
Conceptual Modelling versus Semantic Web: the two sides of the same coin?

Oscar Pastor, Joan Fons, Victoria Torres, Vicente Pelechano
Politechnic University of Valencia

Department of Information Systems and Computation
{ opastor, jjfons, vtorres, pele } @dsic.upv.es

Abstract

A Web Application must have a precise semantics. In
currently Web Engineering environments, this can be
achieved either by specifying a Web Conceptual Schema,
or by using a Semantic Web-language where the Web
Application meaning is properly captured. In any case,
the set of relevant conceptual primitives has to be
properly represented. In this paper both approaches are
studied as two different strategies to solve a common
problem. The required conceptual primitives are
presented, including those data and functional more
conventional primitives, and those navigation and
presentation more specific of Web Appls.

1. Introduction

Philosophers are facing for centuries the problem of
how to represent properly reality. The existence or non
existence of universals -concepts whose representation
we can perceive- has been an issue from the platonic
realism –that defend the existence of universals- till the
more modern nominalism and conceptualism
philosophical approaches –arguing that universal or
concepts are just a linguistic mechanism to model real
world phenomena-.

In some way, this philosophical discussion has been
present in Software Engineering through Conceptual
Modelling approaches. We could see Conceptual
Modeling-based methods as a projection on Software
Engineering of realism, in the sense that the only software
components that are present in a final product are those
that have a conceptual counterpart in the corresponding
source conceptual schema. Agile Methods, Extreme
Programming-based would constitute the nominalism
approach, not accepting the need of having previous, pre-
existing modelling constructs as a required basis for any
software representation at the solution space.

Within the emergent Web Engineering community,
model-based approaches are providing sound methods to
deal with a precise Web Application Production Process,
where the features associated to system structure,
dynamics, functionality, navigation and presentation are

properly managed (OOHDM [7], WebML[1],
OOWS[2],…). Furthermore, how to go from the
conceptual schema (system specification) to the
implementation (final software product) is precisely
stated by defining a set of mappings between conceptual
primitives and their corresponding software
representations (OlivaNova [6]). Some concrete tools are
even already present in industry, giving some kind of
automated support to this web-oriented software
production process

According to these approaches, any Web Application
is the result of systematically applying a set of
transformation rules specified at a higher level of
abstraction in a Web Conceptual Schema. If Web
Applications would have been built from the beginning
following these ideas, the semantic of any Web
Application would be precisely characterized by its
corresponding specification. Obviously this has not been
the case.

Generally speaking, Web Applications Development
in practice has been during the last years and ad-hoc,
informal process, where modelling support has not been
considered at all an essential approach to deal with the
complexity of Web development. In consequence, we
face a situation where a huge number of Web
Applications are running in the Web, with a mostly
unknown semantic structure, and all of them independent
from each other.

But as we commented before, humans are insistent in
trying to structure the world. The World Wide Web has
not escaped to this human goal. If we want to
communicate Web Applications providing efficient web
services to exploit the advantages of the global web, the
semantic of a Web site needs to be precisely known.
Semantic Web languages are introduced to represent Web
site modes. They play the role of the Conceptual Schema
in the Model-based Web Development approaches
provided in the context of the most advanced Web
Engineering methods. Semantically tagged data start to
become available: the Semantic Web technology is just
here.

But it is very interesting to remark that Conceptual
Modelling for Web Applications and Semantic Web
related technologies are facing a common, well-known
problem: to understand the world, by providing a clear

system specification. Conceptual Modelling selects a top-
down strategy –from the model to the implementation-
while current Semantic Web technology opts for a
bottom-up approach –we have the software product: let’s
provide any kind of structured specification in a clear-
enough language.

According to this idea, a basic aspect is to characterize
the set of conceptual primitives required to model a Web
Application. Either if we chose a top-down or a bottom-
up approach, the required conceptual primitives should be
the same. For representation purposes, different
languages can be selected to specify them, but the
important point is to describe precisely those conceptual
constructs needed to characterize the structure of any
Web Application. In this paper, we basically introduce
such a set of conceptual constructs, independently of any
particular language or conceptual modelling approach.
Our final intention is to characterize the expressiveness
that has to be provided by any particular solution, either
coming from the Conceptual Modelling or the Semantic
Web domain.

To accomplish our objective, after this introduction we
present in the next sections the quoted set of conceptual
primitives: in section 2 we introduce the conventional
static and dynamic primitives, following an Object-
Oriented Model to characterize the data and functional
system architecture. In the section 3, the navigation and
presentation conceptual primitives that complement the
previous static and dynamic system views are presented.
The work is ended with the conclusions and the
corresponding references.

