
 Automating Design Support in Supply Chains on Semantic Web Services

Incheon Paik
School of Computer Science and

Engineering
University of Aizu

Aizu-Wakamatsu, Fukushima, Japan
+81-242-37-2796

E-mail: paikic@u-aizu.ac.jp

Hiroyuki Akimoto
School of Computer Science and

Engineering
University of Aizu

Aizu-Wakamatsu, Fukushima, Japan

E-mail: akimoto@ebiz.u-aizu.ac.jp

Shinjirou Takami
School of Computer Science and

Engineering
University of Aizu

Aizu-Wakamatsu, Fukushima, Japan

E-mail: takami@ebiz.u-aizu.ac.jp

Abstract
The integration of four design attributes (component-

cost, quality, function, and technology) streamlines
product design by providing a multilateral view to
designers that leads to cost savings in the supply chain.
Since the existing information infrastructure, based on
server-side components for these design attributes, does
not provide interoperable Web interfaces or semantic
service descriptions for agents, improved architecture for
the semantic Web service environment where automating
agents can work more efficiently is suggested. Based on an
improved ontological paradigm which integrates product
design attributes organically to improve agent efficiency,
the building of a Web service environment for agents in
DAML-S, which wraps the existing server-side software
components to access attribute instance data, is explained.
A prototype of an application-centric agent for design
support in this environment and its evaluation are also
described to illustrate the effectiveness of this Web service
environment.

1. Introduction
As semantic Web services evolve toward complete

environments, they enable the Web to provide machine-
readable contents and paradigms. The Supply Chain
Management (SCM) of e-businesses, with its distributed
architectures [1] in such an environment will benefit greatly,
as complex processes and transactions become more
automated.

Viewing SCM broadly, careful consideration of the
planning and design stages of product development is
important to avoid unnecessary costs incurred by redesign
and modification. The cost of development increases
rapidly at each stage from the initial stages of development
to the final stages of actual mass production. Expenses for
design and planning in the initial fluid stages may not be
very high but rise rapidly for the construction of production
lines and for final mass production [2].
To increase the efficiency of product design for the SCM
process, existing methodologies have considered separately
or partially the four product design attributes of
component-cost, quality, function, and technology.

However, integrating these four allows multilateral
inspection of all product design attributes enables greater
efficiency in the design process. In order to accomplish this,
an information infrastructure with new table structures that
combine the four attributes and their relationships
organically was recently devised [2]. The architecture has
server-side components for the fundamental infrastructure
of integrated design attributes, making it possible to
compose application software easily and create interfaces
for online application developers with some special access
permission. However, these integrated design attributes are
most effective when they are open to general users and can
be processed by automating agents. Existing architecture
cannot provide interoperable Web service interfaces that
have consistent semantic metadata for general users and
agents. Existing architecture can provide simple ontological
concepts that can cover the definition of domain concepts
for product attributes, but it still cannot provide service
descriptions for agent activities or general semantic
derivation which are suggested for semantic Web
services [3][4]. The goal of the research described here was
to develop a semantic Web service environment that can
provide interoperable service interfaces for integrated
design attributes to agents and general users. The entire
architecture consists of several layers (Figure 2):
infrastructure (this layer includes an ontology and
instances or a relational database), business logic, Web
service, and application. This paper focuses on the Web
service environment (Web service), which is based on
existing information infrastructure and uses the ontology
for design attributes to enable efficient agent activities
(infrastructure). A prototype of the agent in this
environment and its evaluation is discussed as well.

2. Scenarios and Motivation
Presently, when companies make a product, they

normally consider the quantity, price, and delivery of
components for products in the supply chain. When
companies design an innovative product, they consider
combinations of the four product design attributes.
Integrating these four attributes into one infrastructure

yields positive effects on design in the supply chain [2]. To
begin our explanation, consider the two scenarios below.

Scenario A. A flashlight company has the plan to increase
the quality “Brightness” of its existing flashlight from
7.5cd/mm2 to 10cd/mm2. The company wants to know
which components must be changed, what technologies will
be required, and what costs will be incurred. To discover
the answers to these questions, a designer must look for
several product attribute databases distributed along the
supply chain network with cross references (e.g., quality-
component or quality-technology).

