory usage after loading LUBM datasets.

5 Limitations and Future Work

Our current investigation and design has a number of limitations that should be
addressed in future work.

First, we need to evaluate TripleRush with additional benchmarks.
Second, and more importantly, we need to investigate the performance of

TripleRush on larger graphs, in a distributed setting. Whilst we are optimistic
that some of its optimizations will help even in the distributed setting, it is un-
clear what the overall performance impact of increased parallelism and increased
messaging cost will be.

Third, TripleRush was not built with SPARQL feature-completeness in mind.
Many SPARQL constructs such as filters and aggregates were not implemented.

Fourth, the current query optimization is very simple and could be improved.

62

Fifth, the root vertex is a communication bottleneck. Potential avenues for
addressing this are to disallow a completely unbound query, which would retrieve
the whole database, or to partition this vertex.

Sixth, the memory usage during graph loading should be reduced without
overly slowing down the loading times.

Seventh, although the hardware we ran the benchmarks on had a lower per-
formance score, it is desirable to do a comparison with Trinity.RDF on exactly
the same hardware.

Even in the light of these limitations, TripleRush is a highly competitive sys-
tem in terms of query execution performance. To our knowledge, it is the first
triple store that decomposes both the storage and query execution into intercon-
nected processing elements, thereby achieving a high degree of parallelism that
contains the promise of allowing for transparent distributed scalability.

6 Conclusions

The need for efficient querying of large graphs lies at the heart of most Semantic
Web applications. The last decade of research in this area has shown tremendous
progress based on a database-inspired paradigm. Parallelizing these centralized
architectures is a complex task. The advent of multi-core computers, however,
calls for approaches that exploit parallelization.

In this paper we presented TripleRush, an in-memory triple store that in-
herently divides the query execution among a large number of active processing
elements that work towards a solution in parallel. We showed that this approach
is both fast and scalable.

Whilst TripleRush has its limitations, it is a step towards providing high-
performance triple stores that inherently embrace parallelism.

Acknowledgments We would like to thank the Hasler Foundation for the
generous support of the Signal/Collect Project under grant number 11072
and Alex Averbuch as well as Cosmin Basca for their feedback on our ideas.

References

1. D. Abadi, A. Marcus, S. Madden, and K. Hollenbach. Scalable Semantic Web Data
Management Using Vertical Partitioning. In Proceedings of the 33rd International
Conference on Very Large Data Bases, pages 411–422. VLDB Endowment, 2007.

2. M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix ”bit” loaded: a scalable
lightweight join query processor for rdf data. In Proceedings of the 19th interna-
tional conference on World wide web, WWW ’10, pages 41–50, New York, NY,
USA, 2010. ACM.

3. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

63

4. J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: dis-
tributed graph-parallel computation on natural graphs. In Proceedings of the 10th
USENIX conference on Operating Systems Design and Implementation, OSDI’12,
pages 17–30, Berkeley, CA, USA, 2012. USENIX Association.

5. J. Huang, D. J. Abadi, and K. Ren. Scalable sparql querying of large rdf graphs.
PVLDB, 4(11):1123–1134, 2011.

6. S. Kotoulas, J. Urbani, P. A. Boncz, and P. Mika. Robust runtime optimization
and skew-resistant execution of analytical sparql queries on pig. In P. Cudré-
Mauroux, J. Heflin, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J. X. Par-
reira, J. Hendler, G. Schreiber, A. Bernstein, and E. Blomqvist, editors, Interna-
tional Semantic Web Conference (1), volume 7649 of Lecture Notes in Computer
Science, pages 247–262. Springer, 2012.

7. Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
Graphlab: A new parallel framework for machine learning. In Conference on Un-
certainty in Artificial Intelligence (UAI), Catalina Island, California, July 2010.

8. G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD
Conference, pages 135–146, 2010.

9. M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo. Dbpedia sparql benchmark:
performance assessment with real queries on real data. In Proceedings of the 10th
international conference on The semantic web - Volume Part I, ISWC’11, pages
454–469, Berlin, Heidelberg, 2011. Springer-Verlag.

10. T. Neumann and G. Weikum. Scalable join processing on very large rdf graphs. In
Proceedings of the 2009 ACM SIGMOD International Conference on Management
of data, SIGMOD ’09, pages 627–640, New York, NY, USA, 2009. ACM.

11. T. Neumann and G. Weikum. The RDF-3X engine for scalable management of
RDF data. The VLDB Journal.The International Journal on Very Large Data
Bases, 19(1):91–113, 2010.

12. B. Shao, H. Wang, and Y. Li. The trinity graph engine. Technical report, Technical
Report 161291, Microsoft Research, 2012.

13. P. Stutz, A. Bernstein, and W. W. Cohen. Signal/Collect: Graph Algorithms for the
(Semantic) Web. In P. P.-S. et al., editor, International Semantic Web Conference
(ISWC) 2010, volume LNCS 6496, pages pp. 764–780. Springer, Heidelberg, 2010.

14. C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for semantic
web data management. Proceedings of the VLDB Endowment, 1(1):1008–1019,
2008.

15. K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed graph engine for
web scale rdf data. Proceedings of the VLDB Endowment, 6(4), 2013.

64

Appendix A: Evaluation Queries

LUBM evaluation queries, originally used in
the BitMat evaluation [2] and selected by them
from OpenRDF LUBM Queries.

PREFIX ub: <http://swat.cse.lehigh.edu/
onto/univ-bench.owl>
PREFIX rdf: <http://www.w3.org/1999/02/22-
rdf-syntax-ns>

L1: SELECT ?X ?Y ?Z WHERE {
?Z ub:subOrganizationOf ?Y.
?Y rdf:type ub:University.
?Z rdf:type ub:Department.
?X ub:memberOf ?Z.
?X rdf:type ub:GraduateStudent.
?X ub:undergraduateDegreeFrom ?Y.

}
L2: SELECT ?X ?Y WHERE {

?X rdf:type ub:Course.
?X ub:name ?Y.

}
L3: SELECT ?X ?Y ?Z WHERE {

?X rdf:type ub:UndergraduateStudent.
?Y rdf:type ub:University.
?Z rdf:type ub:Department.
?X ub:memberOf ?Z.
?Z ub:subOrganizationOf ?Y.
?X ub:undergraduateDegreeFrom ?Y.

}
L4: SELECT ?X ?Y1 ?Y2 ?Y3 WHERE {

?X ub:worksFor
<http://www.Department0.University0.edu>.
?X rdf:type ub:FullProfessor.
?X ub:name ?Y1.
?X ub:emailAddress ?Y2.
?X ub:telephone ?Y3.

}
L5: SELECT ?X WHERE {

?X ub:subOrganizationOf
<http://www.Department0.University0.edu>.
?X rdf:type ub:ResearchGroup.

}
L6: SELECT ?X ?Y WHERE {

?Y ub:subOrganizationOf
<http://www.University0.edu>.

?Y rdf:type ub:Department.
?X ub:worksFor ?Y.
?X rdf:type ub:FullProfessor.

}
L7: SELECT ?X ?Y ?Z WHERE {

?Y ub:teacherOf ?Z.
?Y rdf:type ub:FullProfessor.
?Z rdf:type ub:Course.
?X ub:advisor ?Y.
?X rdf:type ub:UndergraduateStudent.
?X ub:takesCourse ?Z.

}

DBPSB evaluation queries, received cour-
tesy of Kai Zeng.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-
schema#>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdf: <http://www.w3.org/1999/02/22-
rdf-syntax-ns#>
PREFIX dbpprop: <http://dbpedia.org/
property/>
PREFIX dbpres: <http://dbpedia.org/
resource/>
PREFIX rdfcore: <http://www.w3.org/2004/02/
skos/core#>

D1: SELECT ?X WHERE {
?Y rdfcore:subject dbpres:Category:First-

person shooters.
?Y foaf:name ?X.

}
D2: SELECT ?X WHERE {

?Z foaf:homepage ?Y.
?Z rdf:type ?X.

}
D3: SELECT ?X ?Y ?Z WHERE {

?Z rdfcore:subject dbpres:Category:German musicians.
?Z foaf:name ?X.
?Z rdfs:comment ?Y.

}
D4: SELECT ?W ?X ?Y ?Z WHERE {

?Z dbo:birthPlace dbpres:Berlin.
?Z dbo:birthDate ?X.
?Z foaf:name ?W.
?Z dbo:deathDate ?Y.

}
D5: SELECT ?X ?Y ?Z WHERE {

?Z rdfcore:subject dbpres:Category:Luxury vehicles.
?Z foaf:name ?Y.
?Z dbo:manufacturer ?W.
?W foaf:name ?X.

}
D6: SELECT ?Z1 ?Z2 ?Z3 ?Z4 WHERE {

?X rdf:type ?Y.
?X dbpprop:name ?Z1.
?X dbpprop:pages ?Z2.
?X dbpprop:isbn ?Z3.
?X dbpprop:author ?Z4.

}
D7: SELECT ?Y WHERE {

?X rdf:type ?Y.
?X dbpprop:name ?Z1.
?X dbpprop:pages ?Z2.
?X dbpprop:isbn ?Z3.
?X dbpprop:author ?Z4.

}
D8: SELECT ?Y WHERE {

?X foaf:page ?Y.
?X rdf:type dbo:SoccerPlayer.
?X dbpprop:position ?Z1.
?X dbpprop:clubs ?Z2.
?Z2 dbo:capacity ?Z3.
?X dbo:birthPlace ?Z4.
?Z4 dbpprop:population ?Z5.
?X dbo:number ?Z6.

}

Eviction Strategies for Semantic Flow
Processing?

Minh Khoa Nguyen,1 Thomas Scharrenbach,1 Abraham Bernstein1

University of Zurich, Switzerland
{nguyen,scharrenbach,bernstein}@ifi.uzh.ch

Abstract. In order to cope with the ever-increasing data volume contin-
uous processing of incoming data via Semantic Flow Processing systems
have been proposed. These systems allow to answer queries on streams
of RDF triples. To achieve this goal they match (triple) patterns against
the incoming stream and generate/update variable bindings. Yet, given
the continuous nature of the stream the number of bindings can ex-
plode and exceed memory; in particular when computing aggregates. To
make the information processing practical Semantic Flow Processing sys-
tems, therefore, typically limit the considered data to a (moving) window.
Whilst this technique is simple it may not be able to find patterns spread
further than the window or may still cause memory overruns when data
is highly bursty.
In this paper we propose to maintain bindings (and thus memory) not
on recency (i.e., a window) but on the likelihood of contributing to
a complete match. We propose to base the decision on the matching
likelihood and not creation time (fifo) or at random. Furthermore we
propose to drop variable bindings instead of data as do load shedding
approaches. Specifically, we systematically investigate deterministic and
the matching-likelihood based probabilistic eviction strategy for drop-
ping variable bindings in terms of recall. We find that a matching likeli-
hood based eviction can outperform fifo and random eviction strategies
on synthetic as well as real world data.

Keywords: Semantic Flow Processing, Linked Data stream processing, eviction
strategies, load shedding, matching likelihood estimation on streams

1 Introduction

Information processing increasingly incorporates query matching on dynamically
changing information (i.e. information flows) [5]. Based on these Information
Flow Processing (IFP) systems, such as C-SPARQL [4], EP-SPARQL [1], or
CQELS [10] emerged that are capable of processing flows of semantically anno-
tated data. All of these Semantic Flow Processing (SFP) systems allow defining

? The research leading to these results has received funding from the European Union
Seventh Framework Programme FP7/2007-2011 under grant agreement no 296126.

queries in a language that extends SPARQL with algebra adjustments for match-
ing queries on flows of time-annotated RDF triples.

Each SFP system works on limited memory resources. They constrain the
number of valid partial variable bindings (i.e., bindings that are not yet complete
solutions to a query) by applying a window on the stream. Such a window limits
the scope of query matching to, for example, a period of time or to a certain
number of triples. On the one hand this limits the scope of answers the system
can find. If a match requires two data items that do not fall in the same scope the
system will never be able to perform such a match. On the other hand, even the
limited scope can not necessarily guarantee that the system will never exceed its
memory resources. Consider the situation when a popular TV broadcast/show,
such as a football match, starts and many users switch to it at the same time.
In this case we may find that a sudden burst in the input data could cause the
system to exceed its resources. The situation gets worse when we are not only
interested in the number of viewers for a show but want to track the users – the
literature refer to the latter case as non-shrinking semantics [3].

To our knowledge no current SFP approach has a solution for freeing memory
in case these exceed the available resources. While proposals have been made for
load-shedding—dropping or ignoring incoming data—in IFP systems, only one of
them investigated load-shedding according to a statistical model of the matching
history [6]. We believe that instead of ignoring incoming data one should one
should drop variable bindings based on their likelihood that they lead to a result.
We refer to this as eviction strategies in contrast to load shedding.

Eviction strategies are more flexible than load shedding. If we drop a data
item we may drop information too early in the matching process. Eviction allows
us to define constraints at which point of the matching process we want to
delete items. While there exist deterministic approaches that allow for dropping
variable bindings, such as first-in-first-out (fifo) we propose to use the matching
likelihood as the dropping criterion. In this paper we, hence, investigate the
performance of different eviction strategies. Note that an eviction strategy is
not the same as a garbage collection. While the latter removes those variables
bindings that will not contribute to a solution, the former removes variable
bindings that have the potential but cannot be kept due to memory limitation.
As a consequence applying an eviction strategy could lead to incomplete results
for the sake of feasibility.

In this paper we propose to use a probabilistic based eviction strategy that
estimates the likelihood of a binding to contribute to a result in contrast to using
a fixed time window for load shedding. Note that this paper intends to show that
a probability based model can outperform fifo and random load shedding but
does not provide a model of how to estimate those probabilities on the go. We
investigate the effect our approach has on the completeness of results compared
with deterministic approaches. We systematically investigated the challenges
arising from the limited memory resources of regular joins for SFP systems. If
the partial bindings for the potential join partners exceed the memory we start
dropping partial results. Our findings enable an SFP to trade off completeness

67

versus resources. To ensure methodological correctness we followed the PCKS
approach [11] for defining stress tests for SFP systems.

As the relevant properties of an SFP system we identify completeness as a
Quality of Service constraint. The corresponding challenge we want to tackle is
the ability to handle bursts in the data. We therefore define recall as the key
performance indicator for the evaluations of the tests we performed in the scope
of this paper. In order to test the system we check how the system behaves under
restricted resources and under unrestricted resources.