2. Conceptual Primitives related to Data and
Functionality

Of course, a Web Application is still an application…
What we mean by this is that beyond specific web-
oriented aspects that we will face in the next section, a
Web Application must be based on a precise Class
Architecture –to characterize the static system’s view-
and a precise Functional Model –to characterize the
dynamic system’s view.

We chose an Object Oriented Model for Conceptual
Modelling purposes because it has been proved in many
previous works that the OO Model is especially
appropriate for conceptual modelling purposes due to its
proximity to human cognitive mechanisms. It seems to be
a natural way of modelling to look at the world as a
society of interacting objects, belonging to classes where
data and functionality are formally specified. The
question now is to fix what conceptual primitives need to
be taken into account.

From the static point of view, the list of conceptual
primitives is composed of:

 classes, and

 relationships between classes
The class specification includes the definition of

attributes and operations. Every attribute has associated
its type, its default value, whether it is a constant, variable
or derived and if it accepts null values. For every
operation, its arguments must be specified, together with
a special label to distinguish new and destroy operations,
and shared operations with other classes when this is the
case.

The valid relationships between classes are those of
association / aggregation and generalization /
specialization. Association / aggregation are
characterized by the binary cardinality (minimum and
maximum) and by the constant or variable property of the
established relationship. If the relationship is
unidirectional, the induced part-of relation converts the
association in aggregation.

Generalization/specialization conceptual primitives
include the specification of roles as specialization
mechanisms that gets activated only in periods of a given
object live. The condition or operation that activates the
role, and the condition or operation that deactivates it has
to be specified.

Finally, integrity constraints allow specifying
conditions that must hold in any valid state of an object.
They are specified within the class scope as well-formed
formulas built on attributes.

From the dynamic point of view, the list of conceptual
primitives is composed of:

 preconditions of operations, to state what
conditions must hold for activating an operation;

 valuations of operations, to state what is the
change of state generated by the occurrence of an
operation, in terms of new attribute values or
object creation / destruction;

 transaction definition, which provide complex
operations consisting of a set of operations
belonging to the same class (if the transaction is
local) or belonging to different classes (if global);

 trigger specification, to fix when an operation will
be activated in an automated way, because a given
condition is fulfilled.

These primitives have traditionally been present in a
sound model-based software development process, and
they need to be present in particular if we want to provide
a method for developing Web Applications.

But the data and functional specification is not all. A
Web Application needs to specify particular navigation
and presentation characteristics, specific of Web
environments.

3. Conceptual Primitives related to
Navigation and Presentation

It is not an easy task to define navigation, as there is
no general definition accepted by everybody. According
to interesting discussions hold within previous IWWOST
editions (International Workshop of Web-Oriented
Software Technology, [3], [4], [5]), our position is that
navigation implies the change of a conceptual node
through the activation of a navigational link. This implies
that what do we mean by conceptual node –interaction
unit that provides access to relevant data and functionality
for a given agent- and navigational link –reachability
relationship between conceptual nodes to satisfy a given
agent’s goal- is basic for characterizing a navigational
model.

For navigational purposes, we assume that any valid
navigation must be accomplished by traversing a path that
exists in the underlying class model. This means that we
can navigate from one class to another if and only if there
is specified a relationship between the involved classes.

The navigation specification must fit the features of
particular agents. In consequence, the main navigation
conceptual primitive is the navigational map that will be
attached to any particular type of user. The navigational
map represents the valid paths that any user of the
corresponding type can go through.

The other primitives are hierarchically structured. Any
navigational map is made up of:

 navigational nodes, that includes a set of
navigational contexts, that are the basic user
interaction units, containing a set of navigational
classes and navigational relationships

 navigational links, which are binary relationships
specifying a reachability relationship between two
navigational nodes.

Any Web Conceptual Modelling or Semantic Web
based approach has to provide the way to specify the
required specific properties of both navigational classes
and relationships. A navigational class includes the set of
attributes and the set of operations that a user can access.
These accessible properties must exist in the structural
class diagram introduced in section 2. This allows us to
define a navigational class as a view of a class, where the
subset of visible and accessible class properties is
specified. As not all of the class population has to be
available, additionally filters on the class population can
be defined associated to any navigational class.

