
Towards Semantic Web Engineering:
WEESA - Mapping XML Schema to Ontologies

Gerald Reif, Mehdi Jazayeri
Distributed Systems Group

Technical University of Vienna
{g.reif, m.jazayeri}@infosys.tuwien.ac.at

Harald Gall
Department of Informatics

University of Zurich
gall@ifi.unizh.ch

Abstract

The existence of semantically tagged Web pages is
crucial to bring the Semantic Web to life. But it is
still costly to develop and maintain Web applications
that offer data and meta-data. Several standard Web
engineering methodologies exist for designing and im-
plementing Web applications. In this paper we intro-
duce a technique to extend existing Web engineering
techniques to develop semantically tagged Web applica-
tions. The novelty of this technique is the definition
and implementation of a mapping from XML Schema
to ontologies that can be used to automatically generate
RDF meta-data from XML content documents.

Keywords: Web engineering, Semantic Web, On-
tology

1 Introduction

Web Engineering focuses on the systematic and cost
efficient development and evolution of Web applica-
tions [8]. The outcome of the Web Engineering pro-
cess are Web applications that provide Web pages that
can be displayed in a Web browser and are human-
understandable. For the Semantic Web [3] we need a
meta-data representation of the content of a Web page
that is also machine-understandable to enable agents to
access the semantics of the content. In the Semantic
Web this meta-data description is done using the Re-
source Description Framework (RDF) [12] that refer-
ences the terms defined in one or more ontologies. On-
tologies formally define terms used in a domain and the
relationship between these terms. An ontology is de-
fined in an ontology definition language such as RDFS
[4], DAML+OIL [6], or OWL [13]. In the remainder
of this paper we talk about Semantic Web applications
when a Web application not only offers the content

in HTML format but also meta-data that is machine-
understandable.

Looking at Web pages that provide an RDF meta-
data description, so called Semantic Web pages, we rec-
ognize that important parts of the content are stored
two times. First, in HTML format that is displayed
to the user via the Web browser. Second, in the RDF
description that is machine-understandable. This re-
dundancy leads to inconsistency problems when main-
taining the content of the Web page. Changes always
have to be done consistently for both types of informa-
tion. Therefore, support is needed for the creation and
maintenance of Semantic Web pages.

Most Web engineering methodologies are based on
separation-of-concerns to define strict roles in the de-
velopment process and to enable parallel development
[9]. The most frequently used concerns are the content,
the graphical appearance, and the application logic.
When we plan to design a Semantic Web application
we have to introduce a new concern, the meta-data
concern. In this paper we show how this new con-
cern can be used to extend current Web engineering
techniques to develop Semantic Web applications. We
call the engineering of semantically tagged Web appli-
cations Semantic Web Engineering. The contribution
of this paper is the definition and implementation of
a mapping from XML Schema to ontologies that al-
lows the efficient design of Semantic Web applications
based on existing Web engineering artifacts. The map-
ping can then be used to automatically generate RDF
descriptions from the content documents. We call this
approach WEESA (WEb Engineering for Semantic web
Applications).

The remainder of this paper is structured as follows.
Section 2 gives a short introduction to XML based Web
publishing. Section 3 introduces the idea of using an
XML Schema - ontology mapping to generate RDF de-
scriptions from XML documents. Section 4 shows how
this mapping can be implemented. Section 5 discusses

1

related work, Section 6 gives an outlook on the vali-
dation and future steps, and Section 7 concludes the
paper.

2 XML based Web publishing

Most Web engineering methodologies use XML and
XSLT for strict separation of content and graphical ap-
pearance. XML focuses only on the structure of the
content. Whereas XSLT is a powerful transformation
language to translate an XML input document into an
output document such as again an XML document,
HTML, or even plain text. Many Web development
frameworks such as Cocoon [1] or MyXML [10] exist
that use XML and XSLT for separation-of-concerns.

Based on this technology, editors responsible for the
content have only to know the structure of the XML
file and the allowed elements to prepare the content
pages. Designers, responsible for the layout of the
Web application, again have only to know the struc-
ture and elements of the XML file to write the XSLT
stylesheets. Finally, programmers responsible for the
application logic have to generate XML documents (or
fragments) as output. An XML Schema defines exactly
the structure and the allowed elements in an XML file
that is valid according to this schema. Therefore, XML
Schema can be seen as a contract the editors, designers
and programmers have to agree on [9].