Scenario B. A flashlight company designs an innovative
flashlight product with the following new specifications.
Quality of brightness is greater than 7.5 cd/mm2, and the
flashlight has a long lifetime (i.e., the filament strength
achieves a rating of more than 95% on an endurance of
impact test, air tightness is greater than 0.2 in air pressure
studies, and the strength of the plastic proves to be
excellent). Other specifications include a medium price (i.e.,
the total component-cost is between 99 and 200) and
suitability for young people (i.e., the level of brightness can
be adjusted and the transparency of the plastic must be
lower than 88). Surely, in order to find component-cost
combinations and technologies needed to satisfy these
requirements, the four product attributes of component-cost,
quality, function, and technology as well as their cross
references must be known at the same time. If it is possible
to find answers to fulfill the requirements on the worldwide
supply chain network by agents automatically, this would
make design very efficient – a genuine need for industries.
An information infrastructure which integrated these four
attributes, developed in previous work, aimed at addressing
the first stage of this need. Several problems arose, though,
in relation to agent work on this infrastructure due to the
nature of the current Web environment. These problems
included interoperability, semantic metadata, consistency,
and openness; however, these are now being addressed
more successfully in semantic Web services[3][4].

To accomplish what was described in the scenarios using
Web services, we may consider two approaches: one is to
use a Web service composition that consists of elementary
Web service interfaces for separate design attribute
databases [5] (i.e., the case of not having integrated design
attributes) and the other is to provide elementary interfaces
with composite functions in the infrastructure (i.e., the case
of having integrated design attributes). The first approach
would reduce development costs, but would suffer from the
complex Web service composition work and poor
performance, and the second approach would yield better
performance and scalability in exchange for initial high
development costs. The research reported in this paper
employs the second approach. We enlarge the concept of
integrated product attributes in previous work with an

additional ontology to decrease the work of Web service
composition at higher layers.

The existing information infrastructure provides server-
side component interfaces which use Remote Method
Invocation / Internet-Inter ORB Protocol (RMI/IIOP), so
business application developers can use the component
interfaces for internal applications through this protocol
and Web application developers can invoke these
interfaces through Web interfaces like Servlet. However,
some developers who require access to this design attribute
data fro m any location cannot use these interfaces because
of communication limitations due to security measures.
Furthermore, some agents have no knowledge how to use
these interfaces. In this research, we build a semantic Web
service environment that provides open Web service
interfaces and service descriptions which support
automating agents and composite services.

3. Ontology of Integrated Design Attributes
An ontology provides taxonomies and captures semantic

features for a domain. The ontology of integrated design
attributes contributes to the construction of a fundamental
semantic metadata framework for the information
infrastructure for product design attributes.

To construct a table of the necessary design attributes,
we need first to build four basic tables , and then to integrate
all of them through a relation table. Relation tables describe
the associations between these four tables, to allow organic
integration and additional ontology to streamline agent
activities. Each design attribute table can be converted into
a relational database table or real instances of design
attribute ontology.

3.1 Design attributes tables
The four basic tables would be the following:

component-cost, quality, function, and technology. The
component- cost table describes the composition of a
complete product, which can be hierarchically broken down
from the root node (complete product) into its
subcomponents and final material sources through the
supply chain. The final cost of a product can thus be
calculated from the costs of every subcomponent. The
function table consists of functions broken down into
smaller tasks via functional analysis using value
engineering, which defines functions related to the product
and creates a functional system diagram and component-
cost table classified according to functions. The quality
table consists of qualities that have been broken down into
smaller quality units using a Quality Functional Deployment
(QFD) technique, which maps user demands on the product
onto alternative characteristics, defines the design quality
of the final product, and develops relations systematically
between items (functional part, quality of the components,
and so on) related to quality. The technology table lists the

techniques or means, which can be identified by simple
terms in the database, that represent the addition of human
work to natural things in order to make them more useful.
Here, we store technical names and technical contents in a
database describing the technologies used previously for
existing products. If technologies are intended for a new
product, technical deployment similar to QFD is necessary.
Detailed construction methods and examples are described
elsewhere [2]. We provide a Web demonstration of the
information infrastructure of these four design attributes at
http://emplace.u-aizu.ac.jp/DSASCM/.

