
Design and Implementation of Semantic Web Applications

Daniel Schwabe, Guilherme Szundy, Sabrina Silva de Moura1, Fernanda Lima2
1Departamento de Informática, PUC-Rio

{dschwabe, szundy, sabrina}@inf.puc-rio.br
2Universidade Católica de Brasíia

ferlima@ucb.br

Abstract

We present a software architecture to implement

applications in the Semantic Web, based on designs
specified in the Semantic Hypermedia Design Method
(SHDM). This architecture supports the separation
between Conceptual, Navigation and Interface models,
and is based on direct manipulation of the various
ontologies that define an SHDM design.

1 Introduction

In several recent proposals for RDF-based applications
(e.g., [2][3][4]), there is a common (mostly unstated)
underlying assumption that applications in the Semantic
Web are, at least in many cases, browsers over RDF
ontologies. In other words, most websites can be directly
generated by mapping application domain ontologies into
HTML interfaces.

A similar view was espoused by researchers in the
Conceptual Modeling area, when first dealing with Web
applications. We have argued elsewhere [9] that it is
advantageous to separate conceptual modeling from
navigation modeling, and from interface modeling. Each
of these modeling activities address separate concerns in
web applications that are best handled with specific
modeling primitives.

In this paper, we present an approach for designing
and implementing applications in the Semantic Web
based on the Semantic Hypermedia Design Method
[6][8]. Section 2 presents a summary of SHDM, with
more emphasis on the Abstract Interface model; section 3
discusses an implementation architecture, and section 4
draws some conclusions and points to future work.

2 SHDM Summary

SHDM is a model-driven approach to design web
applications using five different steps: Requirements
Gathering, Conceptual Design, Navigational Design,
Abstract Interface Design and Implementation. The
artifacts produced by each phase are listed in Table 1.

Table 1. SHDM artifacts

Artifact Definition Language Description
1 Conceptual Ontology OWL-DL with

annotations and
addtional SHDM rules

Conceptual class definitons

2 Conceptual instances Conceptual Ontology Application data defined
according to the Conceptual
Ontology.

3 Navigational mapping Navigational mapping
definition vocabulary

Rules mapping conceptual
classes into navigational
classes.

4 Navigation space
definition

Navigation space
definition vocabulary

Definition of the navigational
elements – contexts and
access structures (indexes).

5 Navigational Ontology OWL-DL Navigational class (node)
definitions.

6 Navigational
instances

Navigational
Ontology

Application data defined
according to the Navigational
Ontology.

7 Abstract Interface Abstract Interface
definition vocabulary

Abstract interface definition,
including abstract interface
elements and their mapping to
the navigation model and to
concrete interface widgets.

8 Concrete interface
widget ontology

Definition vocabulary
for concrete interface
widgets

Definition of possible concrete
interface widgets to be used in
the implementation

Each step focuses on a particular aspect and produces
models, describing details about an application to be run
on the web.

The separation between conceptual and navigational
design is an important cornerstone of OOHDM [10] that
was kept in SHDM. By explicitly separating conceptual
from navigation design, we address different concerns in
web applications. Whereas conceptual modeling and
design must reflect objects and behaviors in the
application domain, navigation design is aimed at
organizing the hyperspace, taking into account users’
profiles and tasks.

Navigational design is a key activity in the
implementation of web applications, and we advocate that
it must be explicitly separated from conceptual modeling.
In SHDM, the navigational design step produces
expressive models capable of representing web
applications, and even families of web applications.

The examples in the following sub-sections will help
clarify these concepts (we don’t include Requirements
Gathering in this paper); additional details can be found
in [6].

The information items described in the Conceptual
Model and in the Navigation Class Schema are resources
specified in RDF [5]. The characterization of resources in
SHDM is done using OWL[11][12], expressing

constraints (restrictions), enumeration and XML Schema
datatypes.

The typical workflow in producing these artifacts is
(the numbers in brackets refer to the first column in Table
1):

1. Conceptual Ontology design {1}.
2. Once the Conceptual Ontology has been defined,

instances {2} can be created at anytime.
3. Navigational mapping definition {3}.
4. Navigational space specification {4}.
5. Once the navigational space has been defined,

the Navigational Ontology {5} and the
corresponding navigational instances {6} can be
automatically generated based on artifacts {1,
2, 3, 4}. It should be noted that artifacts 5 and 6
need only be actually materialized, instead of
dynamically computed, for optimization
purposes, similarly as in the case of materialized
views for databases.