Since XML is widely used in Web engineering, we
use the XML content to generate the RDF meta-data
description of a Web page. We also use the XML
Schema as a contract and map the elements defined in
the schema to terms defined in an ontology. Our goal
is to use the structure and the content of the XML
document to fill the RDF triples with data.

In our approach, the XML document is the basis
for the HTML page as well as for the RDF descrip-
tion. This helps to overcome the inconsistency problem
pointed out in the introduction.

3 Mapping XML Schema to Ontologies

We use the content of an XML document to derive
the RDF meta-data description. In the design phase of
the Web application, however, we have no XML docu-
ments at hand. But we have the XML Schema defini-
tion that provides us with information about the struc-
ture of valid XML documents. We use this information
to define a mapping from XML elements to terms used
in an ontology. Figure 1 shows the definition of this
mapping on the design level and the actual generation
of RDF meta-data descriptions from the XML docu-
ment on the instance level. The mapping on the design

mapping

generate

uses terms

Instance Level

Design LevelOntology

RDF descriptionXML document

XML Schema

valid

HTML page

generate
via XSLT references

Figure 1. Design and instance level

level has to be done manually. The mapping is then
used to automatically generate the RDF descriptions
from XML documents.

When defining the mapping it might be the case
that the content of an XML element can be mapped
one-to-one to a term defined in an ontology. But in
general this will not be the case and some additional
processing is needed to reformat the element’s content
to match the datatype used in the ontology. In other
situations it might be necessary to use the content of
more than one XML element to generate the content
for the RDF description.

We take the Web application of the Vienna Inter-
national Festival1 (VIF) as our case study and focus
on the programme pages in this paper. The VIF ap-
plication, our group is responsible for, comprises a
ticket shop, over 60 event descriptions, reviews, and
an archive over the last 52 years. The pages are offered
in German and English. The Web application hosts a
Web page for each offered event. The XML document
for an event page offers an element with the event name
that can be mapped one-to-one to the name property
in an event class defined in the ontology. The XML
document also offers elements for the begin time and
the duration of the performance. The ontology, how-
ever, uses a different way to express the performance
times. It defines properties for the begin and end time
of an event in the event class. Therefore the content
of the begin time and the duration element have to be
processed to match this two properties.

Another possibility to address the mismatch be-
tween the XML elements and the ontology terms would
be to adjust the XML Schema definition in the design
phase of the Web application. The structure of the
XML document could be adopted to the kind of infor-
mation needed by the given ontology. But this might
conflict with the information needed for the HTML
page. In addition, the XML Schema - ontology map-

1http://www.festwochen.at

2

ping should be flexible enough to allow to change the
used ontology also later in the development process.
Adopting the XML Schema to the used ontology re-
sults in the change of the contract all involved parties
have agreed on and would yield to the redesign of the
whole Web application. It is also possible that we have
to define the mapping for already existing XML doc-
uments and do not have the possibility to change the
schema. Therefore, a flexible way to map the content of
one or more XML elements to the information required
by the used ontology is needed. How this mapping can
be implemented is shown in the following section.

4 Implementation

The generation of RDF descriptions based on XML
content pages is done in two steps. First, in the design
phase for each XML Schema (used as contract in the
Web application), a mapping to the ontology has to be
defined. Second, for each XML content page the rules
defined in the previous step are applied to generate the
RDF representation.

4.1 Defining the mapping

The starting point of the mapping is on the one hand
the XML Schema that acts as a contract in the devel-
opment process and on the other hand the ontologies
to be used. The XML Schema provides us with the
information of the structure of a valid XML document
and the elements being used. This information can be
used to define XPath [5] expressions to select elements
or attributes from an XML document. Once an ele-
ment/attribute is selected, its content is mapped to a
position in an RDF triple.

In the mapping definition various ways exist to spec-
ify the content for the RDF triples: (1) a constant
value, (2) an XPath expression, (3) the return value of
a Java method, and (4) a resource reference. In the
following we describe each of this ways in more detail.