For the relation tables, all combinations of the four basic
tables need to be considered. We defined relation levels
between the items in every table. For example, the relations
between component and function are described as the
importance of the component in a function hierarchy with
five levels, i.e., the cost of a component to support some
function can be described in the component-cost-function
table. The other tables are component-quality, component-
technology, function-quality, quality-technology, and
function-technology. These relation tables connect the four
basic tables in a way that enables cross referencing among
the design attributes. The ontology on these four basic
attribute tables and six relation tables, with semantics and
properties for the product design attributes, provides the
information infrastructure with the semantic taxonomies that
is needed to support product design in SCM.

3.2 Ontology design perspectives
Product attribute ontology design can be viewed from

higher perspectives, such as semantic meanings or logical
reasoning; however, in this paper, we focus on two
pragmatic perspectives: as a definition of taxonomies in the
domain to integrate the four design attributes with relations,
and as an another approach to additional ontology design
for improving the activities of agents.

To illustrate the first perspective, we introduce a short
scenario of ontology construction for product design
attributes after refinement procedures: When a company
designs a new product or upgrades an existing product,
they use four basic attributes – component- cost, function,
quality, and technology – and the relations between these
attributes for the development. To do this, companies use
the 10 information schemes described above. Some
information can exist in their local DB, and the rest can be
distributed throughout the supply chain network.
Although the ontology can cover the distributed supply
chain network, every local homogeneous information
infrastructure is provided with complete database
information for the 10 tables through an expansion
process that calls an external interface with uniform
resource identifiers (URI) to provide information services
for outside product attributes.

To illustrate the second perspective, when we design an
ontology for domains or applications, if we combine the
associated objects with their relations in the ontology,
agents will use this ontology more effectively later. For
example, if bus, train, and airplane are necessary when
traveling from rural Aizu -Wakamatsu, via Tokyo, to San
Francisco, we can prepare a relational ontology for
combining the schedules of these three transport types .
This will be efficient for the agents who work on this
ontology, and it will yield the same effect as that obtained
through convert ing a composite process, composed of
several atomic processes, into one atomic process with the
same function in a DARPA Agent Markup Language-
Service (DAML-S) description. In our ontology, inter-
attribute relations such as RelationScheme,
RelationAttribute and their subclasses give agents a
connection infrastructure for efficient retrieval of
information.

Our ontology for product attributes consists of four
kinds of top-level groups (Figure 1). The introductory
group describes existing product classes and abstract
classes for design attributes. The basic attributes group
contains classes for the four design attributes and their
sub-attributes. The relation attributes group describes the
six inter-attribute relation tables for each basic attribute.
The scheme group provides skeletons of instances for
attribute information. Finally, the instance data from this
ontology can be created by users or generation tools that
extract design attributes from the existing SCM solution.

Product

New-
Product

Existing-
Product

Design-Attribute

Component-
Cost

Function Quality Technology

Described

Sub
Component-

Cost

Sub
Function

Sub
Quality

Sub
Technology

Component-
Cost
Scheme

Function
Scheme

Quality
Scheme

Technology
Scheme

<
<
Tr

an
si

ti
ve

Pr
op

er
ty
>>

Su
bC

om
po

se
dO

f

<<domain>>

<<range>>

<<TransitiveProperty>>
SupCompose

<<inverseOf>>

RelationScheme
Co
mp
on
en
tF
un
ct
io
nS
ch
em
e

Co
mp
on
en
tQ
ua
li
ty
Sc
he
me

Co
mp
on
en
tT
ec
hn
ol
og
yS
ch
em
e

Fu
nc
ti
on
Qu
al
it
yS
ch
em
e

Fu
nc

ti
on

Te
ch

no
lo

gy
Sc

he
me

Te
ch
no
lo
gy
Qu
al
it
yS
ch
em
e

RelationAttribute

DesignAttributeRelation

Importance
Levels

Attribute-
Relationships

Figure 1. An ontology for product design attributes.

