
Service Model for Collaborating Distributed Design and Manufacturing

Moon Jung Chung1, Woongsup Kim1, Ravi Gopalan1, Hong Suk Jung1, Hyun Kim2
1Computer Science and Engineering, Michigan State University, East Lansing MI 48824,

{chung, kimwoong,gopalanr jungho}@cse.msu.edu
2ETRI,Taejon, Korea , hyunkim@etri.re.kr

Abstract

This paper presents a Service-Oriented Process

Model (SOM) to build a web-services based process
management system, called MIDAS that would support
distributed Design and Manufacturing process. SOM
uses OWL specification, and describes the semantics of
the design process with an underlying mathematical
mode, Process Grammar, which supports dynamic
process creation and enactment. The rich semantics
provided by SOM offers a unique functionality of web
service-based process composition and iterative
process enactment that may be used for any design and
manufacturing process, and hence makes it appropriate
for usage in scenarios involving distributed and
collaborative design and manufacturing process. The
use of OWL and Process Grammar makes SOM very
suitable for coordination of processes in loosely
coupled collaborative environment. We also introduce
a framework, MIDAS, which is built upon SOM.
Through semantics of SOM, the framework provides
facilities for business/technological entities to discover
services that other collaborative entities provide,
monitor dynamic process environments, and
reconfigure process logic by iteration.

1. Introduction

The advent of dynamic markets, changes in
production economics coupled with rapid
advancements in information technology have set a new
stage for manufacturing practices in the fiercely
competitive global industry. To stay competitive,
manufacturers must be able to 1) manage increasing
product complexity and product innovation driven by
market demands, 2) have faster and flexible product
development cycle, and 3) control globally distributed
outsourcing operations. Collaborating Distributed
Design and manufacture enables manufacturing
organizations in maintaining competitiveness by
creating products with lesser turnaround time, lesser
cost, and with fewer defects. The distributed design
solution unifies the product life cycle by enabling the
sharing of product knowledge and incumbent
manufacturing applications [1].

A variety of frameworks and specifications have
been proposed to manage manufacturing processes in
heterogeneous business environment [4]. However,
these frameworks mostly focus on the system

integration in a closely coupled design and
manufacturing environment. These systems therefore
have inherent weaknesses in terms of scalability and
extensibility in loosely coupled application integration.
Moreover, they do not address run-time process
reconfiguration sufficiently, which is necessary to
reflect dynamic manufacturing environments. Most
systems react to dynamic changes based only on pre-
defined routines composed at the process definition
stage.

In this paper, we present a semantic model, which a
Web service framework may use for Distributed Design
and Manufacture. The Semantic model called Service
Oriented process Model (SOM) is the underlying
foundation for the framework, the Manufacturing
Integration and Design Automation System (MIDAS)
that supports distributed design processes to integrate
design engineering, process engineering, business plan
and assembly operations in a loosely coupled
environment. The system uses the semantic service
model to enable a machine agent in actively locating a
Web service and choreographing collaborative services
into an optimized process workflow. Through such
operations, a user in distributed design process will get
more sophisticated intellectual aid on process design
and management. The framework provides
collaborative dynamic process management using web
service composition. The MIDAS framework provides
a truly distributed architecture for management of
manufacturing process composition and inter-operation
in two aspects. 1) Process integration is described in
terms of choreography of web services, which is
achieved by using the Process Grammar, which is a
process model helps MIDAS to configure processes
dynamically. 2) Also we developed a service-oriented
process model, which specifies semantics on
manufacturing process. It provides standardized
facilities for companies to integrate processes on
distributed design environment using web services.

This paper is organized as follows. Section 2
provides a background on distributed design and web-
service based process management. Section 3 describes
the Process Grammar used for dynamic process
configuration. Section 4 introduces the semantic model,
which consists of process definition model, process
enactment model, and process monitor model. Section 5
shows a general MIDAS architecture and illustrates
how distributed design works at the MIDAS framework.