In our experiments we compared our probabilistic methods based on the
matching likelihood of partial bindings with the first-in-first-out (fifo) deter-
ministic method as well as random load shedding. We show that our statistical
approach can outperform fifo and random load shedding both on simulated data
as well as on a real-world dataset of viewership behavior of IPTV users. The im-
provement ranges from 14% to 50% when using synthetic and real world data.

This remainder of this paper is structured as follows: next we formally specify
the context of SFP and then introduce our load-shedding approach. We then
evaluate our approach on synthetic and real world data in Section 3. After a
discussion of the results and limitations we present related work in Section 5
and conclude in Section 6.

2 Method: Likelihood-based Eviction of Partial Matches

This section first lays the formal groundwork for defining what eviction strategies
are. Then, it introduces our likelihood-based eviction strategy as well as the
baseline first-in-first-out (fifo) and random strategies.

2.1 Semantic Flow Processing

SFP rely on an algebra that modifies the SPARQL algebra for query matching
on flows of data. The result of an algebra operation is a set of variable bindings
consisting of a finite number of pairs ?var/val, where ?var is a variable name and
val is an RDF term. A query is a tree of algebra expressions where results (i.e.,
bindings) are propagated from the leaves to the root. An SFP system, hence,
consumes time-stamped RDF triples < s, p, o > [time] that are then consumed
(or evaluated) by the algebra operations defined in the query tree. Hereby the
system updates the bindings for all affected levels of the query tree and bindings
at the root level will be emitted as results.

In our discussions we rely upon the definitions of SPARQL and RDF as given
in the SPARQL-query specification [8]. Whilst we limit our discussions to joins
and aggregates our approach is by no means limited to these operations. A se-
mantic flow F is a finite set of time-stamped RDF triples. We denote algebra
expressions by α. The evaluation of an algebra operation α and a finite set of
variable bindings Ω on a semantic flow again produces a (possibly new/updated)

68

set of variable bindings eval(α,Ω,F) = Ω′. In a query tree all algebra expres-
sions consume variable (a semantic flow) bindings, perform the corresponding
operations, and then emit variable bindings.1

SPARQL query processing systems usually implement an iterator-based ap-
proach: since they know all relevant data beforehand, they can successively per-
form the algebra operations recursively and, hence, know a binding was com-
pletely processed by an algebra expression. A SFP system, in contrast, has
to keep its variable bindings to guarantee completeness. Consuming data in a
streaming fashion turns the execution model upside-down. Instead of recursively
processing all available data for each algebra expression we have to continuously
evaluate newly arriving data for all algebra expressions. Consequently, the alge-
bra expressions in an SFP have never finished evaluating all available data and
have to continuously maintain a list of corresponding variable bindings. Consider
the simple join of two graph patterns ?a ab ?b and ?b bc ?c, for example. As-
suming that the SFP system matched the first pattern with the binding variable
binding µ = {?a/a1, ?b/b1} it is not really possible to say if and when a match
for the second graph pattern might happen.

Keeping all variable bindings, however, will eventually exceed the system’s
memory resources and make processing unfeasible. Therefore, SFP systems typ-
ically limit the number of data they process by windowing, which limits the data
considered for computing partial matches to a given period of time or number
of triples. This allows to mark bindings with an an expiration time-stamp. A
garbage collection process can then remove those variable bindings that become
out-of-scope.

Unfortunately, windowing has its distinct problems. For example, queries
that require to match patterns that unfold over periods longer than a practical
window for example cannot be matched. In those cases there are two options:
First one can apply load shedding – an approach that drops data from the input
stream, for example by only considering every x-th data item for processing.
Load shedding is a well-established approach and we discuss its difference to
eviction in Section 5 along with related work.

Second, we may delete variable bindings instead of input data. In this paper
paper we investigate this alternative approach we refer to as eviction. It leaves
the input stream untouched but intermediate variable bindings get deleted to
make place for new ones. In the following we discuss this approach in detail.

2.2 Eviction: Dropping Variable Bindings

In order to limit memory usage of a SFP system we propose to use eviction, which
deletes partial binding from the processing tree. When deleting partial matches
(or shedding load in the input stream) we potentially sacrifice completeness. As
a consequence, it is imperative to understand what consequence eviction has on
completeness as a Quality of Service (QoS) criteria. In this study we, therefore,
compare the performance of the following eviction functions:

1 Note that the leaves of the tree typically consume F and that the root may emit
RDF data to a new flow F ′.

69

– random deletion,

– time-based deletion (e.g., delete the oldest bindings first), and

– data-driven deletion of bindings.

While the first is self-explanatory, the latter two require further explanation.

Time-Based Deletion Time-based deletion bases on the assumption that the
probability that a binding contributes to a result decreases with the amount of
time it stays in the bindings cache. Whilst we know of no empirical evidence that
this assumption holds for typical SFP benchmarks it is used in systems such as
SASE+ [7], where it is referred to as least-recently-used (LRU). 2

LRU can be implemented as a priority queue, which can be implemented via
a heap. Heap organization has a complexity of O(log n), where n is the number
of elements in the bindings cache.

Note that the actual performance of LRU can depend on the time model for
the bindings. A time model is either based on system time or on data time or
on both. Furthermore, an LRU eviction function must specify which time-stamp
of a binding it uses. This time-stamp can be the creation time of the binding or
the time it was last updated. In the scope of this work we use data time and the
time-stamp of the last update of the binding.

Data-Driven Eviction Data-driven eviction—the core contribution of this
paper—bases the eviction decision of a binding µ on the probability that µ con-
tributes to a result. This requires an estimation of the matching probability for
µ. To that end we introduce the notion of the transactional closure for a binding
µ in Section 2.3, which permits counting the number of results it contributed to
for a certain part of the stream data.

Probability estimation can be performed either online or offline. In the online
case the contribution probability has to be estimated along with the actual query
processing, which is a prerequisite in cases where the data cannot be stored for
offline analysis. In this paper we assume that we can compute the probabilities
offline and describe the method for estimating the probabilities in Section 2.4.

When applying data-driven eviction on each operator’s binding locally it
requires the same computational effort as LRU.3 Akin to the LRU case, data-
driven eviction can be implemented using a priority queue. The only difference
is the comparison attribute which is now the matching probability rather than
the time-stamp. Global data-driven eviction strategies may require additional
effort (cf Section 2.5).

2 Note that in our case LRU gives the same result as fifo since we only forward fresh
bindings to next operator instead of performing updates on the current binding.

3 Assuming that the probabilities, as in our case, are computed offline and do not
influence the online processing effort.

70

2.3 The Transactional Closure

In order to evaluate the performance of any eviction or load shedding operator
we have to know whether deleting a data item or a variable binding impacts
the results. A query result emerges from applying a set of algebra operators. In
order to determine whether deletion of data items or variable bindings has an
impact on the results of a query we hence need to know all sequences in which
the application of a set of data items to the algebra operators of a query leads
to a result.

We now define the basics for computing all possible paths to all query results
for a flow F . Any result of a query is a variable binding µroot the root of the
tree of the query’s algebra expressions Tα∇oot . As such any of these root variable
bindings emerges from a sequence of application of algebra expressions from
Tα∇oot . As a result, for each µroot we have a finite set of sets of variable bindings.

We refer to this set as the transactional closure (µ)+α,F of the binding µ. Indeed,
we can define such a transactional closure recursively for all bindings for all
algebra expressions in Tα∇oot .

Having the definition of the transactional closure at hand we now investigate
what happens, if we delete some of the variable bindings from the transactional
closure. If we delete all entries from (µ)+α,F , then the variable binding µ will
never be created. In this study we want to know what impact any variable
binding µ′ ∈ (µ)+α,F has on the transactional closure of µ.

We assume that each algebra expression α maintains a bindings cache: the
finite collection of bindings, which we denote with Ωα. If we now delete a variable
binding µ′ from Ωα we would like to know which potential impact this deletion
has on the query results. We hence define the transactional closure with respect
to α, Ω, and F by (µ)+α,Ω,F . It inductively defines those variable bindings that
emerge from µ by applying α to 〈F , Ω〉. Let Rα,Ω,F be the result set of α for Ω
and F , then we call Rµα,Ω,F = Rα,Ω,F ∩ (µ)+α,Ω,F the result set of µ.

The bindings cache of an algebra expression contains different sets of variable
bindings. A join with n join partners, for example, has one setΩα,n for each of the
n join partners. In this study we assume that each of these sets can hold a limited
number of variable bindings, i.e., |Ωα,n| ≤ ωα,n, where ωα,n is the memory
available to store bindings. When the application of α on the flow F causes
some of these sets to exceed its limit (ωα,n), then we apply an eviction strategy
E that removes variable bindings from Ωα,n such that the above condition will
be fulfilled again.

2.4 Estimating Matching Probabilities

We estimate the selectivity of a variable binding µ by the number of results that
depend on µ. We define the probability that the result set of a variable binding
µ is non-empty as the above count normalized by the total number of results
with respect to the bindings cache:

71

Pr(Rα,Ω,F 6= ∅) =

∣∣∣Rµα,Ω,F ∣∣∣
|Rα,Ω,F |

Note that the choice of α designates for which biding cache ωα,n this proba-
bility is computed.

The above formula, hence, computes the probability that there exists a bind-
ing µ′ that bases on µ. If α is a query, then the above formula defines the
probability that µ contributes to a query’s root result.

In some cases it is possible that a binding µ′ originates from two different
upstream bindings. Consider, for example, the following operation joining two
identical basic graph patterns BGP (?x P Y). Here, any binding µ = {?x/X}
could originate from the first or the second triple pattern matching:

JOIN(BGP (?x P Y), BGP (?x P Y))

For the computation of the probabilities we count both original variable
bindings.

2.5 Eviction Strategies: Local vs Global Approaches

A local eviction strategy operates locally on the binding cache of each operator.
A global eviction strategy, in contrast, operates on all binding caches together,
attempting to optimize the overall global performance. In other words, for a
local eviction strategy all ωα,n are fixed whereas a global eviction strategy has
the additional constraints that

∑
α

∑
n ωα,n ≤ ω for all ωα,n. A global eviction

strategy hence requires to also solve (or approximate) a constraint optimization
problem. Since it is our goal to show that data-driven eviction can lead to supe-
rior results over the other strategies we only have to show that one of the two
approaches offers advantages over the other, non data-driven ones. We, hence,
restrict ourselves to the simpler, local eviction strategy shown in Algorithm 1
and leave the global eviction strategy for future work.

Algorithm 1 Local eviction strategy for an algebra expression α = α1, . . . , αI ,
a flow F , a set of sets of variable bindings Ωαi,ni

, limits on these ωαi,ni

Apply F to 〈α,Ω〉
for all Ωαi,n do

if |Ωαi,n| > ωαi,n then
eviction(Ωαi,n)

end if
end for

72

3 Evaluation

The main working hypothesis of our paper is that eviction based on the match-
ing likelihood can outperform the fifo and random dropping approach of variable
bindings. We therefore have to estimate the matching likelihood. This in turns
required implementing the transactional closure in order to be able to compute
the counts on which the matching likelihood is defined. In order to calculate
the matching likelihood, we implemented an ”oracle”. This oracle allows to re-
trieve the cardinality of complete matches in the future. The oracle assumes
that required bindings are not been evicted by other join operators. With this
oracle we can compute the probabilities as proposed in Section 2.4. We will test
probabilistic eviction with probabilities learned from past data in future studies.
Please find the discussion of this limitation in Section 4.

In this section we evaluate our approach governed by the above hypothesis.
We therefore compared the performance of our likelihood eviction with the fifo
and random strategies with respect to recall as the key performance indicator
(KPI).

3.1 Experimental Setup

We performed our experiments on a synthetic and a real world data set. We used
the same query that performs the following join:

SELECT ?a ?b ?c ?d

WHERE {

?a ab ?b .

?b bc ?c .

?c cd ?d .

}

We considered joins without sequential or temporal constraints, because of
memory constraints. Our goal was to compute the recall for all potential bind-
ings. Computing the transactional closure for joins requires an exponential num-
ber of traces which matching originated from which variable bindings. We discuss
this limitation in Section 4.

We performed the experiments considering local eviction. We tested the three
different eviction strategies with bindings caches which we increased exponen-
tially. We chose sizes as multiples of 10. The reason for this is that calculating
matching statistics is currently a time consuming process and therefore we choose
an exponentially increasing size of cache in the evaluation.

For the comparison we assumed the same time for determining whether an
element was subject to eviction or not. This holds true for fifo and statistical
eviction, as they both keep a cache where the elements to be evicted have to
be sorted out. We can achieve this by applying Heap-Sort. We assume that the
number of elements to be dropped by eviction to be constant in relation to the

73

size of the bindings cache. This way each eviction step is bounded by O(log(n))
where n is the size of the bindings cache.

All experiments were conducted using the UZH Katts Semantic Flow Pro-
cessing engine.4 While we simulated an uniform distribution of results for the
synthetic dataset we used anonymous IPTV viewership logs and joined them
with Electronic Program Guide data. The data was gathered in the scope of the
ViSTA-TV project.5 For our experiments we used a data sample from Aug 1st,
2012. The sample comprised about 300’000 events in total for the user log and
the EPG data. We thereby only considered such properties that also occur in the
query. For the above mentioned exponential explosion for tracing the matching
we limited ourselves to a subset comprising 10’000 events.

To retrieve the exact matching probabilities for the bindings we stored those
statistics in a sqlite3 in memory database. However, updating the matching
probability for each binding every time unit (every time unit can change the
likelihood of a match for a binding) is a very time expensive process. Therefore
we updated the probability for each binding only once, namely when we added
it to the bindings cache.

The following configuration was used to run all our experiments: 2 Quad-core
Intel(R) Xeon(R) CPU X5570@ 2.93GHz, 72GB of RAM, 4 TB of disk space,
running Fedora Core 12 kernel 2.6.32.14 64bit.

3.2 Results

As Figures 1-2 show, our likelihood based eviction approach always outperforms
fifo and random eviction. The difference for the synthetic data set decreases
with increasing size of the bindings cache from 50% to 10% difference. In the
real world data set the differences in recall increases from 14% to 29% for the
10’000 events data set and for the 1’000 events data set we can observe a decrease
from 32% to 14%.

We see that for the extreme size of the binding cache, we always obtain 100%
recall for all approaches. We evaluate the overall performance of our approach
by the recall measured for the bindings cache size that can hold up to 10% of
the bindings of the cache for which we get 100% recall. While the matching
likelihood based eviction performs very good on the synthetic data set (up to
91% recall with bindings cache of 10% relative of 100% performance limit), it
performs not as good for the real-world data set (up to 60% recall with bindings
cache of 10% relative of 100% performance limit).