4. Web Service Construction

4.1 Business logic with server-side component
Online business logic requires a scalable and high

performance infrastructures to manage business
transactions. Since server-side middleware components
such as J2EE’s Enterprise JavaBeans (EJB) supports not
only strong business transactions with security and
directory services but also flexible software architecture for
fast development, EJB was used as the basic architecture
for the information infrastructure to enable access to the
design attributes. Better architecture for software
components can be developed via Component-Based
Software Development (CBSD). One of the main
advantages of CBSD is that more efficient interfaces of
components can be designed, which can also become the
interfaces for Web services. These interfaces must be
defined carefully to ensure better system architecture and
performance.
Component Interfaces. After CBSD process, five core
components (AttributeTable, RelationTable,
InformationGate, AttributeInstanceTable, AccessControl)
were designed to complete the information infrastructure.
The AttributeTable Interface Manager (IM) contains
interfaces for accessing information on the four basic
attributes, and the RelationTable IM covers interfaces for
accessing the six basic relation tables. These IMs deal with
EJB entity Beans. The InformationGate IM provides useful
interfaces to integrate interfaces of the AttributeTable and
RelationTable IMs internally using session Beans. The
AttributeInstanceTable IM manages interfaces which
access the product attribute instances from the ontology
through the DAML query engine that was implemented
using XPath. And, the AccessControl IM provides
interfaces to get/set access rights according to a role-based
access control policy, which is useful on the Internet.

There are five classifications of roles and objects:
administrator, DB administrator, trusted company, affiliated
company, and guest user. Any query from a user to access
the final target objects of a DB table, via a component of the
InformationGate or the AttributeInstanceGate, should
obtain permission through authentication by a requestor’s
certificate. The Web service environment will be added to
this information infrastructure with server-side components
in order to provide the user and automating agents with
semantic service descriptions and interoperable interfaces
on the Web to access the design attributes.

4.2 Web service environment
Since the Web Service Description Language (WSDL)

and Universal Data Description Interface (UDDI) of Web
services do not support higher levels of service such as
automatic discovery, composition and interoperation, and
execution with semantic description, some service
description frameworks such DAML-S [6], Business
Process Execution Language for Web Service [7]

(BPEL4WS), and Web Service Choreography Interface [8]
(WSCI) were proposed. As DAML-S is based on strong
formal semantics and provides well-defined semantics for
automated discovery, invocation, composition, and
execution monitoring for Web services compared to that of
other frameworks, we can utilize the advantage of semantic
activities from DAML-S fully for future agent applications.5
The Web service environment presented in this paper
consists of a service description in DAML-S at a higher
level and Web service as its service grounding. Although
automatic environment for composition, execution, and
discovery in DAML-S is not matured enough, we selected
this language framework for future composition and
discovery for agents.

4.2.1 Service description in DAML-S
In this section, we explain service annotation on the

information infrastructure for design support . In the
concept of DAML-S, we defined basic and necessary
classes to describe the ontology for low-level terms such as
output list types and the details for describing each item of
product design attribute and relation. The service profile
contains not only the service name, the contacts and
description, and the actor, but it also contains mainly
functionality descriptions to describe the specification of
functionality services and conditions such as input, output,
precondition, and effect (IOPEs) of the services. Here, there
is analogical information in the specification for the
interfaces of our software component where the IOPEs
which function to access the product design attributes. The
IOPEs in the DAML-S were extracted from this information
easily.

In the service model, process ontology contains only the
atomic processes to provide elementary services or
composite services in reference to the relational ontology
for product design attributes as mentioned in the previous
section. For example, we can extract all qualities and
functions related to a component with one service
invocation. The domain and range of every interface related
to the design attributes were defined also in this process
ontology. For the basis of the service grounding to Web
services, we used WSDL and SOAP mappings. Of course, a
service requester can use RMI/IIOP interface conventions
because our information infrastructure was constructed
with EJB components .

4.2.2 Web services
To build a Web service for service grounding, we used

the wrapping method of Web service construction
methodologies because we already have server-side EJB
components and well-defined service interfaces. Wrapping
the existing EJB component interfaces with Web service
interfaces worked well because of their similarities. Since
the existing component interfaces have an interface type
model, an operation definition, pre- and post- conditions,
and exception handling, it is possible to wrap these

contents of the EJB component interfaces in the Web
service interface directly. When EJB interfaces are wrapped
by a Web service interface, initialization processes (i.e, the
mechanisms for processing naming services, and finding
home interfaces and remote object references for EJB beans)
in the wrapper routine should be managed with proper
policy because the processing time for this initialization
procedure takes much more time than that needed to invoke
the methods of EJB beans. In our implementation, we
managed this by preparing a special objects cache table.
We also used a WSDL description to wrap every interface
of the EJB components that access the attribute data in the
information infrastructure. Web service implementation
employs a Java Web Service Development Pack (JWSDP)
and an EJB component J2EE Server. Figure 2 shows the
entire architecture of the information infrastructure and the
Web services for automating the design attributes.