2. Background

Significant research to automate and coordinate
design and manufacturing from the perspective of
process management [5, 12, 16]. The distributed design
process should be easily reconfigured when changes in
user requirements occur or when the results may not
conform to the constraints and companies should be
able to execute their own processes concurrently with
others during collaboration [22]. Managing processes in
distributed design is highly dynamic and poses
challenges completely different from conventional
workflow management where workflows are static. In
[6] they call such type of process as “enacted
processes”. These involve sub-processes which are
designed “on the fly”, by the participants, as part of the
main process that is being executed. These
characteristics pose challenging problems.

To support inter-operability of business processes, a
variety of standards and languages have been proposed.
WSFL [19] is a workflow language that provides
recursive composition of web services. BPEL4WS
allows a composer to aggregate two or more web
services into processes which may be abstract for a
high-level business transaction or executable as a
compiled process [17, 18]. BPML [15, 17] specifies
web services orchestration and choreography.
Orchestration in this context refers to an executable
business process that can interact with both internal and
external Web services, while choreography describes
relationship and process flow among multi parties or
multi organizations. WSCI [2] was proposed as a
guideline for web service choreography to define and
represent complex behaviour of the set of collaborating
services. Reliable and large-scale interoperation among
trading partners is being attempted by creating a
semantic web for each trading partner’s service whose
properties, capabilities, and interfaces are encoded in an
unambiguous, computer-understandable form [8, 9, 10].
The most noticeable result from these efforts is OWL-S
specification, a language for ontology definition,
manipulation, and reasoning [11, 14]. OWL-S provides
a mechanism to allow web service autonomy for
identifying operational metrics at the design stage and
hence facilitates heterogeneous web services discovery
and integration. A number of Business Process
Modelling methods like SAP's Event Process Chain
(EPC), IMG AG's Promet and the Communication
Structure Analysis (CSA) known from Bonapart have
also been proposed. Each of these methods graphically
represents the process flow but are coupled with the
underlying platform.

These frameworks are working their way to combine
Web services to create higher level and
cross-organizational business processes that requires
standards to model the interactions. But, there is an
important missing piece to realize truly reliable and
scalable processes of design and manufacturing over the

web. In such a scenario choreography cannot be
realized unless the cooperating entities do not share
similar semantic views of the processes involved.
Existing frameworks are closely tied to a specific
domain and platform. Therefore there is a need for a
semantic model that would enable frameworks to
manage and support dynamic manufacturing process
design through collaborative web services.

3. Process Grammar

Our semantic model uses the terms, process

grammar for process representation and task
decomposition. Process grammar [3, 6] has been
proposed to represent design and manufacturing process
and to generate process flow dynamically. Process flow
graphs describe the information flow of a design
methodology, and process grammars provide the means
for transforming high-level task into progressively a
more detailed set of tasks as well as selecting a method
among many alternatives for a task.

In process grammar, the process flow graph consists
of two types of entities: tasks and data specifications. A
task is a single unit of design activity as defined with
the process flow diagram. The flow diagram shows how
to compose a task and the input and output
specifications of the task. Data specifications are design
data, where the output specification produced by a task
can be consumed by another task as an input
specification. There are two types of tasks, a logical
task and an atomic task. A logical task can be
decomposed into a set of subtasks. An atomic task is
the simplest form of the task, which cannot be
decomposed any further. Invoking an atomic task
represents the execution of an application program or a
specific tool. In essence, an atomic task is defined as an
encapsulated tool.

The process grammar provides an abstraction
mechanism so that designers are not overly burdened
with details. It allows a user to represent and manipulate
a small number of abstract, higher-level tasks that can
be expanded into detailed, executable alternatives. This
can be especially valuable when engineers from
different disciplines are working together on a project.
Process grammar can also support the dynamic,
iterative nature of the design process. During the
execution of a process, if the execution of certain task
does not meet the requirement, a roll back can occur to
an appropriate point and a new production can be
applied to generate alternative process flow
dynamically.

4. Description of SOM

The Service-Oriented Process Model (SOM) of
MIDAS is the key semantic model that enables a
contract initiator in actively locating a distributed
design process flow, collaborating on discovered

process flow, and generating an optimized collaborative
workflow. The ultimate goal of SOM is to provide a
standardized way to understand distributed workflows
and its executions among heterogeneous systems.
Effective representation of semantics of the
participating process and components are required to
realise the above-mentioned goal. To realize such a goal,
SOM specifies a semantic definition of distributed
design process and process flow execution in terms of
service flow and service flow execution.