4 Discussion

Experimental Results The results of our study indicates that likelihood based
eviction can outperform fifo and random. This was the case for all experiments we

4 KATTS is a recursive acronym for Katts is A Triple Torrent Sieve and is accessible
via GitHub at https://github.com/lorenzfischer/katts

5 http://vista-tv.eu

74

100'000100 50'000

1

0

0.2

0.4

0.6

0.8

Fringe Size
Re

ca
ll

Prob

Fifo

Rand

(a)

100 1’000 10’000 100’000

fifo 0 (0%) 616 (9%) 3065 (46%) 6718 (100%)
random 41 (1%) 468 (7%) 2578 (38%) 6718 (100%)

prob 3425 (51%) 5642 (84%) 6144 (91%) 6718 (100%)
ground 6718 (100%) 6718 (100%) 6718 (100%) 6718 (100%)

(b)

Fig. 1: Recall Generated Dataset with 145’000 events.

conducted. The relative difference between is larger for the synthetic data than
for the real world data set. We think that our approach was able to better predict
the matching likelihood for synthetic dataset as it was generated following some
uniform distributions. Nevertheless an eviction strategy based on the matching
likelihood seems to be a promising approach.

We also found that there is a relation between the size of the bindings caches
and the recall. The larger the bindings cache the higher the recall. While this
result seems not very surprising it yet indicates that future research will have
to be performed finding out the exact size of the bindings cache such that the
recall becomes 100%. Such research would also investigate at which cost an
improvement of the recall using eviction strategies comes.

Shortcomings The most important shortcomings of our study are the limited
number of data items we could process and the restriction to a query consisting
of a regular join. The limitation to the small number of data items is caused
by the exponential number of possible traces from variable bindings to results.
Research on more complicated queries and larger data sets has hence to be
performed online. This, in turn makes an exact calculation of the matching
statistics infeasible. Therefore one has to learn the matching statistic which we
tackle in our future work.

In this study we hence concentrated on investigating how well likelihood
based eviction works in —principle, compared to fifo and random eviction. We
are currently investigating how to best estimate the matching likelihood on the
go, i.e., along with the processing of incoming data. Future experiments will

75

100010 200 400 600 800

1

0

0.2

0.4

0.6

0.8

Fringe Size
Re

ca
ll

Prob

Rand
Fifo

(a)

10 100 1’000

fifo 0 (0%) 3 (14%) 22 (100%)
random 0 (0%) 6 (27%) 22 (100%)

prob 7 (32%) 9 (41%) 22 (100%)
ground 22 (100%) 22 (100%) 22 (100%)

(b)

Fig. 2: Recall ViSTA-TV Dataset with 1’000 events.

hence systematically investigate different types of algebra expressions. These
include aggregates but also joins with sequential and temporal constraints, as
these are more typical for SFP systems. We believe that likelihood based eviction
can help most for such cases where a lot of variable bindings are produced, e.g.,
in the case of aggregates, in particular for non-shrinking semantics.

Our simulation did not investigate response time or throughput but recall.
While we showed that matching likelihood based eviction outperforms determin-
istic approaches like fifo and random eviction in terms of recall, we will investi-
gate at which costs this comes for the former two KPIs. As in the previous case
we will have to then estimate the statistics online rather than offline. Following
the PCKS paradigm [11] are working on implementing tests for determining how
well our approach works for bursts in the data.

In this study we considered a purely local eviction strategy. It would be
interesting to see the effect of global constraints. We are currently investigating
how to add these to statistical eviction. This requires a well-defined optimization
strategy carefully balancing the relation between local and global constraints.

5 Related Work

Research related to this paper roughly covers three areas: Semantic Flow Process-
ing, selectivity estimates on flow-data, and load shedding for IFP/SFP systems.
In the sequel we discuss how our work relates to each of these.

76

10'00010 5000

1

0

0.2

0.4

0.6

0.8

Fringe Size
Re

ca
ll

Prob

Rand
Fifo

(a)

100 1’000 10’000

fifo 39 (4%) 290 (31%) 943 (100%)
random 27 (3%) 297 (31%) 943 (100%)

prob 164 (17%) 567 (60%) 943 (100%)
ground 943 (100%) 943 (100%) 943 (100%)

(b)

Fig. 3: Recall ViSTA-TV Dataset with 10’000 events.

5.1 Semantic Flow Processing

C-SPARQL [4] performs query matching on subsets of the information flow
defined by windows. The decidability of SPARQL query processing on such finite
sets of RDF triples causes the number of variable bindings produces to be finite.
Their number may still become prohibitively large, for example, when using
non-shrinking semantics for aggregates [3]. Since the execution is performed on
traditional SPARQL engines, we may apply our approach, for example as a filter
for iterator-based implementations such as Jena.6

EP-SPARQL [1] is a complex event processing system which extends the ETALIS
system by a flow-ready extension of SPARQL for query processing [1]. It pro-
vides a garbage collection facility which can “prune outdated events” or “expired
events by using periodic events, generated by the system”. ETALIS is a prolog
engine which seriously hampers the applicability of our approach to ETALIS
engine. Note however, that EP-SPARQL may be implemented on other engines,
e.g., CQUELS, too.

CQELS [10] “implements the required query operators natively to avoid the
overhead and limitations of closed system regimes”. It optimizes the execution
by dynamically re-ordering operators, because “the earlier we prune the triples
that will not make it to the final output, the better, since operators will then
process fewer triples”. This pruning does, however not make any guarantees

6 https://jena.apache.org/

77

about the number of variable bindings created by the processors. Our method
should be directly applicable to CQUELS as it provides a native implementation
of the operators and these operators maintain a list of active variable bindings.

5.2 Selectivity Estimates

Selectivity estimates for optimizing the execution of SPARQL queries were first
investigated by [12]. These are not directly applicable to our approach. Selectivity
estimates for SPARQL query optimization base on the selectivity of predicates
whereas we are interested in the matching likelihood of variable bindings. More
related to our work is the operator scheduling of CQELS [10]. They propose to
choose the next operator to execute according to the likelihood that the operator
leads to a positive result. They, however, base the decision on heuristics. It would
be very interesting to see what effect applying our matching likelihood would
have on the performance of CQELS.

To the best of our knowledge, no approach estimates the matching likelihood
of bindings to determine their selectivity.

5.3 Load Shedding

Load shedding has been applied to information flow processing. Approaches
like [6, 2, 13] perform load shedding by dropping tuples from the stream, i.e.,
dropping data instead of variable bindings. In contrast to a Complex Event
processing (CEP) system they assume a Data Stream Management System, i.e.,
a set of triples with a relational database execution engine.

An approach we found that follows a similar idea is SASE+ [7]. SASE is has
an automata based matching approach which can be considered similar to vari-
able bindings in our case. They do apply some eviction strategy. Yet, they base
their eviction on a deterministic approach that is similar to our implementation
of fifo.

Another approach that resembles our work is proposed in [6]. They perform
a simple equi-join on two incoming streams and evict tuples which are less likely
to find a join partner. However, the approach in [6] works with a sliding window
and with a single equi-join of two streams.

Note that applying a window to the flow of RDF triples can be considered
dropping tuples, too. As such all approaches that implement a window on the
incoming data effectively offer the window as a load shedding strategy.

6 Conclusion and Outlook

In this paper we proposed to perform load shedding by eviction, i.e., by drop-
ping variable bindings rather than by dropping tuples. While the latter is a
well-established technique for Data Stream Management Systems, for CEP our
approach is the first that applies (i) load shedding by eviction and (ii) bases

78

the decision on the matching likelihood of a variable binding rather than on a
heuristic.

Our experiments show that eviction is a promising strategy for regular joins
for event-driven Semantic Flow Processing systems. We outperform the usually
used deterministic approach first-in-first-out by up to 51% recall.

While our approach is currently investigating recall as the only key-performance
indicator (KPI) we are confident that we will be able to show that the match-
ing likelihood also performs better than deterministic approaches when different
Quality of Service (QoS) constraints require testing a combination of recall with
other KPIs such as response time.

Future work will concentrate on extending the algebra expressions to joins
with sequential and temporal constraints. We believe that the solution for load
shedding will have to incorporate statistical information from the data flow and
the query log. We will also investigate how the matching likelihood can be learned
from the stream on-the-go.

In the future we will also plan to evaluate our approach with standardized
queries and data as proposed in [14] or [9].

We are convinced that only systematic investigations on the relation between
using windows and likelihood-based eviction for load shedding will reveal this
solution from the data.

References

1. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. In: Proceedings of the 20th International
Conference on World Wide Web. pp. 635–644. ACM (2011)

2. Babcock, B., Datar, M., Motwani, R.: Load Shedding for Aggregation Queries
over Data Streams. In: Proceedings of the 20th International Conference on Data
Engineering. pp. 350—-. ICDE ’04, IEEE Computer Society (2004)

3. Barbieri, D., Braga, D., Ceri, S.: Incremental reasoning on streams and rich back-
ground knowledge. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuck-
enschmidt, H., Cabral, L., Tudorache, T. (eds.) The Semantic Web: Research and
Applications: 7th Extended Semantic Web Conference, ESWC 2010, Heraklion,
Crete, Greece, May 30 - June 2, 2010. LNCS, vol. 6088, pp. 1–15 (2010)

4. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL:
A Continuous Query Language for RDF Data Streams. International Journal of
Semantic Computing 4(1), 3–25 (2010)

5. Cugola, G., Margara, A.: Processing flows of information. ACM Computing Sur-
veys 44(3), 1–62 (Jun 2012)

6. Das, A., Gehrke, J., Riedewald, M.: Approximate join processing over data streams.
In: Proceedings of the 2003 ACM SIGMOD international conference on on Man-
agement of data - SIGMOD ’03. p. 40. ACM Press (2003)

7. Diao, Y., Immerman, N., Gyllstrom, D.: Sase+: An agile language for kleene closure
over event streams. Tech. rep., University of Massachusetts Amherst, Department
of Computer Science (2008)

8. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C (2011)
9. Le-Phuoc, D., Dao-Tran, M., Pham, M.: Linked stream data processing engines:

facts and figures. The Semantic Web– . . . 1380(24761), 1–12 (2012)

79

10. Le-phuoc, D., Dao-tran, M., Parreira, J.X., Hauswirth, M.: A Native and Adaptive
Approach for Unified Processing of Linked Streams and Linked Data. In: Aroyo,
L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist,
E. (eds.) The Semantic Web – ISWC 2011: 10th International Semantic Web Con-
ference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I. Lecture Notes
in Computer Science, vol. 7031, pp. 370–388. Springer Berlin / Heidelberg (2011)

11. Scharrenbach, T., Urbani, J., Margara, A., Valle, E.D., Bernstein, A.: Seven Com-
mandments for Benchmarking Semantic Flow Processing Systems. In: Proc.ESWC
2013 (to appear). pp. 1–15. No. 296126 (2013)

12. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL Basic
Graph Pattern Optimization Using Selectivity Estimation. In: Proceedings of the
17th International World Wide Web Conference (WWW). ACM (Apr 2008)

13. Tatbul, N., Çetintemel, U., Zdonik, S., Cherniack, M., Stonebraker, M.: Load Shed-
ding in a Data Stream Manager. In: 29th International Conference VLDB. vol. 54,
pp. 309–320. VLDB Endowment (2003)

14. Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.p.: SRBench : A Streaming RDF
/ SPARQL Benchmark. In: The Semantic Web - ISWC 2012: 11th International
Semantic Web Conference, ISWC 2012, Boston, MA, USA, Nov 12-14, 2012, Pro-
ceedings (2012)

80

Scalable Linked Data Stream Processing via
Network-Aware Workload Scheduling

Lorenz Fischer, Thomas Scharrenbach, Abraham Bernstein

University of Zurich, Switzerland?

{lfischer,scharrenbach,bernstein}@ifi.uzh.ch

Abstract. In order to cope with the ever-increasing data volume, dis-
tributed stream processing systems have been proposed. To ensure scal-
ability most distributed systems partition the data and distribute the
workload among multiple machines. This approach does, however, raise
the question how the data and the workload should be partitioned and
distributed. A uniform scheduling strategy—a uniform distribution of
computation load among available machines—typically used by stream
processing systems, disregards network-load as one of the major bot-
tlenecks for throughput resulting in an immense load in terms of inter-
machine communication.
In this paper we propose a graph-partitioning based approach for work-
load scheduling within stream processing systems. We implemented a
distributed triple-stream processing engine on top of the Storm realtime
computation framework and evaluate its communication behavior using
two real-world datasets. We show that the application of graph partition-
ing algorithms can decrease inter-machine communication substantially
(by 40% to 99%) whilst maintaining an even workload distribution, even
using very limited data statistics. We also find that processing RDF
data as single triples at a time rather than graph fragments (containing
multiple triples), may decrease throughput indicating the usefulness of
semantics.

Keywords: semantic flow processing, stream processing, linked data, complex
event processing, graph partitioning, workload scheduling

1 Introduction

In today’s connected world, data is produced in ever-increasing volume, velocity,
variety, and veracity [20]: sensor data is gathered, transactions are made in the
financial domain, people post/tweet messages, humans and machine infer new
information, etc. This phenomenon can also be found on the Web of Data (WoD),
where new sources are made available as linked data. In order to process these

? The research leading to these results has received funding from the Europ. Union
7th Framework Programme FP7/2007-2011 under grant agreement no 296126 and
from the Dept. of the Navy under Grant NICOP N62909-11-1-7065 issued by Office
of Naval Research Global.

growing data sources many have proposed the use of distributed infrastructures
such as Hadoop [20]. The batch-oriented synchronous nature of these solutions,
however, may not be suited to ensure the timeliness of data processing. To ad-
dress this shortcoming stream processing approaches based on information-flow
processing have been proposed [8]. These systems continuously ingest new data
as it arrives and process it online rather than storing it for batch-like processing.
This continuous processing puts a significant load on employed systems and is,
obviously, limited by the capacity of the employed hardware infrastructure.

To cope with increasing demands distributed stream processing systems have
been proposed, which usually ensure scalability by partitioning the data and
distributing the processing thereof to multiple machines. Note that deciding how
to partition the data and distribute the associated processing is a non-trivial task
and can have dire consequences on performance.

Distributed processes communicate with each other by sending messages
containing partial results of the overall processing task. Processes on different
machines communicate over the network and the resulting network load lim-
its scalability in two ways: First, network traffic is several orders of magnitude
slower than in-machine communication.1 Second, the bandwidth of each ma-
chine limits the amount it can possibly communicate to processes residing on
other machines. As a consequence, finding a good distribution strategy for dis-
tributed stream processing is crucial to ensure scalability. Note that the variety
and potential schemalessness of linked data further aggravates the problem as a
Semantic Flow Processing (SFP) systems (1) cannot rely on the schema for data
partitioning and distribution and (2) the triple-nature (rather than the reliance
on n-tuples or relations) of the underlying data model potentially further sub-
divides the smallest unit of data increasing the number of possible partitioning
(and hence, distributions).