Client’s
Stationary

Agent
Stationary Web
Service Agent

Web BrowserClient
Application

WSDL
/

SOAP

Servlet Web
Interface

Application Server

St
at
io
na
ry
 A
ge
nt

fo
r
Mo
bi
le
 A
ge
nt

EJB Container

Product
Attribute
Instances

DAML
Query
Engine

Product Attribute Ontology

DataBase

Infrastructure
(Ontology
and Data)

Business
Logic

Web Service

Application

AttributeInstance
SessionBean

AttributeTable
EntityBeans

InformationGate
SessionBean

RelationTable
Beans

AccessControl
Bean

Web Service Composition in DAML-S

Mobile
Agent

 Figure 2. Semantic Web service environment for product
design support in supply chain.

5. Prototyping Agents
The application-centric agent (we call this De sign

Support Agent: DSA) with some intelligence to carry out
example scenarios on Web services and server-side
component interface services is designed. We classified the

goal of the agent into four work-types according to
simplified problem analysis for design support in SCM.

Work -type 1: Extraction of design attribute information

Work -type 2: References to related design attribute infor-
mation

Work -type 3: Extraction of effects according to changes
of attribute variables as independent
variables

Work -type 4: Reasoning about which result set is most
suitable for user requirements or
constraints

The combination of work-type 1 and 2 can be achieved
with primitive methods of the information infrastructure.
For example, to find all of the functions related to the
component “Filament” of “Light Part”, we can use the
following methods in turn (in Web services, the
corresponding interfaces can be called): GetAll(),
GetByComponent(“Light”), and GetByComponent-
(“Miniature Bulb”) of Component_Cost_Bean, and
GetByComp onent(“Filament”) of
Component_Function_Bean.

Work-type 3 can be obtained by investigating the
changes in dependent variables within a given domain of
the four design attributes according to changes in
independent variables in the same domain (see Scenario A).

Finally, for work-type 4, an agent can receive information
about detailed design attribute items and user preferences
as input. The routine to prepare for analysis by the agent
requests detailed data from the interfaces of EJB
components or the Web s ervice, and obtains the data to be
used for the agent’s reasoning. The reasoning routine
deduces the best candidate combination of target design
attributes by forward-chaining based on user preferences as
well as data obtained in the previous step. Examp le
questions for this case were illustrated in Scenario B.

The general sequence of the agents in this research is
first to browse the target attribute, second to input the
user’s request (attributes, preferences, target attribute, and
agent policy option), and then to deliver the result after the
agent’s analysis. A simple Web demonstration of DSA
with examples is available at http://emplace.u-
aizu.ac.jp/DSASCM/DSADemo/.

5.1 Agents on Web service
Server-side EJB components and Web services for

design attributes provide a suitable environment for
application-centric agents to work efficiently because they
have well-formed standard interfaces from the software
component.

The full power of semantic Web service technology
leverages more robust infrastructure for autonomous and
intelligent agents [9]. Also, more mature usage of agent
oriented software methodology will contribute to the
architecture for more reasonable agents and environments
with autonomy , intelligence, and collaboration.

We have built a stationary agent on both the server-side
EJB component service and the Web services using Simple
Object Access Protocol (SOAP). A user can give a
command to a Web service stationary agent located on the
client side. This agent processes the services that have
been extracted from the service model in DAML-S through
fixed steps. The agent selects a suitable routine of several
pre-defined solutions to solve the problem according to the
work-type statically, obtains necessary design attribute
data from Web services, deduces the best candidates, and
reports the results to the user. An example of a stationary
agent GUI running on the client side with its result screen is
shown in Figure 3.

 (a) (b)

Figure 3. Screen of agent example. (a) Tap window of design
support agent (b) Example showing the results from the
agent.