(1) A constant value can be, for example, the URI
reference to a term defined in the ontology. (2) An
XPath expression is used do select the content of an
element/attribute. (3) The content of more than one
element/attribute might be needed to compute the in-
formation to match a property in the ontology or a
datatype conversion has to be performed. We use Java
methods for this purpose. These methods take the con-
tent of one or more elements/attributes or constants as
input parameters and return a string value as content
for an RDF triple.

(4) Unique resource identifiers are needed to fill the
subject. Since most XML documents provide more in-

� �
<?xml version="1.0" encoding="UTF -8"?>
<xsd:schema xmlns:xs=

"http://www.w3.org /2001/ XMLSchema">
<xsd:element name="events" type="EventType"/>
<xsd:complexType name="EventType">

<xsd:sequence >
<xsd:element name="event" maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence >

<xsd:element name="name"
type="xsd:string"/>

<xsd:element name="begin_time"
type="xsd:time"/>

<xsd:element name="duration"
type="xsd:integer"/>

<xsd:element name="author" minOccurs="0">
<xsd:complexType>

<xsd:sequence >
<xsd:element name="name"

type="xsd:string"/>
</xsd:sequence >

</xsd:complexType>
</xsd:element>

</xsd:sequence >
<xsd:attribute name="id"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence >
</xsd:complexType>

</xsd:schema>� �
Figure 2. XML Schema for the event example.

formation that is related to the same resource, we offer
the possibility to define a resource identifier that can
later be referenced to fill the RDF triples. The map-
ping also provides the possibility to define anonymous
resources. They are used for resources that never need
to be referred directly from outside the RDF descrip-
tion. An anonymous resource consists of the anony-
mous resource identifier “ :” and a unique random
string. To define an anonymous resource in the map-
ping, the resource is labeled to be anonymous.

Figure 2 shows the XML Schema of a simplified
event page from the VIF case study. A valid sample
XML document is shown in Figure 3.

The mapping definition consists of two sections. In
the first section the resource identifiers are defined that
can be referenced later. In the second section the sub-
ject, predicate, and object of the actual triples are de-
fined.

Figure 4 shows the WEESA mapping definition for
our example. At the beginning of the mapping we de-
fine the resources (lines 3-14). For the first resource
with the id="event" attribute, we define an XPath
expression to select the id attribute of the event ele-
ment. The according XPath expression looks as fol-
lows: /events/event/@id. The content of the at-
tribute is then handed over to a Java method. The
method name is defined in line 6. In this case the

3

� �
<?xml version="1.0" encoding="UTF -8"?>
<events xmlns="http:// examle.com/event#">

<event id="event_id3452">
<name>Cosi fan tutte</name>
<begin_time>19:30</begin_time>
<duration >120</duration >

</event>
<event id="event_id6754">

<name>Hamlet </name>
<begin_time>19:00</begin_time>
<duration >210</duration >
<author >

<name>Shakespeare</name>
</author >

</event>
</events >� �

Figure 3. XML document for the event.

method adds a prefix to the attribute value to gener-
ate an identifier. The parameters for the Java method
are defined in lines 7 and 8. The first parameter is a
constant used for the prefix and the second parameter
is the XPath expression to select the attribute. The
return value of the method is then used as the con-
tent in the RDF triple whenever the resource with the
id="event" is referenced.

In the resource with the id="author" we show how
an anonymous resource can be defined. This is done
using the anonymous="yes" attribute. In this case for
each XPath match an anonymous resource is generated.

Once we have defined the resources, we can start
defining the RDF triples. This is done in the triples

section (lines 15-57). In the first triple (lines 16-20)
the subject uses the ref="event" attribute to refer-
ence the resource with the id="event". In the predi-
cate we use the rdf:Type constant to define the class
the subject is an instance of. The object of this
triple is the URI reference to the class in the ontology
(http://example.com/ontology#Event). Our sam-
ple ontology is shown in Figure 5.

The following triples in our example mapping fill the
properties of the #Event class. The predicate defines
the name of the property and the object the value. The
xpath="yes" attribute of the object element defines
that the content contains an XPath expression that has
to be evaluated. The object element can also contain a
method element to define the Java method to compute
the content of the object.