As distributed stream processing becomes more important in many areas of
business and science, researchers have proposed various ways to schedule work-
load in such systems. Interestingly, we found no previous work that employs
existing graph partitioning algorithms to the problem of workload scheduling.

In this paper, we propose the use of graph partitioning algorithms to optimize
the assignment of tasks to machines: we regard the data-flow within an SFP
system as a graph, where the edges’ weight represents the required bandwidth
for information passing and the vertices’ weight represents the computational
load required to process incoming messages. Specifically, we operationalize the
edge weights as the number of messages sent from one process to another, based
on the two assumptions: first, that messages are approximately the same size,
and second the computational load to be proportional to the number of messages
received by a processing vertex, assuming further that all messages need the same
time to be processed on all tasks. We then use a graph partitioning algorithm to
optimize the distribution of processes to machines whilst addressing two possibly

1 Numbers from 2009: 500 times for latency, 40 times for bandwidth. See
http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf for
more details.

82

opposing goals: we try to minimize costly network messages whilst distributing
computation load as evenly as possible.

To evaluate our distribution approach we implemented an SFP system on
top of the Storm realtime computation framework.2 Our implementation allows
compiling certain SPARQL queries, modified for stream processing, to a Storm
topology. To enable parallelization of the processing functions the data flows in
the topology are partitioned using appropriate hash functions. Next we empir-
ically determine the weight of the nodes and edges, partition the graph, and
“schedule” the processes accordingly on machines. In our evaluation using two
real-world datasets we show that our graph-partitioning strategy can decrease
inter-machine communication substantially (by 40% to 99%) whilst maintaining
an even workload distribution, even using very limited data statistics.

The remainder of this paper is structured as follows: next we succinctly sum-
marize the most relevant related literature (Section 2) before introducing the
details of our approach (Section 3). This is followed by a description of our ex-
periments (Section 4), a discussion of the results in the light of its limitations
(Section 5), and an exploration of the implications and future work (Section 6).

2 Related Work

This study relates to (distributed) Information Flow Processing (IFP)3, Seman-
tic Flow Processing (SFP) [18], and workload scheduling. We provide an overview
of the most relevant work in these fields.

Information Flow Processing: The field of IFP is vast and a survey is beyond
the scope of this paper [15, 12, 8]. Here we only discuss the Aurora/Borealis [1,
2] systems, as they are most closely related to our research.
Aurora [1] lets the user specify a query using a set of operators (boxes), which are
connected by links (arrows). The Borealis system [2] extends Aurora to include—
among other things—the distribution of the workload across multiple machines.
Load distribution is achieved by query partitioning – the assignment of operators
(boxes) or a collection thereof (superboxes) to worker machines. This approach
has two drawbacks: First, it limits the degree of parallelism to the number of
boxes. Second, in its näıve setup, all information exchange between operators
goes over the network consuming enormous amounts of network bandwidth. The
only improvement to this strategy is to group operators onto the same machine.
Our approach, in contrast, proposes to improve load distribution through data
partitioning, where operators themselves are replicated across many machines.

Semantic Flow Processing: The C-SPARQL system [6] performs query matching
on subsets of the information flow defined by windows. For query matching on the
subsets it uses a regular SPARQL engine that is extended by some stream related

2 http://storm-project.net
3 The term Information Flow Processing has been suggested by [8] as the term Stream
Processing is ambiguous due to its usage by both the Complex Event Processing
(CEP) and the Data Stream Management Systems (DSMS) community.

83

features. A distributed version was implemented using Apache S4 platform;4 yet
with no particular scheduling strategy [9].

EP-SPARQL [4] is a complex event processing system, which extends the
ETALIS system with a flow-extension of SPARQL for query processing [4].
ETALIS is a Prolog engine for which no distributed version exists yet.

CQELS [13] “implements the required query operators natively to avoid the
overhead and limitations of closed system regimes”. It optimizes the execution
by dynamically re-ordering operators to “prune the triples that will not make
it to the final output” thus limiting processing. As the implementation makes
no assumptions about scheduling with regards to messages sent between algebra
components CQELS could benefit from a scheduler based on graph partitioning.

SPARQLStream[7] is a streaming extension to SPARQL that allow users to
query relational data streams over a set of stream-to-ontology mappings. The
language supports powerful windowing constructs and SRBench [23] uses it as
the default engine for evaluation.

INSTANS [17] and Sparkwave[11] are based on a RETE network. Both their
implementations are non-distributed implementation, yet very efficient. Both
stream querying systems support the RDF, and RDFS, and—in the case of
Sparkwave—OWL entailment. It would be interesting to investigate, to what
extent our approach could be built on top of a RETE-network.

Workload Scheduling: Earlier work on scheduling in stream processing concen-
trated on operator scheduling in wide area networks [16] and admission control
[21, 22], recent work also targets the usecase in which workload of a stream pro-
cessor in a compute cluster has to be scheduled [5].

SODA [21] is an admission control system and task scheduler for System S
[3]. The task scheduler within SODA is based on a mixed-integer optimization
program and also uses techniques from the network flow literature.

Pietzbuch et al. [16] present an decentralized algorithm that is geared towards
minimizing the overall latency of a stream processor whose operators are spread
out across a wide area network, while taking CPU load into account.

Xia et al. [22] map the problem of task scheduling to a multicommodity flow
network and present a distributed scheduling algorithm in which the amount of
communication between nodes is incrementally analyzed and reduced.

Aniello et al. [5] present two algorithms which are both geared towards re-
ducing the number tuples tranferred over the network of a storm cluster. Their
static ”offline” scheduler takes characteristics of the topology into account while
their ”online” scheduler collects network statistics, before optimizing the sched-
ule by moving nodes connected by hot edges, i.e. edges that exhibit high data
volumes, on the same server. Their evaluations conducted using a synthetic and
a real-world dataset show, that online-scheduling results in much lower latency
than static or uniform scheduling.

4 http://incubator.apache.org/s4

84

3 Problem Statement, Formal Definitions, and System
Description

In this section we provide the technical foundations for our study. These include
a brief introduction to the data- and processing models employed. Next, we in-
troduce the three concepts of data partitioning, scheduling, and load balancing
and how they affect the performance of a distributed system, before presenting
a formal problem description. We then show, how the multi-constraint optimiza-
tion problem of scheduling can be solved using a graph partitioning algorithm,
before we, finally, introduce the system we built to test our hypothesis.

3.1 Data- and Processing Model

A linked data stream processing system essentially continuously ingests large
volumes of temporally annotated RDF triples and emits the results again as data
stream. Such systems usually implement a version of the SPARQL algebra that
has been modified for processing dynamic data. In our case, we focus on a subset
of those defined in the queries of the SRBench benchmark [23]. The processing
model considered is a directed graph, where the nodes are algebra operators and
data is sent along the edges. Hence, each query can be transformed to a query
tree of algebra expressions – the topology of the processing graph.
While the system consumes temporally annotated RDF triples (< s, p, o > [ts],
where ts denotes the time-stamp), internal operators in the topolgy consume
and emit sets of variable bindings when performing the operations associated
with the respective operator. These variable bindings comprise a finite number
of variable/value pairs ?var/val, where ?var is a variable name and val is an
RDF term. Note that source operators (i.e., the input to the topology) consume
timestamped RDF triples instead of bindings and output operators may also
output RDF triples if so specified by the query.

3.2 Scheduling, Data Partitioning, and Load Balancing

In order to scale the system horizontally (i.e., executing its parts on multiple pro-
cessing units concurrently) we may replicate parts (or the whole) of the query’s
topology and execute clones of the operators in parallel. We refer to these clones
as tasks or task instances. Hence, each operator will be instantiated as a finite
number of n tasks (where n ≥ 1). These task instances, and thus the workload of
the system, can then be distributed across several machines in a compute cluster.
We refer to the assignment of tasks to machines as scheduling. Figure 1 shows an
example operator topology and one possible schedule distributing tasks to two
servers of a compute cluster. As there are now multiple instances of each operator
of the topology the data needs to be partitioned in accordance to the operator’s
needs. For stateless operators, such as filters or binders, it does not matter which
variable bindings they receive for processing. For stateful operators, in contrast,
such as aggregators or joins, the system needs to provide some guarantees about

85

Server 1 Server 2

to1

tb1tb2

to2

tb3

tg1 tg2 tg3

Topology

Bo

Bb

Bg

gr
ou
pi
ng

gr
ou
pi
ng

Fig. 1. A topology for an example query with three operators or algebra expressions
(left side) and a possible schedule with eight tasks distributed over two servers (right
side). Data flows from top to bottom. Green (solid) arrows indicate fast intra-machine
communication; red (dashed) arrows indicate costly inter-machine communication.

what data gets delivered to which task instance. To this end, a topology config-
uration contains grouping strategies (or information about the data partitioning
function) on the edges between operator nodes (see also Figure 1 on left).

In this study we assume the number of messages sent between the machines
as the key performance indicator (KPI). This is seems to be a prudent choice,
as the network can become a bottleneck of a distributed system that needs to
scale horizontally. We acknowledge that our choice has limitations and therefore
provide a discussion in Section 5.

Given these definitions the goal of our approach is to find a schedule (i.e.,
assignment of tasks to machines) for a given topology that minimizes the total
number of data messages transferred over the network, whilst maintaining an
even workload distribution across machines in terms of CPU cycles.

To achieve this goal we partition the data into logical units. We then re-
group these using graph-partitioning which provides us with an optimization
procedure to minimize the number of messages sent between machines. As a
result, we propose the following hypothesis: Combining data partitioning between
tasks with a scheduler that employs graph partitioning to assign the resulting task
instances outperforms a uniform distribution of data and tasks to machines.

Our hypothesis assumes that different distribution strategies significantly in-
fluence the number of messages sent between the machines. Most stream process-
ing platforms attempt to uniformly distribute compute loads possibly incurring
high network traffic. Approaches like Borealis schedule the processors according
to the structure of the query, where every operator is is assigned to one ma-
chine. This approach has an upper limit in parallelization equal to the number
of operators and may incur high network traffic between to machines containing
active operators. Instead we propose to parallelize the operators and minimize
network traffic allowing for more flexibility for distributing the workload. Most
importantly, we propose that the scheduling strategy should optimize the amount
of data sent between machines.

86

3.3 Formal Problem Description

In principle, a linked data stream processing system can be conceived as a query
graph QSFP =< Op,MC >, where Op is a finite set of operators opi (i.e.,
Op = ∪Ii=1opi) and each opi executes one or more algebra operations. The flow
of information between the operators is established by a set of edges mc ∈
MC (message channels) that denote a flow of messages (time-stamped variable
bindings µ[ts]) between the operators (opi).

Since we want to enable parallelism and distribution each operator is instan-
tiated in parallel as a finite number of tasks Topi

= ∪Ji
j=1ti,j , where Ji denotes

the degree of parallelism of opi. We refer to the set of all tasks as

T = ∪Ii=1Topi = ∪Ii=1∪
Ji
j=1ti,j

Furthermore, each message channel mc ∈MC is instantiated via a finite set
of channels cij ∈ C that connect the tasks ti, tj ∈ T . Specifically, connected
tasks send messages, i.e., time-stamped variable bindings µ[ts] to each other.

Thus for each query graph QSFP there exists a parallelized Task Graph
TG =< T,CT >, where in addition to the mapping of each task to exactly
one operator (as specified above) each channel c ∈ C maps to exactly one mc
and each mc has at least one c to ensure connectivity. Hence, to ensure a cor-
rect mapping we require that ∀opa, opb,mcopa,opb

: ∃ta,j , tb,j , cta,j ,tb,j , where (i)
mcopa,opb

is a message channel that connects opa and opb, and (ii) cta,j ,tb,j con-
nects the corresponding tasks. In addition, we require that ∀ta,j , tb,j , cta,j ,tb,j :
∃exactly oneopa, opb,mcopa,opb

to ensure the one-to-n mapping of operators and
message channels to tasks and channels.

Graph Partitioning A partitioning divides a set into pairwise disjoint sets.
In our case we want to partition the vertices of a graph G = (V,E) with a
finite set of vertices V and a finite set of edges E ⊂ V × V . A partitioning
P = {P1, . . . , PK} for V separates the set of vertices such that

– it covers the whole set of vertices:
⋃K

k=1 Pk = V and

– the partitions Pk are pairwise disjoint:
⋂K

k=1 Pk = ∅

In addition, we denote (i) a partitioning function by part : V → P that assigns
every vertex v1, . . . vl the partition Pk ∈ P it belongs to, (ii) a cost function by
cost(P) ∈ R, which denotes some kind of cost associated with the partitioning
that is subject to optimization, and (iii) a load imbalance factor stdv(P) that
ensures that the workload of the tasks is evenly distributed over the machines.

We can easily map our problem of minimizing the number of messages that
are sent between machines to a graph partitioning problem with a specific cost
function. First, we define the graph to be partitioned as the Task Graph TG. A
partitioning of TG maps each task to exactly one machine.

Second, in our case the cost function to minimize is the number of messages
sent between machines. We operationalize the cost function for the network traf-
fic as cost(P) =

∑K
k=1 cost(Pk). Each cost(Pk) denotes the cost of transmitting

87

messages, i.e. the bindings, across the network to a task situated in partition
Pk. Hence, we increment the cost for cost(Pk) by one, iff a message is being
sent from task t1 to t2 and the two tasks are not in the same partition, i.e.
part(t1) 6= part(t2) and t2 ∈ Pk.

Third, when optimizing the costs for the partitions we add the constraint
that the partitions shall be balanced with respect to the computational load.
We approximate the computation load for a partition by counting the number
of messages that are sent over a channel for which task t is the receiving task:
load(Pk) =

∑
cta,tb

∈C count(m) iff part(tb) = Pk, where m ∈ M is a message

sent over channel cta,tb . Note that we count all incoming messages for each task,
regardless of wether they had to be transferred over the network or not, as they
have to be processed and hence consume computation power in both cases.

In order to make optimal use of the available resources, a balanced load
distribution is desirable. The standard deviation stdv(P) of the load for all
partitions shall hence not exceed a certain threshold C:

C < stdv(P) =

√∑
p∈P (load(P)

K − load(p))2

K

All graph partitioning in this paper were computed using the METIS algorithms
for graph partitioning [10] – a well established graph partitioning package.