Finally, a navigational relationship is defined as
unidirectional, binary relationship that exists between two
navigational classes of a given navigational context. They
need to have a structural relationship counterpart in the
associated Class Diagram. Depending on if the
navigational relationship induces or not navigation, we
have navigation relationships of two different types.

If the navigational relationship does not imply
navigation, we are just adding more information to the
basic user interaction unit that the navigational context is.

If it implies navigation some more properties have to be
specified:

 which is the target navigational context
 which is the attribute that will be used as “anchor”

for activating the navigation
 These are the most basic conceptual navigation
primitives that must be provided. We also talked about
presentation patterns. Now, we briefly introduce a set of
conceptual presentation patterns, intended to complement
the navigational view by specifying some presentation
properties. These properties will also guide the user
interaction provided by the Web Application.
The conceptual presentation patterns are basically:

 information layout (register, table, tree, master-
detail, etc.)

 ordering criteria to indicate the chosen order to
view the required information

 how to group the visualization of objects (page
cardinality, access mode)

With them, how the user will “see” and interact with
the information provided at any navigational step, is
precisely specified.

4. Conceptual Primitives Representation:
Conceptual Modelling vs. Semantic Web

Once established the set of conceptual primitives that
must be captured to properly specify the requirements of
a Web Application, we must follow an approach to tackle
with the software development process.

From a Conceptual Modelling point of view, the
representation of those concepts must be defined before
system implementation. At a higher level of abstraction,
any conceptual modelling approach must provide with
graphical notations to represent the system requirements
by using those conceptual primitives. Usually these
primitives are organized into different diagrams. In an
OO paradigm, we use a Class Diagram to represent the
structural system properties (see Figure 1) and a
Functional Model to represent the dynamics (see Figure
2).

Figure 1.- Static Primitives: Class Diagram

Figure 2.- Dynamic Primitives: Functional Model

In addition, the navigational primitives are represented

by means of a Navigational Model (see Figure 3) and the
presentation primitives within a Presentation Model (see
Figure 4).

Figure 3.- Navigational Primitives: Navigational Model

Figure 4.- Presentation Primitives: Presentation Model

From a Semantic Web point of view, the

representation of those primitives must be placed at
implementation level. Development strategies oriented to
apply the semantic web use implementation semantic
languages (such as RDF [8]) to take into account those
conceptual primitives. The specification of these
properties is usually specified in schema files (such as
RDF-Schema) defining the valid implementation
structures. A piece of the schema that defines some static
and some navigation primitives is shown in Figure 5.

Figure 5.- Static and Navigation Primitives

 <!-- Static Primitives -->
 ...
 <owl:Class rdf:ID="Class">
 <rdfs:label>Class</rdfs:label>
 ...

 </owl:Class>

 <owl:DatatypeProperty rdf:ID="className">
 <rdfs:label>Class name</rdfs:label>
 <rdfs:domain rdf:resource="#Class"/>
 <rdfs:range rdf:resource="&xsd;string"/>
 </owl:DatatypeProperty>

 ...

 <owl:Class rdf:ID="Attribute">
 <rdfs:label>Attribute</rdfs:label>
 ...
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="attributeName">
 <rdfs:label>Attribute name</rdfs:label>
 <rdfs:domain rdf:resource="#Attribute"/>
 <rdfs:range rdf:resource="&xsd;string"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="attributeType">
 <rdfs:label>Attribute type</rdfs:label>
 <rdfs:domain rdf:resource="#Attribute"/>
 <rdfs:range rdf:resource="&xsd;string"/>
 </owl:DatatypeProperty>

 <owl:Class rdf:ID="ConstantAttribute">
 <rdfs:label>Constant Attribute</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Attribute"/>
 </owl:Class>
 ...

 <owl:Class rdf:ID="Aggregation">
 <rdfs:label>Aggregation Relationship</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Relationship"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#composite"/>
 <owl:cardinality
 rdf:datatype="&xsd;nonNegativeInteger">1
 </owl:cardinality>
 </owl:Restriction>
 ...
 </rdfs:subClassOf>
 ...
 </owl:Class>
 ...
 <!-- Navigational Primitives -->
 ...
 <owl:Class rdf:ID="User">
 <rdfs:label>User</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="NavigationalMap">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#NavigationalUser"/>
 <owl:cardinality
 rdf:datatype="&xsd;nonNegativeInteger">1
 </owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 ...
 <rdf:ObjectProperty rdf:ID="context">
 <rdfs:domain rdf:resource="#NavigationalMap"/>
 <rdfs:range rdf:resource="#Context"/>
 </ObjectProperty>
 ...
 <owl:Class rdf:ID="E_Context">
 <rdfs:label>Exploration context</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Context"/>
 </owl:Class>
 ...