In some cases we need additional information to se-
lect a specific element/attribute by an XPath expres-
sion. When an XML document consists of multiple
elements with the same name at the same hierarchy
level we need a technique to select a specific one. For
this purpose we use variables. In line 8 we use the var

attribute to define the event id variable. This variable
can be used in XPath expressions using the $$ escape

� �
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf=

"http://www.w3.org /1999/02/22 -rdf -syntax -ns#"
xmlns="http:// example.com/ontology#"
xmlns:rdfs="http://www.w3.org /2000/01/rdf -schema#"
xmlns:owl="http://www.w3.org /2002/07/owl#"

xml:base="http:// example.com/ontology">
<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="Event"/>
<owl:Class rdf:ID="Person"/>
<owl:ObjectProperty rdf:ID="author">

<rdfs:range rdf:resource="#Person"/>
<rdfs:domain rdf:resource="#Event"/>

</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="endTime">

<rdfs:range rdf:resource=
"http://www.w3.org /2001/ XMLSchema#time"/>

<rdfs:domain rdf:resource="#Event"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="beginTime">

<rdfs:domain rdf:resource="#Event"/>
<rdfs:range rdf:resource=

"http://www.w3.org /2001/ XMLSchema#time"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="eventName">

<rdfs:range rdf:resource=
"http://www.w3.org /2001/ XMLSchema#string"/>

<rdfs:domain rdf:resource="#Event"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="name">

<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource=

"http://www.w3.org /2001/ XMLSchema#string"/>
</owl:DatatypeProperty>

</rdf:RDF>� �
Figure 5. OWL ontology for events.

sequence at the beginning and the end of the variable
name. The variable is then replaced at runtime with
the actual value of the XPath match defined in this
element.

At the end of the triples section we show that anony-
mous resources can be used as any other resource in the
triple definition. In the triple defined in lines 42-46 the
object uses the reference to the anonymous resource
author. The following triples define the class and the
properties for this resource.

So far we have shown how the mapping is defined.
The following section shows how this mapping can be
used to generate RDF descriptions from XML docu-
ments.

4.2 Generating the RDF Description

When a Web page is queried, the corresponding
XML document is fetched and the XSLT transforma-
tion is used to generate the HTML page. Second, the
RDF description has to be generated and referenced
from the HTML document. To generate this descrip-
tion all mappings defined for this document have to be
executed. Therefore, the XPath expressions have to
be evaluated on this document and the result is either

4

� �
1 <?xml version="1.0" encoding="UTF -8"?>
2 <mapping xmlns="http://www.infosys.tuwien.ac.at/mapping#">
3 <resources>
4 <resource id="event">
5 <method >
6 <name>com.example.mapping.addPrefix</name>
7 <param position="1">http:// example.com/event#</param>
8 <param position="2" xpath="yes" var="event_id">/events/event/@id</param>
9 </method >

10 <resource id="author" anonymous="yes" xpath="yes">
11 /events/event[@id=$$ event_id $$]/ author
12 </resource >
13 </resource >
14 </resources>
15 <triples>
16 <triple >
17 <subject ref="event"/>
18 <predicate>http://www.w3.org /1999/02/22 -rdf -syntax -ns#Type</predicate>
19 <object >http:// example.com/ontology#Event</object >
20 </triple >
21 <triple >
22 <subject ref="event"/>
23 <predicate>http:// example.com/ontology#eventName</predicate>
24 <object xpath="yes">/events/event[@id=$$ event_id $$]/ name</object >
25 </triple >
26 <triple >
27 <subject ref="event"/>
28 <predicate>http:// example.com/ontology#beginTime</predicate>
29 <object xpath="yes">/events/event[@id=$$ event_id $$]/ begin_time</object >
30 </triple >
31 <triple >
32 <subject ref="event"/>
33 <predicate>http:// example.com/ontology#endTime</predicate>
34 <object >
35 <method >
36 <name>com.example.mapping.calcEndTime</name>
37 <param position="1" xpath="yes">/events/event[@id=$$ event_id $$]/ begin_time</param>
38 <param position="2" xpath="yes">/events/event[@id=$$ event_id $$]/ duration </param>
39 </method >
40 </object >
41 </triple >
42 <triple >
43 <subject ref="event"/>
44 <predicate>http:// example.com/ontology#author </predicate>
45 <object ref="author"/>
46 </triple >
47 <triple >
48 <subject ref="author"/>
49 <predicate>http://www.w3.org /1999/02/22 -rdf -syntax -ns#Type</predicate>
50 <object >http:// example.com/ontology#People </object >
51 </triple >
52 <triple >
53 <subject ref="author"/>
54 <predicate>http:// example.com/ontology#name</predicate>
55 <object xpath="yes">/events/event[@id=$$ event_id $$]/ author/name</object >
56 </triple >
57 </triples>
58 </mapping>� �

Figure 4. Mapping from XML Schema to RDF for the event example.

5

� �
process_mapping(resource_list) {
for all resource_identifier in resource_list {

if XPath contains unresolvable variable then
update dependent_resource_list

else
resourceStack.push(all XPath matches)
stackHash.put(resource_identifier , stack)

}
do {

for all resource_identifier in stackHash {
stack = stackHash.get(resource_identifier)
xpath_match = stack.pull()
content = process_content(xpath_match)
resourceHash.put(resource_identifier , content)
if resource defines variable

variableHash.put(variabel_name , xpath_match)
if stack was not empty

process_mapping(dependent_resource_list)
}
generate_triples()

} until all stacks are empty
}� �

Figure 6. Pseudo-code for the mapping.

directly used to fill a position in an RDF triple that
is defined in the mapping or is handed over to a Java
method first. If the XPath expression matches multiple
elements/attributes in the XML document the proce-
dure has to be repeated for each match.

The pseudo-code in Figure 6 shows the prin-
ciple steps that have to be applied to process
the mapping definition. The initial parameter
for the process mapping method is a list of all
resource identifiers defined in the mapping. In
our example we can find two resource identifiers:
event and author. In the first loop we check if the
XPath expression contains variables that have not jet
been defined. If so, the resource and its dependencies
are stored in the global dependent resource list.
Otherwise the XPath expression is executed on the
XML document and the result is pushed on the stack.

In our example the XPath for event can be
executed and the two matches (event id3452 and
event id6754) are pushed on the stack. The stack
is then stored in a global hash-table with the
resource identifier as key. Since the XPath expres-
sion for author contains the $$event id$$ variable
that has not jet been defined, this resource is added
to the dependent resource list.

In the following two nested loops the RDF triples
are generated. In the inner loop the XPath matches are
taken from the stack, the process content method is
called, the variables are assigned their values, and a
recursive method call is done to process all resources
that depend on the current resource/variable envi-
ronment. The process content method takes the
XPath match as parameter and computes the con-
tent for the resource as defined in the mapping. If

a Java method is defined, it causes the method call
and uses the return value as content. The outer loop
calls the generate triples() method and terminates
when the inner loop has processed all elements from
the stack. The generate triples() method iterates
through all triples defined in the mapping and gener-
ates an instance for those where the required resources
and variables are defined in the global variableHash
and resourceHash.

Returning to our example, in the inner loop we
take the first match (event id3452) from the stack,
call the Java method defined in line 6 and get
the content for the resource (http://example.com/
event#event_id3452), set the $$event id$$ variable
to event id3452 and do the recursive method call.
The resource list for this call contains the author

resource since it depends on the definition of the
$$event id$$ variable. In the recursive method call
the execution of the XPath expression returns with no
result since the event with the event id3452 does not
have an author element in our XML document. The
processing of the inner loop is finished and the outer
loop causes the generation of the RDF triples. This
time only the triples defined in lines 16-41 can be gen-
erated since the author resource is not defined in the
resourceHash.

The second time the inner loop is processed the
event id6754 is taken from the stack. The same steps
are applied as before. But this time the recursive call
finds a match for the XPath expression in the author

resource, generates an anonymous resource and writes
it to the resourceHash with author as key. In this
case, all required resources/variables are defined and
an instance for all triples defined in the mapping can
be generated.

The output RDF document for our example can be
found in Figure 7.