3.4 KATTS

In order to test our hypothesis we built a research prototype of a distributed
linked data stream processing engine called KATTS .5 In order to keep the pro-
gramming overhead minimal, we chose to build our system on top of the Storm
realtime computation framework.6 While our current prototype is built using
Storm it is important to note, that our findings are not only valid in the context
of Storm, but for any system that uses partitioned data streams.

A Storm application is a graph, consisting of compute nodes that are con-
nected by edges. Edges are configured using a partitioning function or grouping
strategy. Using the abstractions of Storm we implemented a set of stream oper-
ators, a configuration environment, and a monitoring suite. Topologies can be
specified using XML and will output the sending behavior of the topolgy: the
communication graph. In addition to input operators that read time annotated
n-triple files and an output operator, the current set of supported operators con-
tains an aggregation operator (min, max, avg), a filter operator, a bind operator,
and a temporal join operator. Every incoming edge of each consuming operator
can be configured with a grouping strategy. If no grouping strategy is configured
local or shuffle grouping will be used.7 We always used the field grouping strat-
egy, which partitions the data based on the value of a tuple field (i.e., the value

5 KATTS is a recursive acronym for Katts is A Triple Torrent Sieve. The code will
be made accessible at https://github.com/uzh/katts upon publication of the paper.

6 http://storm-project.net
7 https://github.com/nathanmarz/storm/wiki/Concepts#stream-groupings

88

of a variable). For partitioning Storm uses the hashCode() method of the field
value, which in our case is an object of type java.lang.String.8 In addition to the
configuration parameters of the particular node implementation, each node of
the topolgy can be configured with a value that defines its degree of parallelism,
which is the number of task instances that should be created for this operator.

The monitoring suite has two main components: (1) a data collection facility,
which records communication behvaior, and (2) a runtime monitoring component
that keeps track of the number of input sources the system is receiving data from.
When all sources have been fully processed, the data aggregation process will be
executed and the topology as well as the Storm cluster will be halted.

4 Evaluation

In this section we evaluate if our proposed strategy is indeed better in terms of
network load whilst maintaining a comparable host load when compared to a
baseline strategy of trying to attain a uniform distribution of load. To that end
we first present the experimental setup and then present the results.

4.1 Experimental Setup

Datasets We evaluated our system using two example queries that are built
around a real world streaming use case: SRBench [23], which works with streams
of weather measurements, and an open government dataset, which we collected
through public sources.

SRBench is an RDF/SPARQL streaming benchmark consisting of weather ob-
servations about hurricanes and blizzards in the USA during the years 2001 and
2009 and contains 17 queries on LinkedSensorData,9 which originated from the
MesoWest project of the University of Utah.10 Given that our approach only
implements joins, simple aggregates, and triple-pattern matching, we restricted
ourselves to Q3, which searches for weather stations observing hurricane-like
condition. These are defined as “a sustained wind (for more than 3 hours) of at
least 33 m/s or 74 mph.” Without the prefix declaration a C-SPARQL [6] like
version of this query would look as follows:11

ASK
FROM STREAM <http ://www. cwi . n l /SRBench/ observat ions> [RANGE 3h STEP 1h]
WHERE {

? observat ion om−owl : procedure ? sensor ;
om−owl : observedProperty weather : WindSpeed ;
om−owl : r e s u l t [om−owl : f l oa tVa lue ? value] .

}
GROUP BY ? sensor
HAVING (MIN(? value) >= ”74”ˆˆ xsd : f l o a t)

8 http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#hashCode()
9 http://wiki.knoesis.org/index.php/LinkedSensorData

10 http://mesowest.utah.edu/index.html
11 We employ a minimum aggregate rather than the average value used in

http://www.w3.org/wiki/SRBench, as we think the word ”sustained” means that
the wind speed has to be ”at least” 74 miles per hour and not ”on average”. We also
use a step size of 1 hour instead of 10 minutes.

89

A FR OSRB Q3:

A BT
O

C
J

OpenGov: F

Fig. 2. The topologies for Query 3 of the SRBench and the OpenGov query.

The resulting topology has four processes depicted in Fig.2: First, the reader
node (R) reads the incoming stream and scans it for the triple patterns contained
in the where-clause. Second, the matched bindings are then sent to the aggregator
node (A), which creates the minimum aggregate over the temporal window of
three hours and a step size of one hour. Third, the output of the aggregator is
then sent to the filter node (F), which filters all occurrences that are smaller
than 74 mph and sends all remaining instances to the output node (O). Finally,
the output node writes the occurrences into a file on disk.

OpenGov Dataset: To complement the regular setup of SRBench, which consists
mostly of weather station measurements, we gathered a second data set, which
combines data on public spending in the US with stock ticker data.12 We devised
a query that would highlight (publicly traded) companies, that double their stock
price within 20 days and are/were awarded a government contract in the same
time-frame. This query requires the system to scan two sources, aggregate/filter
values, and finally join certain events that may have a causal relation to each
using a temporal condition. The C-SPARQL representation of the query, for
example, looks as follows:

REGISTER QUERY PublicSpendingStock AS
SELECT { ?company name ?agency name ? con t r a c t i d ? min pr ice ?max price ? f a c t o r }
FROM STREAM <wrds . crsp / t i c k e r . t rd f> [RANGE 20 DAY STEP 1 DAY]
FROM STREAM <usaspending . org / cont rac t s . t rd f> [RANGE 20 DAY STEP 1 DAY]
WHERE { GRAPH <wrds . crsp / t i c k e r . t rd f> {

? t i c k e r i d wc :PRC ? t i c k e r p r i c e ;
wc :COMNAM ?company name ;
wc :TICKER ? t i cke r symbo l .

} UNION GRAPH <usaspending . org / cont rac t s . t rd f> {
? c on t r a c t i d us : agencyid ?agency name ;

us : obl igatedamount ? contract amount ;
us : vendorname ?company name .

}}
AGGREGATE { (? min price , MIN, {? t i c k e r p r i c e }) }
AGGREGATE { (? max price , MAX, {? t i c k e r p r i c e }) }
BIND (? max price / ? min pr ice AS ? f a c t o r)
FILTER(? f a c t o r > 2)

The resulting topology (Fig.2) first aggregates (A) the ticker-sourced (T) data to
compute the minimum and maximum over a time window of 20 days. It computes
the ratio between these numbers (B), and then filters those solutions where that
ratio is smaller than or equal to two (F). The remaining company tickers are
then joined (J13) with the ones that where awarded government contracts (C).
The joined tuples are then sent to the output node (O).
12 http://www.usaspending.gov, https://wrds-web.wharton.upenn.edu/wrds
13 We use a hash join with eviction rules for the temporal constraints.

90

Evaluation Criteria In accordance with the Properties-Challenges-KPIs-
Stress-tests (PCKS) paradigm for for benchmarking SFP systems [18] we tested
the performance of our Distributed Flow Processing System by choosing the
number of inter-machines network messages as a key performance indicator
(KPI). As a secondary performance indicator (SPI) we chose the uniformity
of load distribution as measured by number of messages received per machine.

Procedure We used the following procedure to measure the performance of our
approach. First, we took each dataset and partitioned it to 12 files (as we had
12 machines at our disposal). The two queries were compiled into the topologies
described above and instantiated to allow 48 tasks for each node that is neither
a reader nor an output node.14 We then recorded the number of messages that
were sent between tasks at runtime.
Second, to test our hypothesis we needed to partition the resulting communica-
tion graph based on the network load of each channel. Since the channel loads
are not known before running the query we chose two experimental scenarios. In
the first scenario we assume an oracle optimizer that would know the number of
messages that would flow along every channel. This scenario allows to establish
a hypothetical upper bound of quality that our method could attain, if it were
to have an oracle. In a second scenario we assumed a learning optimizer that
first observes channel statistics for a brief period of time and then partitions the
graph accordingly. To that end we sliced the SRBench data into daily and the
OpenGov data into monthly slices. We then measured the the performance of
our approach based on learning during the preceding one to three time-slices,
essentially providing a adaptively learning system.
Third, to partition the graph we employed METIS [10]. We used the gpmetis
in its standard configuration, which creates partitions of equal size, and only
changed the -objtype parameter to instruct METIS to optimize for total commu-
nication volume when partitioning, rather than minimizing on total edgecut.15

4.2 Results

The Suitability of Graph Partitioning for Scheduling The results of our
evaluation are shown in Figure 3, which plots the number of network messages
divided by the number of total messages as a measure for the optimality of the
distribution. As the figure shows on the left, the SRBench data can be optimally
partitioned by the id of the reporting weather station even when using only the
data of the immediately preceeding time slice (Prev.1). All further computation
can be managed on a local machine, as no further joins are necessary. This
clearly indicates that some queries can be trivially distributed when a good data
partition is either known or can be learned.

On the right we find the results for the OpenGov dataset. This evaluation is
not quite as clear-cut, as the join operation requires a significant redistribution of
messages. The results here are quite interesting. First, we find that our approach

14 As we we ran our experiments on machines with more than 12 cores, we were able
to achieve better capacity utilization by using more than 12 tasks per node.

15 We used v5.0.2 with default partitioning (kway) and default load imbalance of 1.03.

91

Fig. 3. Percentage of messages sent over the network for the uniform distribution and
the graph partitioned setup, using either the test data itself (oracle) or data from the
previous one to three time-slices as input for the graph partitioning algorithm.

Fig. 4. Average computation load distribution for all time-slices of each dataset.
RSD = Relative Standard Deviation

clearly outperforms the uniform distribution strategy by a factor of two to three.
Second, it is interesting to observe that even longer learning periods, using two
(Prev.2) and even three previous time slices (Prev.3), do not necessarily improve
the overall performance - maybe due to over-fitting or concept drift [19].

For the sake of brevity we only show data for three time-slices of each evalu-
ation in Table 1: on the left side again the results for the embarrassingly parallel
SRBench query, which shows a reduction in network usage by over 99%. The
right side of the table is more interesting as it exhibits the gain of our approach
in a non-trivial case. Even for the OpenGov query, workload distribution using
a graph partitioning approach yields savings of network bandwidth of over 40%.

Balancing Computation Load Next to keeping the bandwidth usage to a
minimum, a distributed system must also make good use of the available compu-
tational power. For this reason we analyzed how many messages were processed
by all tasks on each host for the two queries. Figure 4 shows the results of this

SRBench Q3 August, 2004 OpenGov , 2001

Slice Uniform Oracle Prev.1 Slice Uniform Oracle Prev.1

Aug 9 1 0.7% 0.0% Feb 69,5% 29.0% 36.0%
Aug 10 1 0.0% 0.7% Mar 69,8% 32.1% 30.1%
Aug 11 1 0.0% 0.0% Apr 69,8% 37.7% 32.1%

Table 1. Percentage of messages sent over the network for the uniform distribution,
the partitioning based on the test data itself (oracle), and the preceeding time slice
(“Prev.1” in Table) as input for the graph partitioning algorith; three time slices each.

92

evaluation: The load distribution resulting from the graph partitioned task as-
signment only differs slightly from the one found by uniform task distribution
(average relative standard deviation [RSD] OpenGov : 7.04% for partitioning vs.
5.27% for uniform baseline; SRBench: 3.74% for partitioning vs. 2.68% for uni-
form baseline).

The Influence of Data Partitioning The results above are very encouraging.
One of the major limitations of our measurements, however, is that we assumed
that the data came partitioned into meaningful groups. Whilst this assumption
is often true in practice (the input from weather stations comes as grouped mes-
sages from one station, data about one stock usually arrives from one source,
etc.). But in some worst-case scenarios the data might be mixed (even if a total
random intermixing is unlikely). To investigate the robustness of our procedure
against this assumption we ran our approach under two different partitioning
regimes: first, we made sure to partition the data along a different hash function
that chosen by our system (which relies on the Storm hash partitioning) and sec-
ond, we ensured employing the same partitioning. The results of this sensitivity
analysis are shown in Figure 5 for the SRBench query, which graphs a Sankey
chart of the inter-task communication under both conditions, where the width
of the lines corresponds to the number of messages. As the figure clearly shows
the mixed hashing setting requires to reshuffle all data from the readers to the
processing nodes, while the equally partitioning setting provides a clean stream
setting. As a consequence, we can expect that badly pre-partitioned data would
not exhibit as good results as the ones we exhibited above.

5 Discussion and Limitations of the Results

The results shown in the section above show that using a graph partitioning algo-
rithm to schedule tasks instances on machines does indeed reduce the messages
sent over the network whilst only having a slightly less even load distribution.

Fig. 5. Two communication graphs (data flows from left to right)
Left: Input partitioned using different hash function than the one used by Storm.
Right: Input partitioned using identical hash function as the one used by Storm.

93

The first part of the finding could be seen as almost tautological: it could be
understood as showing that graph-partitioning using a well-establish algorithm
is better than a partitioning that ignores network traffic but “only” focuses on
load distribution. We believe, however, that there are subtle considerations that
are less than obvious.
First, the critical element is to realize that the operators can be parallelized with
an adequate data partitioning approach not to “just” use graph partitioning. It
is the interplay of the two partitionings that enables the graph partitioning to
find a good schedule: inadequate data partition can lead to highly suboptimal
schedules as the results about the influence of data partitioning show.
Second, the principle of finding the smallest possible partition given the desired
degree of parallelism (see also Section 3.2) seems important. How important
needs to be investigated. Whilst the idea seems simple its details are intricate
and required careful analysis—a task that we will have to continue in the future
by further exploring the interactions between data and graph partitioning and
devise an automated model for optimizing it.

One somewhat surprising outcome of our analysis is that the overall efficiency
of the system heavily depends not only on the consistent use of the same parti-
tioning function, but also on the compatibility of the values over which the data
is being partitioned. Using incompatible data partioning functions can result in
very poor performance as seen in section 4.2. If a topology contains operators
that partition over incompatible fields such as in the OpenGov query, graph par-
titioning is still useful, but much less effective as when working with compatible
fields. It is this observation which contains an interesting insight: linked data
stream processors should work with graph fragments rather than triples. “Natu-
rally” occuring graph fragments often contain interdependent graph elements.
If one pulls these fragments apart due to some partitioning function one might
have to gather them in a later join. Hence, it seems prudent to favor an approach
that leaves these fragment together if a later join is foreseeable.