 <owl:ObjectProperty rdf:ID="navigationalClass">
 <rdfs:label>Class View</rdfs:label>
 <rdfs:domain rdf:resource="#Context"/>
 <rdfs:range rdf:resource="#ClassView"/>
 </owl:ObjectProperty>
 ...

 <owl:Class rdf:ID="ClassView">
 <rdfs:label>Class View</rdfs:label>
 ...
 </owl:Class>
 ...
 <owl:ObjectProperty rdf:ID="navigationalRelationship">
 <rdfs:label>Navigational Relationship</rdfs:label>
 <rdfs:domain rdf:resource="#ClassView"/>
 ...
 </owl:ObjectProperty>
 ...

Figure 6 shows the representation of some static

primitives and Figure 7 shows the representation of some
navigation primitives.

Figure 6.- Static Primitives (in use)

<!DOCTYPE owl [
 <!ENTITY cm "http://oomethod.dsic.upv.es/onto/04/cm#">
 ...
]>

<rdf:RDF
 xmlns:rdf = "&rdf;"
 xmlns:rdfs = "&rdfs;"
 xmlns:cm = "&cm;"
 ...
>

 <cm:Class about="&cm;Class1"> rdf:
 <cm:className>Class1</cm:className>
 <cm:attribute>
 <rdf:List>
 <rdf:first>
 <cm:ConstantAttribute rdf:about="&cm;attribute1">
 <cm:attributeName>attribute1</cm:attributeName>
 <cm:dataType>integer</cm:dataType>
 </cm:ConstantAttribute>
 </rdf:first>
 <rdf:rest>
 <rdf:List>
 <rdf:first>
 <cm:VariableAttribute rdf:about="&cm;attribute2">
 <cm:attributeName>attribute2</cm:attributeName>
 <cm:dataType>integer</cm:dataType>
 </cm:VariableAttribute>
 </rdf:first>
 <rdf:rest
rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-
ns#nil"/>
 </rdf:List>
 </rdf:rest>
 </rdf:List>
 </cm:attribute>

 <cm:operation>
 <rdf:List>
 <rdf:first>
 <cm:NewOperation rdf:about="http&cm;operation1">
 <cm:operationName>operation1</cm:operationName>
 <cm:operationArgument>
 <rdf:List>
 ...
 </rdf:List>
 </cm:operationArgument>
 </cm:NewOperation>
 </rdf:first>
 <rdf:rest>
 ...
 </rdf:rest>
 </rdf:List>
 </cm:operation>

 <cm:IntegrityConstraint>

 <cm:constraintFormula>attribute1 gt 0
</cm:constraintFormula>

 </cm:integrityConstraint>

 </cm:Class>

 ...
 <cm:Aggregation
 rdf:about="&cm;AggregationRelationship">
 <cm:composite rdf:resource="&cm;Class1">
 <cm:component rdf:resource="&cm;Class2"/>
 ...
 </cm:Aggregation>
 ...

Figure 7.- Navigational Primitives (in use)

...
<cm:User rdf:about="&cm;User">User
...
</cm:User>

 <cm:NavigationalMap>
 <cm:navigationalUser rdf:resource="&cm;User"/>
 <cm:context>
 <rdf:List>
 <rdf:first>
 <cm:context rdf:resource="&cm;Context1"/>
 </rdf:first>
 ...
 </rdf:List>
 </cm:context>
 <cm:navigationalLink>
 ...
 </cm:navigationalLink>
 </cm:NavigationalMap>

 <cm:E_Context rdf:about="&cm;Context1">
 ...
 </cm:E_Context>

 <cm:E_Context rdf:about="&cm;Context2">
 <cm:navigationClass>
 <rdf:List>
 <rdf:first>
 <cm:NavigationalClass rdf:about="&cm;Class1View1">
 <cm:navigationalAttribute>
 <rdf:List>
 <rdf:first>
 <cm:Attribute rdf:resource="&cm#attribute1"/>
 </rdf:first>
 <rdf:rest>
 ...
 </rdf:List>
 </cm:navigationalAttribute>
 </cm:NavigationalClass>
 </rdf:first>
 ...
 </cm:navigationalClass>