6. Abstract Interface definition {7}.
Notice that artifact 8 is typically pre-defined, culled

from existing interface definition languages, and updated
only when new interface technologies are introduced.

2.1 Conceptual Model

The conceptual model is basically an object-style
OWL model. In other words, it is an OWL model where
some restrictions are followed, such as requiring that all
properties have domain and range defined.

 In Figure 1, we show an example of a small
conceptual model for an academic department. Appendix
1 shows part of the equivalent OWL ontology which
corresponds to an example of artifact 1.

 Person

name: string
email [1..*]: string
homepage *:
anyURI
phone: string

Profe ssor

category: string {“full”, “associate”, “assistant”}

NewsArticle

title: string
date: dateTime
text: string

 isAdvisedBy / advises

advisee advisor

1

Degree

title: string
organization: string
year: gYear

 hasDegree 1 Paper

title: string
abstract: string

 hasAuthor
1..*

Student

Figure 1. A simple conceptual model for an
academic department

2.2 Navigational Model

An important tenet of OOHDM, followed by SHDM,
is the realization that navigation objects are actually views
over conceptual objects [9]. The SHDM Navigational

Design defines a navigational vision of the Conceptual
Design, specifying the information that will be processed,
and the possible navigations among them, according to
user profiles and tasks to be supported.. During the
navigational design we are interested in specifying:

• which objects can be reached by the user (the
navigational nodes);

• which relations exist among these navigational
nodes (the links);

• within which sets of objects the user will navigate
(the contexts);

• in which ways these sets will be accessed (the
access structures);

• which different content must be presented to the
user, depending on the context he is in (the
inContext classes).

In Figure 2 we show an example of a navigational
class model based on the conceptual model defined in
Figure 1.

Student
advisor: anchor(ctxProfessorAlfa)

Person

name: string
email [1..*]: string
homepage *:
anyURI
phone: string

Professor {from p: Professor}
degree: d:Degree, d.title,

where p HasDegree p
students:idxStudentByProfessor (self)

NewsArticle

title: string
date: dateTime
text: string

 isAdvisedBy/advises

advisee

advisor
1

Paper

title: string
abstract: string
authors:
idxPaperAuthors(self)

 hasAuthor
1..*

Figure 2. A navigational model based on the
conceptual model in Figure 1.

The mapping between the conceptual ontology and the
navigational ontology can be seen in this example by
observing the attribute “degree” defined for navigational
class “Professor”, based on the conceptual class with the
same name. It is assumed that attributes with the same
name as conceptual attributes are simply copied to the
navigational model.

Certain navigational class attributes also employ
navigational ontology primitives such as idx, which
stands for an index (a collection of references). An
example is attribute “authors” for navigational class
“Paper”, which is an index to its authors. Similarly,
attribute “advisor” for class “Student” is an anchor to an
instance of “Professor”, in the context
“ProfessorByStudent”.

The navigational space is defined in SHDM using the
notion of contexts, which are sets of meaningful (for the
task) navigational objects. Elements of a context are
defined through a query. For example, the context
“Professor Alpha” contains all Professors, ordered
alphabetically; “Student ByProfessor” contains all the

students “AdvisedBy” each professor, which is, in fact, a
set of contexts, one for each professor.

Person

Professor

byPaper

MainMenu

Professors Alpha

Student

Alpha Students

News

Papers

NewsArticle

Chrono

Paper

Alpha

byProfessor

Figure 3. An example of context diagram for an
academic department website.

The full definition of a context is given in its Context
Definition Card, exemplified below. Notice the query
expression defining the members of the Student
ByProfessor context.

Context: Professor Alpha

Parameters:
Elements: prof Professor
Context class:
Order: prof.name ASC
Navigation: index (idxProfessorsAlfa), sequential
Operations:
Restrictions:
Comments: All professors in alphabetical order of
name.

Context: Student ByProfessor
Parameters: prof Professor
Elements: stdt Student WHERE stdt isAdvisedBy prof
Context class:
Order: stdt.name ASC
Navigation: sequential
Operations:
Restrictions:
Comments: All students advised by a given professor.

There are analogous cards to define access structures, as
exemplified below for the index of “Person ByPaper”.