Our current analysis is based on some underlying assumptions. First, we as-
sumed that some network statistics are available at the onset. Whilst this may
not always be given, our findings shows that even a small amount of statistics
seem to produce adequate schedules. Hence, it seems straightforward to start
with an uniform distribution and then apply an incremental graph partitioning
approach [14] improving the schedule during run-time.
Second, we assumed that the processing load (both CPU and RAM) is propor-
tional to the number of messages received (i.e., constant operator complexity).
Whilst this assumption is definitely true for some operators (e.g., computing the
average) others may require more computational effort. We intend to address
this issue in future work.
Third, we assumed that the query topology was given. Obviously, queries could
be translated to various topologies; each of which would require its own schedule.
Hence, it would make sense to combine our approach with a query optimizer –
a task beyond the scope of this paper.

94

Also, our current evaluation has some limitations. First, it is limited to two
datasets and queries. Whilst the queries seem representative of many settings
we have seen we intend to significantly extend our evaluation in the future in
terms of number of datasets and queries. Second, all our evaluations were run on
a cluster with 12 machines, 1GB ethernet, and 24 cores each. Obviously, we will
have to extend our evaluation to investigate the interactions between number
of machines and cores available and the degree of parallelism “granted.” Third,
we will have to run throughput-analyses in real-world setups in addition to our
current network analysis adding number of messages ingested per second as KPI.

6 Conclusion and Outlook

In this study we investigated whether and how scheduling the tasks of Dis-
tributed Semantic Flow Processing (DSFP) systems benefits from applying graph
partitioning. We implemented our approach on the Katts DSFP engine and eval-
uated it using a query of the SRBench benchmark and a usecase inspired by the
open government movement with regards to network load. The results show that
using a graph partitioning algorithm to schedule task instances on machines does
indeed reduce the number of messages sent over the network. We also found that
this only leads to a slightly less even load distribution.

The critical element for optimizing the scheduling using graph partitioning
is an adequate data partitioning for parallelizing the operators. Future work
will investigate whether the principle of finding the smallest possible data par-
tition given the desired degree of parallelism is as important as our experiments
indicate.

Our study’s most important shortcomings are its limitation to two datasets
and queries and the fixed setup of the distributed system. For the first we intend
to systematically extend our evaluation in the future in terms of number of
datasets and queries. For the latter, is it the interactions between number of
machines and cores available and the degree of parallelism that require further
research. Especially the impact of such interactions on throughput in terms of
messages ingested per second is of interest here.

We are confident that our findings help making DSFP systems more scalable
and ultimately enable reactive systems that are capable of processing billions of
triples or graph fragments per second with a negligible delay. It is our firm belief
that the key to addressing these challenges needs to and will have to be revealed
from the data itself.

Acknowledgements We would like to thank Thomas Hunziker, who wrote the
first prototype of the KATTS system during his master’s thesis in our group.

References

1. Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Erwin, C.,
Galvez, E., Hatoun, M., Maskey, A., Rasin, A., Et Al.: Aurora: a data stream
management system. In: Proc. of the 2003 ACM SIGMOD. pp. 666–666 (2003)

95

2. Abadi, D.J., Ahmad, Y., Balazinska, M., Hwang, J.h., Lindner, W., Maskey, A.S.,
Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.: The Design of the Borealis
Stream Processing Engine. In: Proc. CIDR2005. pp. 277–289 (2005),

3. Amini, L., Andrade, H., Bhagwan, R., Eskesen, F., King, R., Park, Y., Venkatra-
mani, C.: Spc: A distributed, scalable platform for data mining. In: Proc. Workshop
on Data Mining Standards, Services and Platforms, DM-SSP (2006)

4. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. In: WWW2011. pp. 635–644 (2011)

5. Aniello, L., Baldoni, R., Querzoni, L.: Adaptive online scheduling in storm. In:
DEBS2013 (2013),

6. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL:
A Continuous Query Language for RDF Data Streams. Int. J. of Sem. Comp. 4(1),
3–25 (2010)

7. Calbimonte, J.p., Corcho, O., Gray, A.J.G.: Enabling Ontology-based Access to
Streaming Data Sources. In: Proc. ISWC 2010 (2010)

8. Cugola, G., Margara, A.: Processing flows of information. ACM Computing Sur-
veys 44(3), 1–62 (Jun 2012),

9. Hoeksema, J., Kotoulas, S.: High-performance Distributed Stream Reasoning using
S4. In: First International Workshop on Ordering and Reasoning (2011)

10. Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partition-
ing Irregular Graphs. SIAM J. on Scientific Comp. 20(1), 359–392 (Jan 1998),

11. Komazec, S., Cerri, D.: Sparkwave: Continuous Schema-Enhanced Pattern Match-
ing over RDF Data Streams. In: DEBS 2012 (2012)

12. Lajos, J.F., Toth, G., Racz, R., Panczel, J., Gergely, T., Beszedes, A.: Survey on
Complex Event Processing and Predictive Analytics. Tech. rep., Citeseer (2010),

13. Le-phuoc, D., Dao-tran, M., Parreira, J.X., Hauswirth, M.: A Native and Adaptive
Approach for Unified Processing of Linked Streams and Linked Data. In: Proc.
ISWC 2011. vol. 7031, pp. 370–388 (2011)

14. Ou, C.W., Ranka, S.: Parallel incremental graph partitioning. Parallel and Dis-
tributed Systems, IEEE Transactions on 8(8), 884–896 (1997)

15. Owens, T.: Survey of event processing. Tech. Rep. December, Air Force Research
Laboratory Public Affairs Office (2007),

16. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer,
M.: Network-Aware Operator Placement for Stream-Processing Systems. In: Proc.
ICDE2006 (2006)

17. Rinne, M., Nuutila, E., Seppo, T.: INSTANS : High-Performance Event Processing
with Standard RDF and SPARQL. In: ISWC 2012 Post. & Demos. pp. 6–9 (2012)

18. Scharrenbach, T., Urbani, J., Margara, A., della Valle, E., Bernstein, A.: Seven
Commandments for Benchmarking Semantic Flow Processing Systems. In: ESWC
2013 (2013)

19. Vorburger, P., Bernstein, A.: Entropy-based Concept Shift Detection. In: Proc.
ICDM2006. pp. 1113–1118 (2006)

20. White, T.: Hadoop: The definitive guide. O’Reilly Media, Inc., 3 edn. (2012),
21. Wolf, J., Bansal, N., Hildrum, K., Parekh, S., Rajan, D., Wagle, R., Wu, K.L., Fleis-

cher, L.: SODA: An optimizing scheduler for large-scale stream-based distributed
computer systems. In: Proc. Middleware2008 (2008)

22. Xia, C., Towsley, D., Zhang, C.: Distributed resource management and admission
control of stream processing systems with max utility. In: Proc. ICDCS2007 (2007)

23. Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.p.: SRBench : A Streaming RDF
/ SPARQL Benchmark. In: Proc. ISWC 2012 (2012)

96

A Distributed Directory System

Fausto Giunchiglia and Alethia Hume

Department of Information Engineering and Computer Science
University of Trento, Italy

{fausto,hume}@disi.unitn.it

http://www.disi.unitn.it

Abstract. We see the local content from peers organized in directories
(i.e., on local ordered lists) of local representations of entities from the
real world (e.g., persons, locations, events). Different local representa-
tions can give different “versions” of the same real world entity and use
different names to refer to it (e.g., George Lombardi, Lombardi G., Prof.
Lombardi, Dad). Although the data from these directories are related
and could complement each other, there are no links that allow peers
to share and search across them. We propose a Distributed Directory
System that constructs these connecting links and allows peers to: (i)
maintain their data locally and (ii) find the different versions of a real
world entity based on any name used in the network. We evaluate the
approach in networks of different sizes using PlanetLab and we show that
the results are promising in terms of the scalability.

Keywords: Name-Based Entity Search, P2P, Entity Directory

1 Introduction

We see Internet as a network of peers (a P2P network) organizing their content
in directories, which digitally represent their own versions of entities that exist
in the real world. Entities can be of different types (e.g., person, location, event
and others), they have a name, and are described by attributes (e.g., latitude-
longitude, size, birth date), which are different for different entity types [1].
Different versions of an entity can represent different points of view, they could
show different aspects of the entity or the same aspects with different level of
details. In a way, the local representations from peers can be seen as pieces of
information about a particular entity that are stored in a distributed manner in
the network.

In this network, the different directories contain related data and, to some
extent, they can complement each other. One problem that prevents us from
exploiting the relation between these data is that there are no links connecting
the local directories from peers. An effort to connect related data on the web is
that of Linked Data1, which allowed linking important datasets like, dbpedia,
Freebase, DBLP, ACM, and others. Nevertheless, this approach leaves out of

1 http://linkeddata.org/

the semantic web the individual users (i.e., simple normal peers) and the data
from their local directories stored in personal devices (e.g., smart-phones, PDAs,
notebooks, etc.). We propose building a distributed directory that constructs the
connecting links among the local directories at this level, i.e., the level of simple
peers with personal devices. It it important to note that the whole directory
can be seen as another dataset, which could be included as another node in the
Linked Data graph. In this way, the directory would become the bridge that
allows simple peers to participate as part of the semantic web as opposed to act
only as consumers of it.

As in any directory, a peer normally identifies and distinguishes an entity
from others by means of names (e.g., George Lombardi, Trento, Italy, University
of Trento), which play a different role from the other attributes because they are
identifiers rather than descriptions [2]. The values of other types of attributes
have a meaning that can be understood, e.g., by mapping them to concepts
from a knowledge base, like WordNet2. Names, on the other hand, are strings
that behave similarly to keywords. Real world entities can be called by multiple
names as a consequence of variations and errors. Moreover, the set of names
used in different local representations to identify the same real world entity can
be different, at the same time that the sets of names used to identify different
real world entities can overlap.

The approach we propose for a Distributed Directory System (DDS) incorpo-
rates the notion of a real world entity described by different local representations
from peers. This notion is used to organize the references to the local represen-
tations in order to allow finding all the available information about entities. Our
system offers two main features:

– First, it takes into consideration that multiple, possible different, names can
be used to identify the same real world entity (e.g., George Lombardi vs. G.
Lombardi and Italy vs. Italia).

– Second, it allows peers to have control over the privacy of their data be-
cause the DDS stores only the names of the entity and a link to the local
representation.

As a result, any name that is used in some local representation to identify an
entity can be used to find all the different versions of that entity that are stored
in the network of peers.

The paper is structured as follows. Section 2 presents a motivating example
that shows a world of related directories, while Section 3 formalizes the basic
notions that link the different directories. In Section 4, we explain the name
matching problem that arises when linking different directories. Then, a dis-
tributed entity directory is proposed in Section 5 and the algorithms to perform
search in such directory are explained in Section 6. The implementation and
the evaluation details are discussed in Section 7. Finally, the related works are
discussed in Section 8 and the conclusions are presented in Section 9.

2 http://wordnet.princeton.edu/

98

2 A World of Directories

Nowadays, most of the organization of our data is done in terms of directories.
A well known and old example is the telephone book directory, used to organize
address and phone numbers of people and companies. Newer forms of directories
can be seen, for example, in contact lists, document directories, event directories
(i.e., calendars or agendas) used by peers in current devices (e.g., computers,
PDAs, smart-phones) to organize the local representation of entities of their
interest. Moreover, the data from different directories (possibly from different
peers) can be related. Different peers attending to the same event might store
local representations of the event. Each of them might also have the contact
information of the other peers attending to the event, e.g., a meeting.

Gerorge	 Lombardi	
home:	 0461444322	
address:	 Via	 Solteri	 15,	 Trento,	 TN	
mobil:	 3460087686	

Giulio	 A.	 Lombardi	
home:	 0461915923	

Lombardi,	 G.	
mobil:	 3460087686	
email:	 george@disi.unitn.it	

…	

Prof.	 G.	 Lombardi	
email:	 george@disi.unitn.it	

…	

WE	

URI:	 uri/enGty/1	

URLs:	 p1/enGty/2	
p2/enGty/1	
p3/enGty/9	

DE	

URL:	 p1/enGty/2	

Names:	 • Prof.	 G.	 Lombardi	

DE	

URL:	 p2/enGty/1	

Names:	 • Lombardi,	 G.	

Prof.	 G.	 Lombardi	

Lombardi,	 G.	

George	 Lombardi	

CONTACT LISTS

ENTITY DIRECTORY

DE	

URL:	 p3/enGty/9	

Names:	 • Gerorge	 Lombardi	

p1
p2

p3

Fig. 1. Contact Lists Example

Let us consider in details the example of contact lists in different devices from
the peers of a network that connects students, researchers and professors among
them (e.g., SmartCampus3), and with their family members. The first part of
Figure 1 (upper part) shows that the contact list of each device can be seen as
a local directory of people. Different peers in this network can have different
information about the people in their contact lists, like phone numbers, email
addresses, skype user and others, which show different ways to get in touch with
them. For example, suppose that p1 is a student that is taking a course with
prof. George Lombardi and therefore p1 has, in its contact list, the university
email address of the professor. A researcher p2 that is working with him could
have more information, like his email and mobile phone number. On the other
hand, a family member p3 may have his home address and phone number but
not the university email (because such information is not relevant for p3).

Now, suppose that another researcher in the network, let us call it p4, hears
about prof. Lombardi work and wants to contact him. We can see that:

3 http://www.smartcampuslab.it

99

1. First, the information that p4 needs is distributed in the network and the
problem is knowing where the different pieces are stored

2. Second, the different peers can call the same person using different names,
e.g., Prof. Lombardi, George Lombardi, G. Lombardi. In our example, this
means that p4 need to be sure that the other peers (i.e., p1, p2 and p3) are
all referring to the same person as he is.

3. Third, the contact information can change in time. The work email of Prof.
Lombardi will change if his affiliation changes, his phone numbers can change
at any time, and his address will change if he changes residence.

4. Finally, the privacy and the sensitiveness of the information have to be con-
sidered. Most likely the phone number and address of the home of prof. Lom-
bardi would be more private than the university email. As a consequence,
p3 will not share such information with everyone.

3 Linking Directories

We define a Directory of Entities that formalizes the links between data from
different directories through the distinction between a Digital Entity (DE) and
a Real World Entity (WE). A DE is defined as a local representation of an
entity that exist in the real world. A URL (Uniform Resource Locator) is used
in order to uniquely identify a DE and it can be used (by dereferencing) to
obtain the full local description (i.e., based on attributes). We also consider a
set of names {N} as the human readable identifiers used in DEs to refer to a
WE and distinguish it from others. Formally,

DE = 〈URL, {N}〉 (1)

On the other hand, a WE represents the real world entity and is modeled as
a class of DEs. We use a URI (Uniform Resource Identifier) to uniquely identify
each WE. Formally,

WE = 〈URI, {URL}〉 (2)

where {URL} is a non-empty set of identifiers of different DEs that describe
WE. As a consequence of the composition of these definitions we can see that
multiple sets of names are given to a WE through DE definitions from different
peers that describe the same WE.