5 Related Work

To our knowledge, no approach uses a mapping
from XML Schema to ontologies to develop semanti-
cally tagged Web applications and, therefore further
evolve current Web engineering methodologies. How-
ever, there exists some work that analyzes the struc-
ture of an XML document to access the semantic of
the content.

The Meaning Definition Language (MDL) defines
what an XML document may mean in terms of a UML
class model, and defines how that meaning is encoded
in the nodes of the XML document [15]. It enables
tools and users to access XML at the level of its mean-
ing rather than its structure. A different approach is

6

� �
<?xml version="1.0" encoding="UTF -8"?>
<rdf:RDF

xmlns:rdf=
"http://www.w3.org /1999/02/22 -rdf -syntax -ns#"

xmlns="http:// example.com/ontology#">
<Event rdf:ID="envent_id3245">

<endTime>19:30</endTime>
<beginTime>21:30</beginTime>
<eventName>Cosi fan tutte</eventName>

</Event>
<Event rdf:ID="event_id6754">

<author >
<Person rdf:ID="_:64hdze6fdhz65">

<name>Shakespeare</name>
</Person >

</author >
<eventName>Hamlet </eventName>
<endTime>21:30</endTime>
<beginTime>18:00</beginTime>

</Event>
</rdf:RFD>� �

Figure 7. RDF representation for the events.

taken in [2]. There the DTD and XPath is used to
establish a mapping between XML fragments and on-
tology concepts. Both approaches do not support vari-
ables in the mapping definition, and do not offer the
flexibility to further process the XML content in Java
methods to better match the ontologies’ requirements.

Ontology mapping [14] defines semantic relations
between two ontologies on a conceptual level. This
mapping is used on the data level to transform an in-
stance of the source ontology into an instance of the
target ontology. This idea is closely related to the
WEESA mapping presented in this paper. However,
in ontology mapping the source and the target are on-
tologies, that provide natural semantic units (classes,
properties and their relationship) to model the domain;
but XML Schema defines only the grammar of a valid
XML document [7]. Therefore, in the XML Schema to
ontology mapping the structure elements of the schema
have to be mapped to concepts in the domain model of
the ontology.

The XWMF (eXtensible Web Modeling Framework)
project uses RDF as a basis for modeling Web appli-
cations [11]. RDF is used to specify the structure and
the content of a web site and to make statements about
the elements of a Web site. But RDF is only used to
specify the design documents and not to semantically
tag the Web pages.

Based on our experiences in Web engineering of large
Web applications such as the VIF, we derived the need
to extend existing Web engineering methodologies to
establish a link to the Semantic Web. Our WEESA
XML Schema to ontologies mapping addresses exactly
this link.

6 Validation and Next Steps

Currently we are testing the mapping in our Vi-
enna International Festival case study to see if we can
cover the needs of a real world application. At the
moment we define the mapping files we use by hand.
To get a broader acceptance, tool support is needed
to define the mapping. We plan to develop a tool that
takes an XML Schema and automatically generates the
maximal possible tree structure for this schema. Ele-
ments/attributes can then be selected and the XPath
expression is generated. On the other side, the class hi-
erarchy and the properties defined in the ontology are
graphically displayed. In addition we present a list of
available Java methods that can be used to further pro-
cess the element’s/attribute’s content. This can then
be used to define the mapping in a GUI via drag &
drop.

Our current approach focuses on the generation
of the RDF representation of individual Web pages.
When we accumulate the RDF description of all avail-
able Web pages in a Web application, we end up with
a meta-data representation of the whole Web applica-
tion. This can be further used as knowledge base that
can be offered as a Web Service.

The RDF representation of a single Web page is gen-
erated on demand. This cannot be done for all Web
pages when the meta-data representation of the Web
application is needed. In this case, the representation
has to be pre-generated when the content has changed
or a new document is added. In addition, triples have
to be removed when a document is deleted or XML ele-
ments do not show up in a document anymore. There-
fore a daemon is needed to keep track of the changes
and keep the knowledge base up to date.