 <cm:navigationalRelationship>
 <cm:NavigationalRelationship
 rdf:about="&cm;NavRelationship1">
 <cm:nrSourceClass rdf:resource="&cm;Class1View1">
 <cm:nrTargetClass rdf:resource="&cm;Class2View1">
 </cm:NavigationalRelationship>
 </cm:navigationalRelationship>
 </cm:E_Context>
 ...
 <cm:NavigationalLink>
 <cm:fromContext rdf:resource="&cm;Context1"/>
 <cm:toContext rdf:resource="&cm;Context2"/>
 </cm:NavigationalLink>

 <cm:NavigationalLink>
 <cm:fromContext rdf:resource="&cm;Context2"/>
 <cm:toContext rdf:resource="&cm;Context3"/>
 </cm:NavigationalLink>

 ...

In this way, we have a different representation but a

common set of basic concepts. Having a fix set of
conceptual primitives, it is feasible to define a set of
mappings between conceptual primitives and their

corresponding software representations, making possible
the implementation of Web Conceptual Model Compilers.

In this environment, a fruitful strategy could be based

on taking the best of these two approaches by:
 having complete conceptual models of web

applications, at a higher conceptual (problem
space) level, and

 implementing final applications by applying a set
of systematic translation rules from those
conceptual primitives into web semantic concepts
representation, at the solution space level.

5. Conclusions

The main goal of the emerging Web Engineering
discipline is to develop correct Web Applications, where
structure, functionality, navigation and user interaction
have to be properly represented. To make this possible,
any Web Application has to provide a precise semantic
associated to it. Only if such a precise meaning is given, it
makes sense to provide web services whose structure and
functionality is clearly specified, and that can be accessed
and used by different agents.

This semantics can be provided in a top-down way, by
defining a Web Conceptual Schema where all the relevant
modelling components are specified. The resulting Web
software product is the corresponding representation of
the Conceptual Model at the solution space level.

Alternatively, a bottom-up strategy can be used. In this
case, a Semantic Web-based language (i.e. RDF) allows
to specify those relevant conceptual constructs that
characterize the meaning of the corresponding Web
Application. This specification makes possible the
connection of the application to any external potential
agent. Web site models can be represented in this way by
Semantic Web languages. The available Semantic Web
infrastructure is immediately applicable for the Web
Engineering field, thus making the processing of Web site
models effective.

In any case, the set of conceptual primitives required to
fix the semantics of a Web Application must be clearly
defined. In this paper, this set is introduced. They are
structured in data and functional conceptual primitives,
and more web-oriented navigational and presentation

conceptual primitives. The final intention is to fix the
required expressiveness for any Web Conceptual
Modelling strategy, or any Semantic Web-based ontology
language. According to that, we could conclude that
Conceptual Modelling and Semantic Web are really the
two sides of the same coin: the coin required to develop
correct Web Applications.

References

[1] S. Ceri, P. Fraternalli and A. Bongio, “Web Modeling
Language (WebML): a Modeling Language for
Designing Web Sites”, WWW’00, Elsevier, Amsterdam,
The Nederlands, May, 2000, pp. 135-157.

[2] J. Fons, V. Pelechano, M. Albert and O. Pastor,
“Development of Web Applications from Web Enhanced
Conceptual Schemas”. ER’2003, Springer-Verlag,
Volume 2813, Chicago, USA, October, 2003, pp. 232-
245

[3] International Workshop on Web-Oriented Software
Technology, First Edition. June, 2001. Valencia, Spain.
http://www.dsic.upv.es/~west/iwwost01/

[4] International Workshop on Web-Oriented Software
Technology, Second Edition. June, 2002 Malaga, Spain.
http://www.dsic.upv.es/~west/iwwost02/

[5] International Workshop on Web-Oriented Software
Technology, Third Edition. July, 2003 Malaga, Spain.
http://www.dsic.upv.es/~west/iwwost03/

[6] OlivaNova Model Execution System. CARE
Tecnologies S.A. http://www.care-t.com/

[7] D. Schwabe, G. Rossi and S. Barbosa, “Systematic
Hypermedia Design with OOHDM”, ACM Conference on
Hypertext, USA, 1996

[8] W3C Recommendation 10 February 2004. RDF
Vocabulary Description Language 1.0: RDF Schema.
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

http://www.dsic.upv.es/~west/iwwost01/
http://www.dsic.upv.es/~west/iwwost02/
http://www.dsic.upv.es/~west/iwwost03/
http://www.care-t.com/