Index: idxPaperAuthors
Parameters: pp Paper
Elements: pers Person WHERE pp has Author pers
Attributes: Target:
pers.name PersonByPaper(pers, pp)
Order: prof.name ASC
Restrictions
Comments: Index listing all the authors of a paper.

2.3 Abstract Interface Model

Whereas Navigation design focuses on supporting
users in achieving their intended tasks, Abstract Interface
design focuses on making Navigation objects and
application functionality perceptible to the user, which
must be done at the application interface.

Even while focusing on the interface, it is possible to
factor out various design concerns. At the most abstract
level, the interface functionality can be thought as
supporting information exchange between the application
and the user, including activation of functionalities. In
fact, from this standpoint, navigation is really just another
(albeit distinguished) application functionality.

Since this information exchange is driven by the tasks
being supported, it is reasonable to expect that it will be
less sensitive to runtime environment aspects, such as
particular standards and devices being used. The design
of this aspect of the interface can be carried out by
interaction designers or software engineers.

At more concrete level, it is necessary to define the
actual look and feel of the application, including layout,
font, color and graphical appearance. This is typically
carried out by graphics designers. This part of the design
is almost totally dependent on the particular hardware and
software runtime environment.

Such separation allows shielding a significant part of
the interaction design from inevitable technological
platform evolution, as well as from the need to support
users in a multitude of hardware and software runtime
environments.

The most abstract level is called the Abstract Interface,
focuses on the type of functionality played by interface
elements. The Abstract Interface is specified using the
Abstract Widget Ontology, which establishes the
vocabulary, shown in Figure 4.

An abstract interface widget can be any of the
following:

• EventActivator, which is capable of reacting to
external events;

• ElementExihibitor, which is able to exihibit some
type of content;

• VariableCapturer, which is able to receive
(capture) the value of one or more variables. This
includes input text fields, selection widgets such
as pull-down menus and checkboxes, etc...;

• A composition of any of the above.

 AbstractInterfaceElement

EventActivator

SimpleActivator CompositeActivator

ElementExihibitor VariableCapturer

IndefiniteVariable PredefinedVariable

ContinuousGroup DiscreetGroup MultipleChoices SingleChoices

CompositeInterfaceElement

Figure 4. Abstract Widget Ontology

Any interface can be described as a composition of
abstract interface widgets. In Figure 5, we show an
example of an interface, and part of its corresponding
abstract interface ontology.

Home

Main Menu

Professors
Students
Papers

Professors A to Z

John Smith
PhD Computer Science, UCLA, 1981

Ph: +55 21 3114 1500
Homepage: http://www.example.edu
Email: jsmith@example.edu
Students:

• Peter Young
• Alice Wu
• Mike Shoenfeld

 Previous | Next

Papers

Smith, J., “Semantic Web Applications”, Proc. WWW
2005, pp. 1-10, ACM Press, Chiba, Japan, May 2007

Bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla
bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla
bla.

 Previous | Next

a_ CompositeInterfaceElement

a_CompositeActivator

a_SimpleActivator

a_ElementExhibitor

a_SimpleActivator

a_SimpleActivator

a_Composite InterfaceElement
a_ CompositeInterfaceElement

a_ ElementExihibitor

a_ElementExihibitor

a_ElementExihibitor

a_CompositeActivator

a_SimpleActivator

a_SimpleActivator

a_SimpleActivator

a_SimpleActivator

a_SimpleActivator

Figure 5. An example of an Abstract Interface
and corresponding Abstract Widgets

Abstract interface widgets must be mapped onto
concrete interface widgets in order to be perceived in the
actual interface. Concrete widgets are specified in another
simple ontology, shown in Figure 6.

<ConcreteInterfaceElem rdf:ID="VertScrollBar"/>
<ConcreteInterfaceElem rdf:ID="Image"/>
<ConcreteInterfaceElem rdf:ID="Form"/>
<ConcreteInterfaceElem rdf:ID="HorizScrollBar"/>
<ConcreteInterfaceElem rdf:ID="RadioButon"/>
<ConcreteInterfaceElem rdf:ID="ComboBox"/>
<ConcreteInterfaceElem rdf:ID="CheckBox"/>
<ConcreteInterfaceElem rdf:ID="TextBox_MultiLine"/>
<ConcreteInterfaceElem rdf:ID="Text"/>
<ConcreteInterfaceElem rdf:ID="Label"/>
<ConcreteInterfaceElem rdf:ID="Link"/>
<ConcreteInterfaceElem rdf:ID="Button"/>
<ConcreteInterfaceElem rdf:ID="TextBox_SingleLine"/>

Figure 6. Concrete Interface Widgets Ontology

The actual mapping is part of the Abstract Interface
Ontology, as illustrated in Figure 7. In this snippet, it is
stated that the “EventActivator” abstract interface widget
can only be mapped into the “Link” or “Button” concrete
interface widgets (see the grayed areas).

