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Stability of Software Defect Prediction in Relation to
Levels of Data Imbalance
TIHANA GALINAC GRBAC AND GORAN MAUŠA, University of Rijeka
BOJANA DALBELO–BAŠIĆ, University of Zagreb

Software defect prediction is an important decision support activity in software quality assurance. Its goal is reducing verification

costs by predicting the system modules that are more likely to contain defects, thus enabling more efficient allocation of resources

in verification process. The problem is that there is no widely applicable well performing prediction method. The main reason
is in the very nature of software datasets, their imbalance, complexity and properties dependent on the application domain. In

this paper we suggest a research strategy for the study of the performance stability using different machine learning methods

over different levels of imbalance for software defect prediction datasets. We also provide a preliminary case study on a dataset
from the NASA MDP open repository using multivariate binary logistic regression and forward and backward feature selection.

Results indicate that the performance becomes unstable around 80% of imbalance.

Categories and Subject Descriptors: D.2.9 [Software Engineering]: Management—Software quality assurance (SQA)
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1. INTRODUCTION

Software defect prediction is recognized as one of the most important ways to reach software develop-
ment efficiency. The majority of costs during software development is spent on software defect detection
activities, but their ability to guarantee software reliability is still limited. The analyses performed by
[Andersson and Runeson 2007; Fenton and Ohlsson 2000; Galinac Grbac et al. 2013], in the environ-
ment of a large scale industrial software with high focus on reliability shows that faults are distributed
within the system according to the Pareto principle. They prove that the majority of faults are concen-
trated in just small amount of system modules, and that these modules do not compose a majority
of system size. This fact implies that software defect prediction would really bring benefits if a well
performing model is applied. The main motivating idea is that if we were able to predict the location
of software faults within the system, then we could plan defect detection activities more efficiently.
This means that we would be able to concentrate defect detection activities and resources into critical
locations within the system and not on the entire system.

Numerous studies have already been performed aiming to find the best general software defect
prediction model [Hall et al. 2012]. Unfortunately, a well performing solution is still absent. Data in
software defect prediction are very complex, and do not follow in general any particular probability
distribution that could provide a mathematical model. Data distributions are highly skewed, which is
connected to the popular data imbalance problem, thus making standard machine learning approaches
inadequate. Therefore, a significant research has recently been devoted to cope with this problem.
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Several solutions are offered for the data imbalance problem. However, these solutions are not equally
effective in all application domains. Moreover, there is still an open question regarding the extent to
which imbalanced learning methods help with learning capabilities. This question should be answered
with extensive and rigorous experimentation across all application domains, including software defect
prediction, aiming to explore underlaying effects that would lead to fundamental understandings [He
and Garcia 2009].

The work presented in this paper is a step in that direction. We present an research strategy that
aims to explore performance stability of software defect prediction models in relation to levels of data
imbalance. As an illustrative example we present an experiment taken to Stability of Software Defect
Prediction in Relation to Levels of Data Imbalance our strategy. We observed how learning perfor-
mance, with and without stepwise feature selection, in case of logistic regression learner, is changing
over a range of imbalances in the context of software defect prediction. The findings are just indicative
and are to be explored by exhausting experimenting aligned with proposed strategy.

1.1 Complexity of software defect prediction data

Software defect prediction (SDP) is concerned with early prediction of system modules (file, class,
module, method, component, or something else) that are likely to have a critical number of faults
(above certain threshold value, THR). In numerous studies it is identified that these modules are not so
common. In fact, they are special cases, and that is why they are harder to find. Dependent variable
in learning models is usually a binary variable with two classes labeled as ’fault–prone’ (FP) and
’not–fault–prone’ (NFP). The number of FP modules usually is much lower, and represents a minority
class, than the number of NFP modules which represents a majority class. Datasets with significantly
unequal distributions of minority over majority class are imbalanced. Independent variables used
in SDP studies are numerous. In this paper we will address SDP based on the static code metrics
[McCabe 1976].

In SDP datasets the level of class imbalance varies for various software application domains. We
reviewed the software engineering publications dealing with software defect prediction and we noticed
that the percentage of the non-fault prone modules (%NFP) in the datasets varies a lot (from 1% in
medical record system [Andrews and Stringfellow 2001] to more then 94% in telecom system [Khosh-
goftaar and Seliya 2004]) for various software application domains (telecom industry, aeronautics,
radar systems, etc.). Since there are SDP initiatives on datasets with a whole range of imbalance per-
centages, we are motivated to determine the percentage at which data imbalance becomes a problem,
i.e., learners become unstable.

As already mentioned above, the random variables measured in software engineering usually do not
follow any distribution in general, and the applicability of classical mathematical modeling methods
and techniques is limited. Hence, algorithms from the machine learning have been widely adopted.
Among various learning methods used in the defect prediction approaches, this paper will explore the
capabilities of multivariate binary logistic regression (LR). Our ultimate goal is not to validate
different learning algorithms but to explore learning performance stability over different levels of
imbalance. The LR has shown very good performance in the past and is known to be a simple but
robust method. In [Lessmann et al. 2008] it is the 9th best classifier among 22 examined (9/22) and at
the same time it is the 2nd best statistical classifier among 7 of them (2/7). The stepwise regression
classifier was the most accurate classifier (1/4) and was outperformed only in cases with many outliers
in [Shepperd and Kadoda 2001]. Very good performance of logistic regression was also observed in
[Kaur and Kaur 2012] (3/12 it terms of accuracy and AUC), [Banthia and Gupta 2012] (1/5 both with
and without preprocessing of 5 raw NASA datasets), [Giger et al. 2011] (1/8 in terms of median AUC
from 15 open source projects), [Jiang et al. 2008] (2/6 in terms of AUC and 3/6 according to Nemenyi
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post-hoc test), etc. However, neither of the studies has analyzed the performance of logistic regression
classifier in relation to data imbalance. The study [Provost 2000] assumes that in majority of published
work the performance of logistic learner would be significantly improved, if it is adequately used. We
will refer to this issue in more detail in Section 3.