SOM is written with OWL (Web Ontology
Language), which is a standard language to describe
semantics for Web resources [14, 20]. OWL-based Web
service ontology, supplies Web service providers with a
core set of mark-up language constructs for describing
the properties and capabilities of Web services in
unambiguous, computer-interpretable form so that the
participating entities could have comprehensive
information about each other’s capabilities. From the
semantic representation of process, it is possible that
each collaborating unit understands each other partner’s
heterogeneous process representations. SOM consists of
three sub models: Process Definition Model, Process
Enactment Model, and Execution Monitor Model.

4.1 Process Definition Model

Generically, a model describes the way in which a
service works and what happens when it is invoked.
Process definition model defines the semantics for a
service provider’s process flow in the context of a
service flow. The process definition model regards each
task as a Service. Figure 1 shows our semantic model,
SOM.

SOM follows syntactic specification of process
grammar. So, Service can be classified into two types
namely, Atomic Service and Logical Service, which are
analogues of Atomic Task and Logical Task of process
grammar. A service model should also define the pre
conditions and post conditions along with the expected
inputs and outputs of a service. Service includes Input
and output Specification and Pre- and Post-Condition.
MIDAS framework had earlier utilized such marks
when a service provider posts the service flow at the
registry, and a service requester selects a service that
meets requirements from the registry.

Process definition model has the Service Composite
as a placeholder for service provider’s service flow.
Service composite consists of a set of component
services along with the task dependencies between
component services. The dependencies between
component services are captured by linkTo and
linkFrom properties of component services. Logical
service has alternative choices of service composites.
The Alternative Choice encapsulates multiple service
composites inside. Each dependent component service
links each other by linkTo/linkFrom. Services in a
Service Composite share semantic marks of service.

Figure 1 (a) shows ontology graph of process definition
model.

4.2 Process Enactment Model

Process enactment model provides standardized
view of processes to be called subsequent state changes
to be made upon calling. Process enactment model
stipulates seven standard operations, which are essential
to gear up operations of heterogeneous distributed
design system. These operations are described as
follows.
• Provide input delivers input data to a service.
• Invoke enactment brings a cue to start process enact

ment
• Retrieve workflow graph generates workflow graph

from a service to a viewer.
• Retrieve output transports output data from a service

 to a viewer.
• Execute task carries out applying of production even

t or tool execution event.
• Rollback instantiates rollback event by user to a serv

ice.
• Enforced rollback delivers abort event by user to a s

ervice.

Process enactment model also defines five basic exe
cution states. Figure 1 (b) illustrates the relationship am
ong standard operations and execution states.
• un-initialized indicates that nothing has been

initialized in a service.
• ready shows that input data has been bound to a

service, but service execution is not invoked yet.
• proceeding points out that execution of a task has

been invoked and keeps on going.
• finished is the state that execution of a service has

been finished. Two sub states are success and fail.
• exception indicates that unexpected event has

occurred during proceeding state.

4.3 Process Monitor Model

Process monitor model provides standardized view

of how to capture and deliver the distributed design
process execution to viewers. Users of MIDAS can
monitor a process by capturing traces of task executions
and data binding through Execution Monitor Model.
Figure 1 (c) shows ontology graph of process monitor
model. Process monitor model follows the process
enactment logic of Process Grammar. A logical task
will be accompanied by a service composite as a mark
of execution. A tool will do an atomic task, in the same
manner. According to the mathematical model of
Process Grammar, the execution of logical task means
an applying of a production to the logical task, while the
execution of atomic task means execution of a given
tool for the atomic task. Input specifications are bound
to input data before task execution, and output

specifications are bound to output data after task
execution.