In the second part of Figure 1 (lower part) we show how the example from
Section 2 can be formalized in terms of these notions (i.e., DEs and WEs). We
can see a one-to-one mapping between the WE from an entity directory and the
real person represented in different contact lists. Moreover, we see that an entry
from a contact list is translated into a DE in the directory (i.e., also a one-to-
one mapping). There is a one-to-many relation between WEs and DEs which
shows that each single entry in a contact list correspond to one person but one
person can be described in many different entries (possibly from different peers).
Finally, the relation between Names and WEs introduces a name matching
problem that is better discussed in the following section.

100

Note that these notions allow the separation between “what” is being rep-
resented and “where” is being represented. This separation is needed in order
to model the issues stated in items 1 and 2 from the example of Section 2. The
DEs model the different pieces of information that p4 needs and their URLs
tell us where they are. The WE models the link that connects different DEs
and its URI identify what they represented. Regarding item 2, we can see that
different sets of names are given in DEs, which models the fact that p1, p2 and
p3 can define the different names that they use to call an entity.

On the other hand, the distinction between the two notions (DE and WE)
also provide the infrastructure to deal with the issues introduced by the other two
items (i.e., items 3 and 4 in Section 2). The dynamism of the information about
the entities and the privacy of local data are constrained to affect DEs. In this
way, when the email of Prof. Lombardi changes (see Figure 1), p2 (the researcher)
updates its local representation (i.e., the DE). The corresponding WE definition
is not affected by this update, nevertheless the information (available in the P2P
network) about Prof. George Lombardi is updated. Similarly, access control can
be implemented over the data associated to each single DE representation, which
do not affect WE definitions. Note that such implementation (i.e., access control
implementation) is out of the scope of this paper, but the interested readers are
invited to see (for example) [3].

4 Name Matching

Names are human readable identifiers that serve the purpose of distinguish an
entity from others. They are labels composed by a combination of words, num-
bers and symbols [2]. In the context of our entity directory, we define the set of
names that identify a WE as the union of the names used in DEs that locally
represent that WE in different peers. Names are different from other attributes
because they play the role of keywords rather than been mapped to concepts
from a knowledge base. As such, names can suffer from different types of varia-
tions. Following the results from the study performed in [4], we can distinguish
among the following types:

– Format. The format variations have a strong dependence with entity type
and affect mostly to people names. They include the variation of the order
in which the words of a name can be written (e.g., George Lombardi and
Lombardi, George) and the multiple abbreviations that can exist for the
same full name (e.g., Giulio Augusto Lombardi can be abbreviated as G. A.
Lombardi, Giulio A. Lombardi and others). It is also important to notice that
the abbreviation of a name can be a valid reference to many different full
names (e.g., G. Lombardi is valid for George Lombardi but also for Giulio
Lombardi).

– Full translations. Names sometimes are written differently in different lan-
guages (e.g., Trento in Italian, Trient in German or Trent in English).

– Part-of translations. In other cases only one part of the name changes
in different languages. This is the case of names composed by common and

101

proper nouns, where the common noun is called trigger word in [4] and is
the only part that is affected by the translation (e.g., University of Trento
vs. Università di Trento).

– Misspellings. Names can be misspelled, either in the definition of a DE or
during the specification of a search query. The misspellings can be a conse-
quence of variations in the punctuation, capitalization, spacing, omissions,
additions, substitutions, phonetic variations (e.g., Fasuto vs. Fausto, G Lom-
bardi vs. G. Lombardi).

– Pseudonyms. Entities also have pseudonyms that are not (necessarily) vari-
ations of a name but rather alternative names for an entity, which can be
defined (and used) in different contexts. This is the case for some arbitrary
nicknames that are sometimes used by peers to refer to a DE (e.g., Fede
is commonly used as a nickname for Federico or Federica and The King of
Rock and Roll is a common nickname for Elvis Presley).

The name variations together with the DE definition presented above, show
that the relation between names and DEs is of the type many-to-many. In
turn, this leads to a name-matching problem when we intend to search an entity
based on its names [2]. This problem, in the context of the entity directory, can
be decomposed in:

1. The problem of matching names inside the network: A name used in a DE
can be a variation of the name used in another DE that represent the same
WE. We need to take into consideration all the multiple names (including
name variations) used in the network to identify a WE and match them
to all the different DEs that describe WE. In the example from Figure 1,
if the user is searching an entity with the name “George Lombardi”, the
directory should be able to return all the DEs (i.e, p1/entity/2, p2/entity/1
and p3/entity/9) that represent the different versions of uri/entity/1 rather
than only returning the one that give it such name (i.e., p3/entity/9).

2. The problem of matching queries with the names used in the network: This
case considers query names that are unknown to the entity directory, but
that are however variations of one or more known names. We say that a
name is unknown to the directory if there is no DE in the network that uses
such name to identify a WE. The easiest example is a query name that is
misspelled with regard to the DEs of the directory. In the example from
Figure 1, if the user input the query “Goerge Lombardi”, the search should
be able to find that “George Lombardi” is a candidate match.

5 A Distributed Directory System

In this paper we propose a Distributed Directory System (DDS) that organizes
information about entities incorporating the notions of WE and DE, which
were presented in Section 3. These notions allow the separation of the problem
of finding the DEs that represent different versions of a WE from the problem of

102

finding WEs that are identified with multiple names. We exploit this separation
by building two different indexes, one to deal with each problem.

A DEindex is created to map WEs (i.e., URIs) to DEs (i.e., URLs) and
can be formally defined as,

DEindex = {WE → DE |6 ∃WE′ → DE ∈ DEindex s.t.,WE′ 6= WE} (3)

We can see that this index encodes the one-to-many relation between WEs and
DEs because the mapping of different WEs to the same DE is not allowed. On
the other hand, a WEindex is created to map the names that are given (in local
representations) to WEs (i.e., URIs). Let us call {NDE} to the set of names of
a digital entity DE. Then, the WEindex can be formally defined as,

WEindex = {N → WE | ∃WE → DE ∈ DEindex s.t., N ∈ {NDE}} (4)

We can see that this index encodes the many-to-many relation between Names
and WEs because the only constraint on the mappings is related to the existence
of a local representation that gives “support” to such mapping.

Let us now discuss in more details how the publication, maintenance and
search of entities are done in the DDS :

The publication and deletion of DEs in the network are the two main events
that modify the DDS by affecting the content of the indexes defined above. The
publication of a DE affects both indexes in a straightforward manner. First,
the DE is associated to the WE that it represents by adding the corresponding
mapping (i.e., WE → DE) to the DEindex. Second, the mappings NDE

i →
WE, of each name NDE

i in {NDE} to the WE that is associated to the DE,
are added to the WEindex. In order to do this, we assume that the peer locally
caches the identifier (i.e., the URI) of the WE that is represented by its DE4.
On the other hand, when a DE is deleted from the network, only the DEindex
is directly affected. The same mapping WE → DE that is added when the
DE is published, is then removed from the DEindex when the peer deletes the
DE. Regarding the WEindex, we say that it is not directly affected because the
mappings of names can be removed only after verifying that they are no longer
valid to identify the corresponding WE. Such verification is further discussed as
part of the DDS maintenance.

The maintenance of the DDS is performed through periodic checks over the
indexes in order to detect and remove entries that are no longer valid. In the
DEindex, an entry can be considered invalid if it contains mapping to a DE
that has been unreachable for a long time. In order to detect this situation, each
entry is attached with a timestamp corresponding to the last time when the
DE was reachable. This timestamp is updated in every periodic check. When
the DE is not reachable, the interval between the last reachable time and the
current time is verified. The corresponding entry is removed from the DEindex
if such interval exceeds a given threshold. An entry from the WEindex, on the

4 Note that the initial identification of the WE described by a DE is a problem of
identity management and is out of the scope of this work. See for example [5, 6]

103

other hand, is considered invalid if it contains a mapping that do not complies
with the constraint established by the index definition presented in equation 4.
This means that a mapping between N and WE has to be removed from the
WEindex when there are no DEs in the network using the name N to refer to
such WE. In other words, when none of the available entities provide support
to such mapping.

Search in the DDS can be performed using two different types of identifiers,
URIs and names. In this context, having as input a URI means that the target
WE has been uniquely and fully identified. Therefore, the goal of the search is
to obtain all the different representations (i.e., the DEs) of the WE. On the
other hand, in a search based on names, we need to find the candidates WEs
(to be the right answer) as a consequence of the many-to-many relation between
names and WEs. After the candidates WEs has been found, we can use the
search by URI to find the different representations of them. In what follows,
the search by names is considered in more details while the search by URIs is
included as a part of the former.

A query is formally defined as Q = {NQ}, where {NQ} is the non-empty
set of names used to identify one target WE. Then, the problem of searching
entities based on their names can be seen as retrieving WEs that are described
in the network by at least one DE, such that, the intersection between {NDE}
and {NQ} is not empty. This definition considers a partial matching between
{NDE} and {NQ} in order to allow finding a WE from any of the names given
to it on different DEs. In turn, this can be translated in the formal definition of
the Query Answer (QA) as follows:

QA = {〈WE, {DE}〉 | ∃N ′ ∈ {NQ} : N ′→WE ∈ WEindex

∧ ∀DE′ ∈ {DE} : WE → DE′ ∈ DEindex}
(5)

As we mentioned before, this answer is build in two steps. The algorithms that
perform the two steps are presented in Section 6.

6 Algorithms

We assume that the indexes offer non-blocking APIs (to allow the parallelization
of index lookups), which mean that a call to the GET function on the indexes
returns immediately a reference to an object that will be filled with the results
from the index lookup. In Algorithm 1, we define the global data structures,
which are strictly related to the indexes. They are used across the different func-
tions involved in the search. We use the statement for all (line 6 in Algorithm 2
and line 8 in Algorithm 3) to denote the concurrent execution of the statements
that are in its body (i.e., line 7 in Algorithm 2 and lines 9 to 24 in Algorithm 3).

The Search Entity function is presented in Algorithm 2 and is the main
entry point for the search by names. This function receives the query names and
returns a set of candidate WEs according to the constraints given in Equation 5.
In order to measure how relevant each candidate WE is, we count the number of

104

query names that match with the names associated to the WE. This relevance
is associated to each candidate WE and included in the resultset. In line 7, the
first step of the search by names is initiated with the call to the GetWEindex
function of the WEindex. The object returned by the function is given to the
corresponding handler function, which knows how to process it.

Algorithm 1 Global Data Structures

1: WEAnswer : 〈isComplete, name, weAnsValues〉
2: DEAnswer : 〈isComplete, URI, deAnsValues〉
3: isComplete : boolean . TRUE when the index lookup is finished
4: weAnsValues : NULL OR {URI} OR {URL} OR {{URI} ∪ {URL}}
5: deAnsValues : {URL} . not empty set of URLs

Algorithm 2 Search Entity

1: function SearchEntity(names : {name}) → {〈WE, relevance〉}
2: WEs : {〈WE, relevance〉} . stores search results
3: WE : 〈URI, {URL}〉 . {URL}.size == 1 when URI == NULL
4: relevance : integer
5: WEs := {}
6: for all name ∈ names do . Parallel threads
7: HandleWEAnswer(GetWEindex(name), WEs)
8: end for
9: return WEs

10: end function

The Algorithm 3 shows the HandleWEAnswer function, which is in charge
of processing the values retrieved from the WEindex. We can see from lines
4 to 6 the loop that waits until the answer is completed. Then, in line 8, we
start one execution thread to process each retrieved value. A value returned
from the WEindex represents a WE, it can be a URI or a URL (see line 4
from Algorithm 1). In the former case, we say that the WE identity is known.
The corresponding instance is created (line 10 in Algorithm 3) with the global
identifier and an (up to now) empty set of DEs. In the later case, the URL
identifies a WE with no global identifier and we assume that there is only one
DE that describes it (line 18 in Algorithm 3).

In lines 11 and 19, we check whether the WE is already in the result-set. If
it is, we call the function relevanceWE++, which increments the count of the
relevance that is associated with the WE. Otherwise, we add the WE to the
result-set with a relevance count initiated to 1 (lines 14 and 22). At this point,
if we are in the case of a WE with global identifier (i.e., with a URI), the
second step of the search is initiated with the call to the GetDEindex function

105

of the DEindex (see line 15). The object returned by the function is given to
the HandleDEAnswer function, which then process it.

Algorithm 3 Handler of the WE Answers

1: function HandleWEAnswer(weAnswer : WEAnswer, WEs : {〈WE, relevance〉})
2: waitingTime : integer
3: waitingTime := 5 . parameterizable waiting time
4: while weAnswer.isComplete = FALSE do
5: WAITms(waitingTime) . specified in milliseconds
6: end while
7: if weAnswer.weAnsValues 6= NULL then
8: for all weAnsValue ∈ weAnswer.weAnsValues do . Parallel threads
9: if isURI(weAnsValue) then

10: wEntity := 〈weAnsValue,{}〉
11: if wEntity ∈ WEs then
12: relevanceWE++(WEs, wEntity)
13: else
14: add(WEs,〈wEntity,1〉)
15: HandleDEAnswer(GetDEindex (weAnsValue), WEs)
16: end if
17: else
18: wEntity := 〈NULL,{weAnsValue}〉
19: if wEntity ∈ WEs then
20: relevanceWE++(WEs, wEntity)
21: else
22: add(WEs, 〈wEntity,1〉)
23: end if
24: end if
25: end for
26: end if
27: end function

Algorithm 4 Handler of the DE Answers

1: function HandleDEAnswer(deAnswer : DEAnswer, WEs : {〈WE, relevance〉})
2: waitingTime : integer
3: waitingTime := 5
4: while deAnswer.isComplete = FALSE do
5: WAITms(waitingTime)
6: end while
7: addDE2WE(WEs, deAnswer.key, deAnswer.deAnsValues)
8: end function

106

Finally, the Algorithm 4 shows how the values retrieved from the DEindex
are handled. First, we wait until the answer is completed (see the loop from line
4 to line 6) and then the values are used to update the resultset. Note that the
function addDE2WE takes the key (i.e., the URI) to identify, in the resultset,
the WE that has to be updated. The values (i.e., the URLs) are then associated
to such WE in order to complete the QA. We say that this function (called in
line 7 in Algorithm 4) adds DEs to a given WE from a given set.