5.2 Evaluation of agent
To investigate the other aspects that need to be

considered as well as the evaluations when DSA is
deployed in the Web service environment, we compared the
agent’s response time according to communication
protocols (RMI/IIOP of EJB and SOAP).

Also, the efficiency of additional relation ontology is
evaluated. To carry out this experiment, three different test
information infrastructures were constructed, which have
different instances according to each company’s SCM but

share the same design attribute ontology. We measured the
agent’s response time from when the client agent issued the
command to when it received the results. The response
time includes time for the initialization process to get remote
objects, time to invoke the remote interface and obtain
results, time to retrieve data from the information
infrastructure, and time for the agent’s reasoning.

Three experimental groups were made as follows: group 1
covers work-type 1-2, group 2 covers work-type 3, and
group 3 covers work-type 4. In our experiment, we counted
the average number of interface invocations and their
initialization processes for each unit step as follows:

Group 1: Invoking interfaces (5), Initialization processes (2)

Group 2: Invoking interfaces (8), Initialization processes (6)

Group 3: Invoking interfaces (24), Initialization processes (3)

The average response time when using SOAP is 10 times
greater than that required when using EJB (1.2 seconds) in
all groups. As Figure 4 shows, the response time of an
agent varies with the loop count, and the number of agents
accessing service interfaces simultaneously increased
linearly. However, the slope of the EJB case is relatively
low (1.1 seconds/loop), but that of SOAP is high (11.5
seconds/loop).

We observed that SOAP needs more response time due
to transmis sion processes (including serialization-
deserialization at client/server sides) of SOAP messages
and the management of remote EJB objects in wrapping
classes of Web services. We found that the initialization
process significantly influences the performance of the
DSA system, especially via SOAP (Figure 4 (a), Group 2). In
addition, as SOAP generates more loads on the server than
EJB, the number of invocations of an agent is a more
important factor in SOAP (Figure 4(b), Group 3). This tells
us that a decrease in the number of initialization processes
and the invocation of service interfaces is necessary when
designing Web services.

Next, to evaluate the efficiency of service invocation
numbers that differ according to additional relation
ontology, we compared the invocation of elementary Web
services which use separate interfaces, with that which use
interfaces with composite Web service functions on
additional relation ontology. Suppose an agent mainly uses
uniformly mixed composite service invocations based on
elementary service invocation, and can find the target
attribute data at every target site with uniform distribution.
The average number of service invocations of DSA in our
experimental environment is described as follows:

Ninvoke = (1 + Fc/2) . Nb . Nsites

where:

Fc is the composition factor which describes the average
number of elementary services to be composed into one
composite service. For example, when we use two cross-
references of attributes such as component-quality relation,
Fc is 2. When there is no relation, or we use a composite
service like our environment, Fc is 1. And when we use
triple cross-references of attributes, Fc is 3, etc.

Nb is the number of basic invocation steps required to
achieve the goal by an agent at a site.

Nsites is the number of sites that are searched by an agent.

As mentioned, if we use an additional relation ontology,
Fc would become 1; thus, the average number of
invocations will always be 1.5 . Nb . Nsites, which is
independent on Fc. In other cases, when a composite
service is divided into a corresponding number of
elementary services (Fc is larger then 1.), the average
number of invocations will be (1 + Fc/2) . Nb . Nsites.

Since the current information infrastructure uses Fc = 2,
the average increase rate for this case in number of
invocations, compared to the case where Fc = 1, will be 1/3.
If Fc is larger than 2, which means a composite service is
divided into a larger number of elementary service calls, the
increase rate will increase. Response time will increase
abruptly according to the increase in the number of
invocations if the response time to unit invocation is large
such as the case when using SOAP. Furthermore, if the
processing overhead of composition, orchestration, and
execution of Web services is considered, the amount of
response time will increase more than the corresponding
amount of increase in invocation number.

6. Discussion
A semantic Web service environment for agents to

support the management of product design attributes in a
supply chain has been developed taking into account the
perspectives of both the industrial needs of management
science and the technical needs of computer science. In
this research, we found that all of the considerations in the
ontology of the design processes, the business logic, the
composition and execution of Web services, and agents are
needed to achieve better performance, especially in
response time, of the agents in the semantic Web service
environment.