AtomicService

ServiceCompositeServiceComposite

Component
Service

AlternativeChoice

hasAlternative

Choices
lin

kT
o

lin
kF

ro
m

(a) Process definition model

(and)
Logical Service

Service

AtomicServiceAtomicService

ServiceCompositeServiceCompositeServiceCompositeServiceComposite

Component
Service

AlternativeChoice

hasAlternative

Choices
lin

kT
o

lin
kF

ro
m

(a) Process definition model

(and)(and)
Logical ServiceLogical Service

Service

invoke

iterative

Un - initialized

Ready

Finished
Proceeding

(b) Process enactment model

Invoke
execution

Rollback

Enforced
R

ollback

Provide
Input

iterative
execution

Un - initialized

Exception

Ready

Finished
Proceeding

Enforced

Rollback

Enforced

Rollback

Exception

invoke

iterative

Un - initialized

Ready

Finished
Proceeding

(b) Process enactment model

Invoke
execution

Rollback

Enforced
R

ollback

Provide
Input

iterative
execution

Un - initialized

Exception

Ready

Finished
Proceeding

Enforced

Rollback

Enforced

Rollback

Exception

enforced

rollback

ServiceComposite

ComponentService
(= Service)

tool

AtomicService

LogicalService

ExecutionState

Specification

data

•Un-initialized
•Ready
•Proceeding
•Finished
•Exception

hasOutput

(c) Process monitor model

ServiceComposite

ComponentService
(= Service)

tool

AtomicService

LogicalService

ExecutionState

Specification

data

hasTool

appliedBy

boundBy
• -
•
•
•
•

O
ne O

f

hasInput

enforced

rollback

ServiceComposite

ComponentService
(= Service)

tool

AtomicService

LogicalService

ExecutionState

Specification

data

•Un-initialized
•Ready
•Proceeding
•Finished
•Exception

hasOutput

(c) Process monitor model

ServiceComposite

ComponentService
(= Service)

tool

AtomicService

LogicalService

ExecutionState

Specification

data

hasTool

appliedBy

boundBy
• -
•
•
•
•

O
ne O

f

hasInput

Figure 1: Three sub models of SOM

5. Distributed Design with MIDAS

The MIDAS framework is a collaborative
engineering framework that coordinates various tasks in
design and manufacturing using web services. It

provides a means 1) to locate manufacturers
dynamically, 2) to select and make contracts with
particular manufacturer in agreement with requirements,
3) to create the collaborative process by incorporating
distributed services among manufacturers, and 4) to
provide a flexible and interoperable execution
environment for the collaborative process. The distinct
features of MIDAS are:
• Separation of process specification from the
execution environment. Syntactic structures, such as
dependency among tasks and input output requirement,
together with alternatives are specified using the
process grammar. Execution details and constraints are
encoded as a part of execution environment.
• A task is a unit of an activity in a distributed design
process. A task can be accomplished by service
providers, or by someone in the same organization.
There may be several different alternatives of
accomplishing the task, with each service provider its
own alternative. The service provider can be located
within the organization itself or a company where the
task can be outsourced.
• Guiding the designer to select appropriate processes
and service providers. Through user interaction, the
framework generates a process configuration that
provides an optimal solution within a given set of
constraints.
• Process flow generated is modulated and archived
for future use. Archived process flows and alternatives
can be retrieved, revised and reused.

enroll

Service Registry

deploy

read
write
read
write

displays
workflows

displays
workflows

AA
BBB

Web service

Process engine

process
definition

decision on enactm
ent

decision on enactm
ent

enacting status

invokes execution
Service
requester

Service
provider

qu
er

yin
g

requests fo
r execution

Semantic
reader

Service
discovering tool

Web Service
Discovering Module

Web Service
Calling Module

Service
Registering Module

Web Service
Deploying Module

cockpit

Service provider’s
Process engine

Internet

reports
execution status
by process
monitor model

 Figure 2: MIDAS framework

We have integrated service-oriented distributed
design functionality into MIDAS framework. MIDAS
has been developed for collaborative entities to work
together to complete a manufacturing design process [6,
7]. Figure 1 illustrates general MIDAS framework. The
system consists of four components as follows.
• Cockpit: Cockpit in MIDAS provides the following

main functionalities: Process Editing, Display and
maintenance of process information archive,
Operations of process design.

- : inherited : collection : model - defined OWL property
:OWL class

• Process Engine: They provide services to distribute
the process design execution snapshot, through
process library and tool library.