7 Implementation and Evaluation

We implement the distributed directory on top of a P2P network, where the
distribution of the indexes is done using a Distributed Hash Table (DHT). DHTs5

allow the peers participating in the network to store and retrieve pairs of key and
value. In particular, we use TomP2P6, an advanced DHT library that extends the
basic functions of DHTs. The library supports storing multiple values mapped to
the same key and distinguishes between different index domains. The execution
of the operations over different index domains can be seen as having different
DHTs, i.e., one for the DEindex and other for the WEindex.

We are interested in the evaluation of the approach under realistic network
conditions and we want to measure how much the performance decreases when
the size of the network grows (i.e., the scalability). The performance is considered
here in terms of the time that takes the system to process a query. We use
PlanetLab7 as a testbed because we believe it gives us the realistic network
conditions that we need. PlanetLab provides a network of computers (i.e., nodes)
that are distributed around the world, connect to each other through the internet
and are available for research purposes. We perform the evaluations on networks
of 50, 100 and 150 peers and the data extracted from the proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI)8 are used to
generate the data-sets. We use the titles of publications, names of authors and
names of locations related to the conference.

Each data-set is produced by generating triples of 〈Name,URI, URL〉. The
names and URIs are replicated in order to simulate different WEs having the
same name and different peers storing DEs that describe the same WE. Let us
call pn to the popularity of a name n (i.e., number of WEs that are called by n)
and pwe to the popularity of a WE (i.e., number of DEs that represent WE).
First, for each name n, we generate pn triples with the same name (different
URI and URL). Second, for each URI, we generate pwe triples with the same
name and URI but with different URLs. The popularities pn and pwe follow
a Zipf9 distribution, which means that there is a long tail of unpopular names
and WEs. The distribution of both popularities are independent, which means

5 http://en.wikipedia.org/wiki/Distributed_hash_table
6 http://www.tomp2p.net/
7 https://www.planet-lab.eu/
8 http://ijcai.org/
9 http://en.wikipedia.org/wiki/Zipf’s_law

107

that a popular WE do not necessarily has a popular name and vice versa. We
assume that the local entity base of each peer contains, in average, 2000 DEs.
We have overall around 100000, 200000 and 300000 DEs. The query set for each
peer is generated by randomly selecting a set of 1400 names from the initial set
of entity names.

During the evaluation, we first index the data-set for the corresponding
network size and then the peers begin the search evaluation process pseudo-
simultaneously. In this process, each peer performs the following steps: (i) takes
a query from the query set, (ii) runs the search, (iii) measures and logs the time
that the system takes to respond to the query, (iv) waits a random interval of
time (between 1 and 3 seconds), and (v) go back to step (i). These steps are
repeated until the end of the set of queries. Once all the peers end the search
process, we compute the average query time for the network. We show the results
for the different network sizes in Table 1. The values for the average query times

Table 1. Average query time

Network Size 50 peers 100 peers 150 peers

Avg. Query Time (in seconds) 2.77 2.75 2.61

are stable with the network growth and we believe this is a promising result re-
garding the scalability of the directory. On the other hand, when comparing to
information retrieval systems (in general), the average times for search are still
high.

In order to have better understanding of the query times that contribute to
these averages, we analyze the distribution of the query time in the different
networks. In Figure 2 we show the results of this analysis, where we can see that
also the query time distribution is stable with regard to the network growth.
Also in Figure 2 we can notice that more than 55% of the queries are actually
answered in less than a second, while in almost 70% of the cases the response
arrives in less than 2 seconds (which is less than the average time). Moreover,
only 9% of queries take more than 5 seconds to be answered.

56.42%	 55.27%	 56.28%	

12.19%	 11.92%	 13.31%	

22.63%	 23.12%	 22.61%	

8.76%	 9.68%	 7.80%	

0%	

20%	

40%	

60%	

80%	

100%	

50	 peers	 100	 peers	 150	 peers	

	 t	 >	 5	 s.	

2	 s.	 <	 t	 <=	 5	 s.	

1	 s.	 <	 t	 <=	 2	 s.	

t	 <=	 1	 s.	

Fig. 2. Query time of different networks

It has to be noted that the results are returned after the query answer is com-
plete, i.e., once all the lookups involved in the query have ended. This means that

108

a single slow lookup is enough to delay the computation of a query answer and
therefore increase the query time. Furthermore, we know that particularly slow
peers can produce this problem when a lookup has to be routed through them.
We believe that, in the big picture, the scalability of the approach is a promising
and important result. On the other hand, there are some techniques to perform
result catching or to avoid routing through slow peers (see for example [7]) that
can be implemented to reduce the effect of slow peers at query time.

8 Related Work

The work introduced in this paper involve the approaches that are capable of
managing information about entities in a P2P network. More specifically, our
approach deals with the distributed indexing and searching of entities based
on their identifiers. To the best of our knowledge there are no approaches that
integrates these areas, i.e., that performs search of entities over a p2p network.
Nevertheless, we give an overview of related approaches from both areas.

Some entity aware approaches concentrate the attention on the definition
of models and structures for the representation of entities [1]. In [6] an entity
name system (ENS) is proposed in order to provide support for the generation
and reuse of globally unique identifiers for entities across different and indepen-
dent RDF repositories. The local repository of a single user is not considered
as a source of data and the users need a special access permit in order to con-
tribute with the definition of entities. As a first step towards searching, the work
presented in [8] proposes a model that analyzes the query specification and per-
forms the disambiguation of the desired type of entity. In [9], named entities are
extracted by analyzing queries based on syntactic matching of patterns. These
approaches do not directly address the search, but their results are relevant for
the definition of the directory proposed in this paper.

Other approaches that perform search following an entity centric perspective
can be found in the literature [10–12]. Entity search engines are proposed in [10,
12], heuristic rules are used in [11] to identify entities appearing in a collection of
documents and a service to find documents that contain statements about par-
ticular resources is provided in Sindice [13]. Most of these approach collect data
from multiple web sources (i.e., by crawling) but do not consider distribution
at the level of single users (i.e., a p2p network). In particular, [12] automati-
cally aggregates descriptions from the different sources and allows subsequent
navigation to related entities. Distribution is considered in terms of clusters of
computers that allow parallel processing and scalable storage but the search is
centralized (i.e., they build centralized indexes). In contrast to these approaches,
our approach performs a distributed search in a P2P network and allows users
to maintain their data locally.

On the other hand, we have P2P approaches, which perform distributed
search but are not aware of entities [14, 15]. They are mainly classified as un-
structured and structured approaches. The first unstructured networks (e.g.,

109

Gnutella10) have scalability problems due to the number of messages generated
and do not guarantee that all answers will be found. Other approaches use clus-
tering techniques [16–20], their goal is to find the best group to answer a query
and then send the query to the peers in that group. Our approach can find all
available answers and has proven to be promising in terms of scalability.

We can find also more structured approaches that aim to guarantee the lo-
cation of the content shared on the network (e.g., CAN [21], Chord [22] Pastry
[23] and Tapestry [24] They store pairs of 〈key, value〉 in a Distributed Hash
Table (DHT) and then retrieve the value associated with a given key. Other ap-
proaches perform multi-keyword search using DHTs but they can be very expen-
sive in terms of required storage and generated traffic (e.g., see [25]). Hierarchical
structures combine clustering techniques with the structure of DHTs [26–29]. In
general, P2P approaches provide the techniques needed in order to build our
solution. The novelty of our approach is in the domain of application of such
techniques.

9 Conclusions

We presented and approach for a distributed directory of entities that introduces
the notions of DE and WE in order to link local directories of different peers.
The directory provides search services based on entity identifiers. In particular,
we presented the algorithms for searching entities based on their names. We
discussed the name matching problem that appears as a consequence of the
many-to-many relation between names and WEs. Then, we showed that, by
its design, our directory deals with the problem of matching names inside the
network (i.e., the first part of the name matching problem).

The data from peers are stored locally, only the identifiers and the links
to the local representations are indexed. This infrastructure allows the imple-
mentation of access control mechanisms on the local representations in order to
deal with privacy issues. At the same time, the changes made by peers in local
representations, are available in the directory in a straightforward manner. The
indexes are distributed using a Distributed Hash Table (DHT) but the directory
definition is independent from a specific underlying DHT implementation.

The evaluation of the search was performed on networks of 50, 100, and
150 peers running on PlanetLab. The average query time (as a measure of the
performance) for different network sizes were presented as well as the distribution
of the query times. The results can be considered promising in terms of scalability
because the performance is stable with the network growth.

As part of the future works, we want to study and integrate (possibly existing)
approaches to deal with the problem of matching queries with the names used in
the network (i.e., the second part of the naming problem). Additionally, we want
to better understand the different elements that influence the search performance
in order to find and implement techniques to reduce the query times.

10 http://en.wikipedia.org/wiki/Gnutella

110

References

1. Bazzanella, B., Chaudhry, J.A., Themis Palpanas, Stoermer, H.: Towards a General
Entity Representation Model. 5th Workshop on SWAP (2008)

2. Holloway, G., Dunkerley, M.: The Math, Myth and Magic of Name Search and
Matching. 5th edn. Search Software America (2004)

3. Giunchiglia, F., Zhang, R., Crispo, B.: Relbac: Relation based access control. In:
Proceedings of the 2008 Fourth International Conference on Semantics, Knowledge
and Grid. SKG ’08, Washington, DC, USA, IEEE Computer Society (2008) 3–11

4. Bignotti, E.: Semantic name matching. Master’s thesis, University of Trento (2012)

5. Hogan, A., Zimmermann, A., Umbrich, J., Polleres, A., Decker, S.: Scalable and
distributed methods for entity matching, consolidation and disambiguation over
linked data corpora. JWS: Science, Services and Agents on the World Wide Web
10 (2012)

6. Bouquet, P., Stoermer, H., Niederee, C., Maña, A.: Entity name system: The back-
bone of an open and scalable web of data. In: Proceedings of the 2nd IEEE ICSC,
Washington, DC, USA, IEEE Computer Society (2008) 554–561

7. Rhea, S., Chun, B.G., Kubiatowicz, J., Shenker, S.: Fixing the embarrassing slow-
ness of opendht on planetlab. In: Proc. of the 2nd conference on Real, Large
Distributed Systems. WORLDS’05, Berkeley, CA, USA (2005) 25–30

8. Bazzanella, B., Stoermer, H., Bouquet, P.: Searching for individual entities: a query
analysis. Technical report, University of Trento (2009)

9. Paşca, M.: Weakly-supervised discovery of named entities using web search queries.
In: Proceedings of the sixteenth ACM conference on CIKM ’07, New York, NY,
USA, ACM (2007) 683–690

10. Cheng, T., Chang, K.C.C.: Entity search engine: Towards agile best-effort infor-
mation integration over the web. In: CIDR 2007. (2007) 108–113

11. Hu, G., Liu, J., Li, H., Cao, Y., Nie, J.Y., Gao, J.: A supervised learning approach
to entity search. In: AIRS’06. Volume 4182 of LNCS. (2006) 54–66

12. Hogan, A., Harth, A., Umbrich, J., Kinsella, S., Polleres, A., Decker, S.: Search-
ing and browsing linked data with swse: The semantic web search engine. JWS:
Science, Services and Agents on the World Wide Web 9(4) (2011) 365 – 401

13. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:
Sindice. com: a document-oriented lookup index for open linked data. International
Journal of Metadata, Semantics and Ontologies 3(1) (2008) 37–52

14. Risson, J., Moors, T.: Survey of research towards robust peer-to-peer networks:
Search methods. Computer Networks 50 (2006) 3485–3521

15. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and compari-
son of peer-to-peer overlay network schemes. IEEE Communications Surveys and
Tutorials 7 (2005) 72–93

16. Bawa, M., Manku, G., Raghavan, P.: Sets: Search enhanced by topic segmentation.
In: Proceedings of ACM SIGIR Conference. (2003) 306–313

17. Cohen, E., Kaplan, H., Fiat, A.: Associative search in peer to peer networks:
Harnessing latent semantics. In: Proceedings of IEEE INFOCOM. (2003)

18. Spripanidkulchai, K., Maggs, B., Zhang, H.: Efficient content location using
interest-based locality in peer-to-peer systems. In: Proceedings of IEEE INFO-
COM. Volume 3. (2003) 2166–2176

19. Crespo, A., Garcia-Molina, H.: Semantic overlay networks for p2p systems. Tech-
nical report, Stanford University (2002)

111

20. Joseph, S.: Neurogrid: Semantically routing queries in peer-to-peer networks. In:
Proc. Intl. Workshop on Peer-to-Peer Computing. (2002) 202–214

21. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proc. of SIGCOMM’01, NY, USA, ACM (2001) 161–172

22. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proc. of SIG-
COMM’01, NY, USA, ACM (2001) 149–160

23. Druschel, P., Rowstron, A.: Pastry: scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: Proc.of ACM SIGCOM. (2001)

24. Zhao, B., Huang, L., Stribling, J., Rhea, S., a.D. Joseph, Kubiatowicz, J.: Tapestry:
A Resilient Global-Scale Overlay for Service Deployment. IEEE Journal on Se-
lected Areas in Communications 22(1) (January 2004) 41–53

25. Li, J., Thau, B., Joseph, L., Hellerstein, M., Kaashoek, M.F.: On the feasibility of
peer-to-peer web indexing and search. In: IPTPS’03. (2003)

26. Ganesan, P., Gummadi, K., Garcia-Molina, H.: Canon in g major: designing dhts
with hierarchical structure. In: ICDCS’04. (2004) 263 – 272

27. Janakiram, D., Giunchiglia, F., Haridas, H., Kharkevich, U.: Two-layered archi-
tecture for peer-to-peer concept search. In: 4th Int. Sem Search Workshop. (2011)

28. Papapetrou, O., Siberski, W., Nejdl, W.: Pcir: Combining dhts and peer clusters
for efficient full-text p2p indexing. Computer Networks 54(12) (2010) 2019–2040

29. Garcés-Erice, L., Biersack, E.W., Felber, P., Ross, K.W., Urvoy-Keller, G.: Hier-
archical peer-to-peer systems. In: Euro-Par. (2003) 1230–1239

112

	9th International Workshop on Scalable SemanticWeb Knowledge Base Systems (SSWS 2013)
	SSWS 2013 PC Co-chairs' Message
	Table of Contents
	Count Aggregation in Semantic Queries
	DistEL: A Distributed EL+ Ontology Classi�er
	Rule-based Reasoning on Massively ParallelHardware
	TripleRush: A Fast and Scalable Triple Store
	Eviction Strategies for Semantic FlowProcessing
	Scalable Linked Data Stream Processing viaNetwork-Aware Workload Scheduling
	A Distributed Directory System