Considering related work, we can illustrate simple
prototype for travel agent to introduce semantic Web
service application using Congolog [4]. This work
suggested simple scenario for reserving travel schedule on
semantic Web service, and introduced simple example of
agent’s planning in Congolog. The Retsina calendar agent

can make travel arrangements for some schedule [10]. This
agent is going toward composing several Web services for
traveling with automatic Web service discovery. Our work
suggests from the bottom to deal with ontological data
infrastructure, ontology query engine, and publishing
service, to service composition under same semantic Web
service framework for design support in SCM .

We continue to extend our information infrastructure to
provide higher semantic functions such as semantic
querying using an ontology query language. Ongoing
research to relate this system to real SCM solutions
includes the pragmatic modeling of supply chain graphs for
design attributes, granular security processes, and
automatic mutual conversion between product design
attribute information and the existing SCM information.
Building more rational agents to full support design through
multi-agents that have improvements on the axes of
autonomy, intelligence, mobility, and collaboration which
are based on semantic Web services with a robust
foundation of rationality is underway.

0

50

100

150

200

250

300

1 5 10 15 20 25 30 35 40

Loop count

Re
sp
on
se
 t
im
e(
Se
co
nd
s)

Group 1(EJB)

Group 1(SOAP)

Group 2(EJB)

Group 2(SOAP)

Group 3(EJB)

Group 3(SOAP)

 (a)

0

500

1000

1500

2000

2500

3000

3500

1 5 8 10 13 15 18 20

Number of Agents

R
e
s
p
o
n
s
e

T
i
m
e

(
S
e
c
o
n
d
s
)

Group 2(EJB)

Group 2(SOAP)

Group 3(EJB)

Group 3(SOAP)

 (b)

Figure 4. Experiment results of agents. (a) Response time vs.
loop count. (b) Response time vs. no. agents.

7. References
[1] M.N. Huhns and L.M. Stephens, Automating supply

chains. IEEE Internet Computing, vol. 5, no. 4
(July/Aug 2001), pp. 90–93.

[2] I. Paik and W. Park, Software Component Architecture
for an Information Infrastructure to Support Innovative
Product Design in a Supply Chain. Forthcoming in
JOCEC (Journal of Organization Computing and
Electronic Commerce), Lawrence Erlbaum Associates,
NJ.

http://ebiz.u-aizu.ac.jp/papers/JOCEC/iiswcompo.pdf.

[3] J. Hendler, Agents and the Semantic Web. IEEE
Intelligent Systems, vol. 16, no. 2 (Mar./Apr. 2001), pp.
30–37.

[4] S.A. McIlraith, T.C. Son, and H. Zeng, “Semantic Web
Services”, IEEE Intelligent Systems, vol. 16, no. 2
(Mar./Apr. 2001), pp. 46–53.

[5] Boualem Benatallah and Quan Z. Sheng, and Marlon
Dumas, The Self-Serv Environment for Web Services
Composition. IEEE Internet Computing, vol. 7, no. 1
(Jan./Feb., 2003), pp. 40-48.

[6] The DAML Services Coalition, DAML-S: Semantic
Markup for Web Services , version 0.9. (April 2003)
http://www.daml.org/services/.

[7] T. Andrews et al., “Business Process Execution
Language for Web Serivces version 1.1,” BEA Systems,
IBM, Microsoft, SAP AG, and Siebel Systems (May 2003).

http://www-106.ibm.com/developerworks/library/ws-bpel/.

[8] A. Arkin et al.,”Web Service Choreography Interface
(WSCI) 1.0,” draft specification, BEA Systems, Intalio,
SAP AG, and Sun Microsystems (2002).

http://www.sun.com/software/xml /developers/wsci/wsci-
spec-10.pdf.

[9] Massimo Paolucci and Katia Sycara, “Autonomous
Semantic Web Services,” IEEE Internet Computing, vol. 7,
no. 5 (Sep./Oct., 2003), pp. 34-41.

[10] T.R. Payne, R. Singh, and K. Sycara, “Calendar Agents
on the Semantic Web”, IEEE Intelligent Systems, vol. 17,
no. 3, May/June 2002, pp. 84-86