Actual abstract interface widget instances are mapped
onto specific navigation elements (in the navigation

ontology) and onto concrete interface widgets (in the
Concrete Interface Widget Ontology). Figure 8 shows the
specification of the “Previous Professor” (of class
“EventActivator”) abstract interface widget shown in
Figure 5, which is mapped onto a “Link” concrete
interface element.

 <!DOCTYPE rdf:RDF [

 <!ENTITY awo "http://www.tecweb.inf.puc-rio.br/ontology/AW/awo#" >
 <!ENTITY cwo “http://www.tecweb.inf.puc-rio.br/ontology/CW/cwo# " >
<rdf:RDF
 xmlns:awo = "&awo;"
 xmlns:cwo = "&cwo;">]>
 ...
<owl:Class rdf:ID="EventActivator">
 <rdfs:subClassOf rdf:resource="#AbstractInterfaceElement" />
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&awo;mapsTo" />
 <owl:allValuesFrom>
 <owl:Class>
 <owl:oneOf rdf:parseType="Collection">
 <wc: ConcreteInterfaceElem rdf:about="&cwo;Link" />
 <wc: ConcreteInterfaceElem rdf:about="&cwo;Button" />
 </owl:oneOf>

 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 </owl:Class>
… </rdf:RDF>

Figure 7. Mapping specification between
Abstract and Concrete Interface widgets.

 <!DOCTYPE rdf:RDF [

 <!ENTITY awo "http://www.tecweb.inf.puc-rio.br/ontology/AW/aws#" >
 <!ENTITY cwo http://www.tecweb.inf.puc-rio.br/ontology/CW/wc# " >
<rdf:RDF
 xmlns:awo = "&awo;"
 xmlns:cwo = "&cwo;">
...
<awo:EventActivator rdf:ID="ProfessorPrevious">
<awo:mapsTo rdf:resource= “&cwo;Link" />
<awo:NavigationElement>

<-- name of the navigational element that is represented by this
 abstract element -->

</awo:NavigationElement>
 </awo:EventActivator>

Figure 8. Mapping between abstract interface
widget and navigation element.

The mapping onto the concrete widget ontology will
record the actual interface elements chosen by the
designer. The nesting structure of the abstract interface
must be mapped onto the actual layout. At the moment,
we assume that layout information will be specified using
the CSS box model, since each abstract element will
correspond to a box (DIV tag in HTML). The desired
layout is specified in a style sheet attached to the final
rendered page.

In the next session, we outline the implementation
architecture.

3 Implementation Architecture

We describe the implementation architecture by
showing the flow of processing a request that is issued by
a client (usually, a browser). Figure 9 shows the main
components; the sequence of events is keyed to the
numbers in the diagram.

Client

Navigational
Manager

Request
Handler

Views
Manager

Template
Engine

Data
Manager

Output post
processor

1

2

3

4

7

5

6

Figure 9. Main components of the
implementation architecture, and flow of events.

Before describing some of the details, it should be
mentioned that each abstract interface is internally
represented by a view, which contains a summary of all
navigational elements contained in that abstract interface.
By examining a view, it is possible to quickly determine
all navigation elements that must be retrieved or
computed.

The handling of a request works as follows:
1. The Client sends a request to the system. The

request is received by the Request Handler and
must contain the name of the view to be presented
and any parameters required by the navigational
structures that compose this view.

2. The Request Handler consults the Views Manager
to obtain a view definition for the view name
received in the request. This view definition is
obtained from the Abstract Interface definition.

3. From the view definition the Request Handler
obtains a list with the name of all navigational
structures that compose the view. For each name
on the list it will consult the Navigational Manager
to obtain a navigational structure definition,
obtained from the navigational space specification.
For each navigational structure definition it is
verified if all the parameters required by the
structure where provided in the request.