• Process/Tool Library: Process/Tool information is
organized in production libraries.

• Web Service Module: It provides facilities such as
browsing service semantics, and calling Web service
to the engine. MIDAS web service module is
composed of Web Service Discovering Module,
Service Registering Module, Web Service Deploying
Module, and Web Service Calling Module.

Distributed design workflow generation by MIDAS

proceeds in interaction between manufacturing
companies. For each alternative for sub process
generation, there is a manufacturing service provider
who can be outsourced. Service providers offer their
manufacturing process as a service flow, and MIDAS
guides a designer to select an appropriate service
provider and his service flow. The figure 4 illustrates
how companies use MIDAS to outsource a distributed
design tasks. The contract initiating company performs
a referencing for distributed design task as shown in the
figure 3. After selecting one service provider, the two
companies negotiate, and reach an agreement on
cooperation. Incorporating subcontractor’s process and
execution of merged process flow will be simply done
by calling subcontractor’s Web services.

Distributed design by MIDAS framework proceeds
in two major steps: (1) Service deployment and
registration by geologically distributed manufacturers.
(2) Iterative workflow configuration among distributed
manufacturers.

5.1 Service Deployment and Registration

Service provider writes process definition in OWL
following the process definition model schema. Process
definition includes product description, manufacturing
process for the product, required input and output
specification, and etc. Based on this definition, the
service-deploying module of service provider
automatically generates Web service code and deploys
it on the Web. Then, the service-registering module
enrols deployed Web service on the Web service
registry. Service registry registers not only the Web
service, but also semantic marks of manufacturing
process that the Web service provides.

5.2 Iterative Workflow Configuration

In order to reflect dynamic nature of process

management, MIDAS provides support for iterative
process configuration including service discovery and
process enactment. MIDAS process enactment consists
of four steps: (1) Locate and select service provider and
his process. (2) Expand initial process with selected
process. (3) Execute expanded process. (4) Check if

expanded process meets constraints, and if not, rollback
to step 1. Figure 3 represents each of the steps
mentioned above.

In step 1, service requester checks the semantic
marks of processes registered in the service registry,
and selects one that meets the requester’s requirements.
Through step 2 to step 4, all operations are done by
collaboration among service requester and provider.
This collaboration follows the enactment model of
SOM. In step 2, importing service provider’s OWL
process definition expands service requester’s process.
In step 3, the service requester invokes process
execution by calling invoke enactment operation of
service provider’s Web service. During the execution,
the service provider finishes distributed design tasks in
his process and generates output data. MIDAS allows
service requester to participate service provider’s
process execution. The service provider can participate
the process execution by calling execute task and
rollback operations. In step 4, the service requester
validates finished process and result data. The service
provider can get the finished process by calling retrieve
workflow graph, and can get the result data by calling
retrieve output data. If the finished process doesn’t
meet given distributed design requirement, the service
provider can reinitiate another process configuration
with new service provider. During the iterative
workflow configuration, the service requester can check
the execution status by calling retrieve workflow graph
operation. This operation returns execution state of each
element of service provider’s process in format of OWL
document defined in the process monitor model of
SOM.

AA

Potential
subcontractors

Selected
subcontractor

Semantic Registry

negotiates and incorporates process flow

loc
ate

s a
nd

 se
lec

t s
ub

co
ntr

ac
tor

Contract initiator

post

process flow

Figure 3: task outsourcing on MIDAS

6. Conclusion

This paper presents an all purpose semantic model
and a framework architecture of a web-services based
process management system for collaborative design
and manufacturing. Our service-oriented process model
provides a unique functionality of web service based

process composition and iterative process enactment.
Processes are designed with modular structure. Process
logic is constructed by compositing modular process
logics through choreography of Web services. We have
implemented a prototype using Java and OWL. The
collaborative dynamic process design and management
of MIDAS is purely task-oriented, which gives Web
services choreography capability to each task, not to a
central process management unit in each cooperative
organization. The main advantage of the framework is
that it is truly distributed architecture, which enables it
to exploit loosely coupled heterogeneous networks, and
hence the framework facilitates distributed design
between totally different types of partners. In addition,
SOM provides generic collaborative dynamic process
management and the same has been demonstrated using
MIDAS. SOM helps MIDAS in effectively monitoring
dynamic process environment and reconfiguring
process logic by iteration.