7 Conclusion

The deployment of the Semantic Web requires Web
applications that are semantically tagged. On the other
hand authoring Web pages that offer data and meta-
data is a costly task and has the potential risk of incon-
sistencies in documents. But inconsistent data weakens
the acceptance of the Semantic Web. Therefore, sup-
port is needed not only for maintaining but also for
designing Semantic Web applications.

This paper presented the WEESA approach to de-
velop Semantic Web applications that is based on es-
tablished Web Engineering ideas. WEESA uses the
same XML documents as source for the HTML page
and the RDF representation. In the design phase we
define a mapping from XML Schema documents to on-
tologies. This mapping can then be used to automati-

7

cally generate RDF descriptions from XML documents.
Our approach will enable developers to reuse exist-
ing Web engineering artifacts to generate semantically
tagged Web applications. Currently, we are evaluat-
ing the WEESA approach in the Vienna International
Festival Web application to tine-tune our mapping and
cope with real-world needs.

Acknowledgements

We thank Clemens Kerer for productive discussions
about Web engineering and feedback on earlier drafts of
this paper. We thank Pascal Fenkam for proofreading
and many suggestions for improving the paper.

References

[1] The Apache Cocoon project homepage.
http://cocoon.apache.org/.

[2] B. Amann, I. Fundulaki, M. Scholl, C. Beeri, and
A. Vercoustre. Mapping XML fragments to commu-
nity web ontologies. In Proceedings Fourth Interna-
tional Workshop on the Web and Databases, 2001.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The Se-
mantic Web. Scientific America, 284(5):34–43, 2001.

[4] D. Brickley and R. Guha. RDF Vocabu-
lary Description Language 1.0: RDF Schema.
W3C Recommendation, 10 February 2004.
http://www.w3.org/TR/2004/REC-rdf-concepts-
20040210/.

[5] J. Clark and S. DeRose. XML Path Language (XPath)
Version 1.0. W3C Recommendation, 16 November
1999. http://www.w3.org/TR/xpath.

[6] D. Connolly, F. van Harmelen, I. Horrocks,
D. L. McGuinness, P. F. Patel-Schneider, and
L. A. Stein. DAML+OIL (March 2001) Refer-
ence Description. W3C Note, 18 December 2001.
http://www.w3.org/TR/daml+oil-reference.

[7] S. Decker, S. Melnik, F. van Harmelen, D. Fensel,
M. C. A. Klein, J. Broekstra, M. Erdmann, and I. Hor-
rocks. The semantic web: The roles of XML and RDF.
IEEE Internet Computing, 4(5):63–74, 2000.

[8] M. Gaedke and G. Graef. Development and evolution
of web-applications using the webcomposition process
model. In International Workshop on Web Engineer-
ing at the 9th International WorldWide Web Confer-
ence, Amsterdam, the Netherlands, May 2000.

[9] C. Kerer. XGuide - Concurrent Web Development with
Contracts. PhD thesis, TU Vienna, 2003.

[10] C. Kerer and E. Kirda. Web engineering, software
engineering and web application development. In 3rd
Workshop on Web Engineering at the 9th World Wide
Web Conference, pages 135 – 147, Amsterdam, the
Netherlands, May 2000. Springer-Verlag.

[11] R. Klapsing, G. Neumann, and W. Conen. Semantics
in web engineering: Applying the resource description
framework. IEEE MultiMedia, 8(4):62–68, April-June
2001.

[12] G. Klyne and J. J. Carroll. Resource De-
scription Framework (RDF): Concepts and Ab-
stract Syntax. W3C Recommendation, 10 Febru-
ary 2004. http://www.w3.org/TR/2004/REC-rdf-
schema-20040210/.

[13] P. F. Patel-Schneider, P. Hayes, and I. Horrocks.
OWL Web Ontology Language Semantics and Ab-
stract Syntax. W3C Recommendation, 10 Febru-
ary 2004. http://www.w3.org/TR/2004/REC-owl-
semantics-20040210/.

[14] N. Silva and J. ao Rocha. Semantic web complex on-
tology mapping. In Web Intelligence 2003 Conference,
Halifax, Canada, October 2003.

[15] R. Worden. Meaning Definition Lan-
guage (MDL), Version 2.06, July 2002.
http://www.charteris.com/XMLToolkit/Downloads/
MDL206.pdf.

8