4. The Request Handler uses the Data Manager to
retrieve the data for each navigational structure
presented in the view, given its definition and the

parameters passed in the request. The data is
returned encapsulated in objects that represent the
navigation components (nodes, indexes, contexts)

5. All the data retrieved is passed to Template
Engine, which takes over the processing from the
Request Handler. It fills the template for the view
to be shown, with all the retrieved data, producing
the output The template itself was previously
created based on the Abstract Interface definition
and the Concrete Widgets Ontology.

6. Optionally the output can be post-processed to
perform additional format transformations (e.g. the
output can be XML that is post processed to be
converted to HTML by applying an XSLT
transformation)

7. The output in its final format is returned to the
client.

Our current implementation uses JSP tag libraries to
represent abstract interface widgets. These tag libraries
point to code that implements the mapping for each
abstract interface widget. This code looks up the mapping
ontologies, and runtime configuration parameters. This
allows generating different interface code depending on a
variety of parameters, such as the device being used by
the user – it can produce plain HTML if the user is using
a computer, or WML if the user is using a cellular
telephone.

The actual RDF data is kept in an RDF store accessed
using the JENA library. We are also experimenting with
Sesame for this function.

4 Conclusions and Future Work

We have outlined in this paper how an SHDM design,
specified through several ontologies, can be directly
mapped onto executing code. A first prototype of the
running system is being finalized.

There are several short and long term research and
development aspects that we will be pursuing further.

From a methodological point of view, we intend to
validade the various models, notably the Abstract
Interface, against industrial grade applications.

There are several primitives in SHDM that still need
refinement, such as faceted navigation and anonymous
classes.

Given the ability to handle both schema-level and
instance-level data, it is a natural extension to SHDM to
be able to handle adaptive applications. In particular, we
are looking into supporting meta-adaptation , where the
type of adaptation itself varies depending on various
parameters (see [1]).

From an implementation point of view, we are
investigating various alternatives with respect to
implementation environments, including alternative

persistence mechanisms, application servers, and
interface technologies.

We also plan to study the scalability of our approach.

5 References

[1] Assis, P. S.; Schwabe, D.; Barbosa, S.D.J., “Meta-models
for Adaptive Hypermedia Applications and Meta-
adaptation”, Proc. of ED-Media 2004, forthcoming. Lugano,
Switzerland, Jul. 2004.

[2] Corcho, O.; Gomez-Pérez, A.; López-Cima, A.; López-
García, V., Suárez-Figueroa, M-d-C; “ODESeW. Automatic
Generation of Knowledge Portals for Intranets and Extranets”,
Proceedings ISWC 2003, LNCS 2870, Springer Verlag,
October 2003, pp 802 – 817. ISBN: 3-540-20362-1.

[3] Golbeck, J. ; Alford, A. and Hendler, J.; Handbook of
Human Factors in Web Design, chapter in Proctor, R; Vu, K-P.
(eds) Organization and Structure of Information using Semantic
Web Technologies. 2003 (available at
http://www.mindswap.org/papers/Handbook.pdf).

[4] Jin, Y., Decker, S., Wiederhold, G.: “OntoWebber: Building
Web Sites Using Semantic Web Technologies”, http://www-
db.stanford.edu/~yhjin/docs/owedbt.pdf.

[5] Lassila, O.; Swick, R.: "Resource Description Framework
(RDF) Model and Syntax Specification", W3C
Recommendation 22 February 1999, http://www.w3.org/TR/
1999/REC-rdf--syntax-19990222/.

[6] Lima, F.: “Modeling applications for the Semantic Web”,
PhD Thesis, Pontifícia Universidade Católica do Rio de Janeiro,
Rio de Janeiro, Brasil, 2003. (in Portuguese)

[7] Lima, F., Schwabe, D.: “Modeling Applications for the
Semantic Web”, In Proc. of the 3rd Int. Conference on Web
Engineering (ICWE 2003), Oviedo, Spain, July 2003. Lecture
Notes in Computer Science 2722, Springer Verlag, Heidelberg,
2003. pp 417-426. ISBN 3-540-40522-4.

[8] Lima, F.; Schwabe, D.: “Application Modeling for the
Semantic Web”, Proceedings of LA-Web 2003, Santiago, Chile,
Nov. 2003. IEEE Press, pp. 93-102, ISBN (available at
http://www.la-web.org).

[9] Rossi, G., Schwabe, D. and Lyardet, F.: "Web Application
Models Are More than Conceptual Models" In Proc. of the
ER'99, Paris, France, November 1999, Springer, 239-252.