7. References

[1] AberdeenGroup, “Beating the competition with
collaborative product commerce,” June 2000.

[2] Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi,
K., Orchard, D., Pogliani, S., Riemer, K., Struble, S.,
TakacsiNagy, P., Trickovic, I., and Zimek, S., "WSCI",
http://www.w3.org/TR/2002/NOTE-wsci-20020808

[3] Baldwin, R. and Chung, M.J. “Design Methodology
Management: A Formal Approach,” IEEE Computer, pp.
54-63, February 1995.

[4] Bourke, R. “Software Survey: Collaborative Product
Commerce, “ Midrange Enterprise, November 2000.

[5] Chung, M.J., and Kwon, P. “A Web-based Framework for
Design and Manufacturing a Mechanical System,” DETC,
Atlanta, Georgia. Sep. 1998.

[6] Chung, M.J., Kwon, P. and Pentland, B. “Making Process
Visible: A Grammartical Approach to Managing Design Proc
esses,” ASME Transaction, Journal of Mechanical Design. vol
. 124, 364-374, 2002.

[7] Curbera, F., et al., “The Next Step in Web Services,”
Communication of the ACM. 46(10): p. 29-34. 2003.

[8] Ding, Y., Fensel, D., Klein, M., and Omelayenko, B., "The
semantic web: yet another hip?," Data & Knowledge
Engineering, Vol. 41, No. 2, pp. 205-228, 2002.

[9] Fensel, D., Horrocks, I., Harmelen, F., McGuinness, D. L.,
and Patel-Schneider, P. F., "The semantic web OIL: an
ontology infrastructure for the semantic web", IEEE
Intelligent Systems & Their Applications, Vol. 16, No. 2, pp.
pp. 38-45, 2001.

[10] Hendler, J., "The Semantic Web - Agents and the
Semantic Web," IEEE Intelligent Systems & Their
Applications. Vol. 16, No. 2, pp. 30-37, 2001.

[11] IBM, "Using Service-Oriented Architecture and
Component-Based Development to Build Web Service
Applications", Rational Whitepaper, 2003.

[12] Lavana, H., Khetawat, A., Brglez, F., and Kozminski, K.,
"Executable Workflows: A Paradigm or Collaborative Design
on the Internet", Proceedings of the 34th ACM/IEEE Design
Automation Conference, June 1997.

[13] Leymann, F., "WSFL 1.0", http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[14] Paolucci, M., Srinivasan, N., Sycara, K., Solanki, M.,
Lassila, O., McGuinness, D., Denker, G., Martin, D., Parsia,
B., Sirin, E., Payne, T., McIlraith, S., Hobbs, J., Sabou, M.,
and McDermott, D., "OWL-S",
http://www.daml.org/services/owl-s/1.0/owl-s.pdf

[15] Peltz, C. "Web Services Orchestration and
Choreography," IEEE Computer (October), pp 46-52, October
2003.

[16] Schey, J. A., (1987), Introduction to Manufacturing
Processes, 2nd edition, McGraw-Hill, New York, NY

[17] Shapiro, R., "A Comparison of XPDL, BPML, and
BPEL4WS." xml.coverpages.org/Shapiro-XPDL.pdf, 2002.

[18] Weerawarana, S. and Francisco, C., "Business Process
with BPEL4WS: Understanding BPEL4WS”, Part1",
http://www-106.ibm.com/developerworks/webservices/library
/ws-bpelcol1/ 2002.

[19] WSFL.
http://www-3.ibm.com/software/solutions/webservices/pdf/W
SFL.pdf

[20] OWL www.daml.org

[21] Christian Fillies, Frauke Weichhardt, Semtalk, “Towards
the Corporate Semantic Process Web,”
http://www.semtalk.com

[22] Burdick, D. “Collaborative Product Commerce: The
Technology Vision,” Research Note Technology by Gartner
Group, January 4, 2000.