[10] Schwabe, D. and Rossi, G.: "An object-oriented approach
to Web-based application design" Theory and Practice of Object
Systems (TAPOS), October 1998, 207-225.

[11] Smith, M.; McGuinness, D.; Volz, R.; Welty, C.: “Web
Ontology Language (OWL) Guide Version 1.0”, W3C Working
Draft 4 November 2002,: http://www.w3.org/TR/owl-guide/

[12] van Harmelen, F.; Hendler, J.; Horrocks, I.; McGuinness,
D.; Patel-Schneider, P.; Stein, L.: Web Ontology Language
(OWL), Reference Version 1.0, W3C Working Draft 21
February 2003, http://www.w3.org/TR/owl-ref/

Appendix I – An extract of the OWL specification for
the conceptual model for an academic department

 <?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
 <!ENTITY cOnt
"http://www.tecweb.inf.puc-rio.br/shdm/example/cOnt.owl.xml#" >
 <!ENTITY shdm "http://www.tecweb.inf.puc-rio.br/shdm.owl.xml#" >
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
]>

<rdf:RDF
 xmlns = "&cOnt;"
 xml:base = "&cOnt;"
 xmlns:shdm = "&shdm;"
 xmlns:owl = "&owl;"
 xmlns:rdf = "&rdf;"
 xmlns:rdfs = "&rdfs;"
 xmlns:xsd = "&xsd;">

 <owl:Ontology
rdf:about="http://200.165.173.38:8080/shdm/example/cOnt.owl.xml">
 <owl:imports
rdf:resource="http://200.165.173.38:8080/shdm/example/shdm.owl.xml"/
>
 </owl:Ontology>

<owl:Class rdf:ID="Person">
 <rdfs:label>Person</rdfs:label>
 <!-- A Person has one and only one name -->
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#personName" />
 <owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <!-- A Person has at least one e-mail -->
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#personEmail"/>
 <owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <!-- A Person has at most one homepage -->
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#personHomepage"/>
 <owl:maxCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <!-- A Person has one and only one phone number -->
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#personPhone"/>
 <owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
<!-- A Person has one and only one degree -->
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasDegree"/>
 <owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
...

 <owl:DatatypeProperty rdf:ID="personName">
 <rdfs:label>name</rdfs:label>
 <rdfs:domain rdf:resource="#Person" />
 <rdfs:range rdf:resource="&xsd;string" />
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="personEmail">
 <rdfs:label>email</rdfs:label>
 <rdfs:domain rdf:resource="#Person" />
 <rdfs:range rdf:resource="&xsd;string" />
</owl:DatatypeProperty>
 ...
<!-- ### Definition of class Professor ### -->
<owl:Class rdf:ID="Professor">
 <rdfs:label>Professor</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Person"/>
 <!-- A Professor has one and only one category -->
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#professorCategory"/>
 <owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

...

<!-- ### Relationship defintions ### -->

<!-- Person hasDegree Degree -->
<ow l:ObjectProperty rdf:ID="hasDegree">
 <rdfs:label>hasDegree</rdfs:label>
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Degree"/>
</ow l:ObjectProperty>

<ow l:ObjectProperty rdf:ID="inverseOf_hasDegree">
 <ow l:inverseOf rdf:resource="#hasDegree"/>
</ow l:ObjectProperty>

<!-- Professor advises Student / Student isAdvisedBy Professor -->
<ow l:ObjectProperty rdf:ID="isAdvisedBy">
 <rdfs:label>isAdvisedBy</rdfs:label>
 <rdfs:domain rdf:resource="#Student"/>
 <rdfs:range rdf:resource="#Professor"/>
 <shdm:domainRole rdf:datatype="&xsd;string">advisee</shdm:domainRole>
 <shdm:rangeRole rdf:datatype="&xsd;st ring">advisor</shdm:rangeRole>
</ow l:ObjectProperty>

<ow l:ObjectProperty rdf:ID="advises">
 <rdfs:label>advises</rdfs:label>
 <ow l:inverseOf rdf:resource="#hasDegree"/>
</ow l:ObjectProperty>

<!-- Paper hasAuthor Person -->
<ow l:ObjectProperty rdf:ID="hasAuthor">
 <rdfs:label>hasAuthor</rdfs:label>
 <rdfs:domain rdf:resource="#Paper"/>
 <rdfs:range rdf:resource="#Person"/>
</ow l:ObjectProperty>

</rdf:RDF>