As in the whole software engineering field, an important problem in software defect prediction is the
lack of quality industrial data, and therefore generalization ability and further propagation of research
results is very limited. The problem is usually that this data are considered as confidential by the in-
dustry, or the data are not available at all for industry with low maturity. To overcome these obstacles,
there are initiatives for open source repositories of datasets aligned with the goal of improving gen-
eralization of research results. However, the problem of generalization still remains, because usually
the open repositories contain data from a particular type of software (e.g. NASA MDP repository, open
source software repositories, etc.) and/or of questionable quality [Gray et al. 2011].

In this study we used NASA MDP datasets and have carefully addressed all the potential issues,
i.e. removed duplicates [Gray et al. 2012]. This selection is motivated by simple comparison of results
with the related work, so that our contribution can be easily incorporated to the existing knowledge
base of imbalance problem in the SDP area.

1.2 Experimental approach

Our goal is to explore stability of evaluation metrics for learning SDP datasets with machine learning
techniques across different levels of imbalance. Moreover, we want to evaluate potential sources of
bias in study design by constructing number of experiments in which we diverse one parameter per
experiment. Parameters that are subject of change are explained briefly in Sect.2.

To integrate conclusions obtained from each experiment a meta–analytic statistical analysis is pro-
posed. These methods are suggested by number of authors as tool for generalizing the results and
integrating knowledge across many studies [Brooks 1997]. We propose the following steps:

(1) Acquiring data. A sample S of independent random variables X1, . . . , Xn measuring different
features of a system module, and a binary dependent variable Y measuring fault–proneness (with
Y = 1 for FP modules and Y = 0 for NFP modules) is obtained from a repository (e.g. open reposi-
tory, open source projects, industrial projects).

(2) Data preprocessing.
(a) Data cleaning, noise elimination, sampling.
(b) Data multiplication. From the sample S obtained in step (1) a training set of size 2/3 the size

of S and a validation set of size 1/3 the size of S are chosen at random k times. In this way
k training samples T1, . . . , Tk and k validation samples V1, . . . , Vk are obtained. These samples
are categorized into ` categories with respect to the data imbalance defined as the percentage
of the NFP modules in Ti and calculated as: %NFPTi

=
FPTi

FPTi
+NFPTi

.
(c) Feature selection. For each training set Ti a feature selection is performed. As a result some of

the random variables Xj are excluded from the model. The inclusion/exclusion frequencies of
Xj for each of the categories introduced in step (2b) are recorded.

(3) Learning.
(a) Building a learning model. A learning model is built for each training set Ti using the learning

techniques under consideration.
(b) Evaluating model performance. Using the validation set Vi, the model built in step (3a) is eval-

uated using various evaluation metrics. Let M be the random variable measuring the value of
one of these metrics.

(4) Statistical analysis.



1:4 • T. Galinac Grbac, G. Mauša and B. Dalbelo–Bašić

(a) Variation analysis. The differences between ` samples of a random variable M obtained from
samples Ti and Vi belonging to different categories introduced in step (2b) are analyzed using
statistical tests. This step is repeated for each evaluation measure used in step (3b).

(b) Cross-dataset validation. The whole process is repeated from step (1) for m datasets from vari-
ous application domains and sources. The differences between `·m samples of a random variable
M are analyzed using statistical tests and the results reveal whether general behavior exists.

To summarize, the conclusions are based on the results of statistical tests comparing the mean values
of performance evaluation metrics (see Table I) across different data imbalances of a training sample.
The stability of performance evaluation metrics obtained with different feature selection procedures is
evaluated in the same way.

2. DATA IMBALANCE

Data imbalance has received considerable attention within the data mining community during the last
decade. It becomes a central point of this research, since the problem is present in a majority of data
mining application areas [Weiss 2004]. In general data imbalance degrades the learning performance.
The problem arises with learning accuracy of the minority class, in which we are usually more inter-
ested. Usually, we are interested to timely predict rare events represented by the minority class, for
which the probability of its occurrence is low, but its occurrence leads to significant costs.

For example, suppose that only very low number of system modules is faulty, which is the case with
systems with very low tolerance on failures (e.g. medical systems, aeronautic system, telecommunica-
tions, etc.). Suppose that we did not identify faulty module with the help of a software defect prediction
algorithm, and due to that have developed defect detection strategy not concentrating on that particu-
lar module. Thus, we omit to identify a fault in our defect detection activity, and this fault slips to the
customer site. Failure caused by this fault at customer site would then imply significant costs contained
of several items: paying penalty to customer, losing customer confidence, causing additional expenses
due to corrective maintenance, additional costs in all subsequent system revisions and additional cost
during system evolution. This cost would be considered as misclassification cost of wrongly classified
positive class (note that positive class in the context of defect prediction algorithm is a faulty module).
On the other hand, misclassification cost of wrongly classified negative class would be much lower,
because it would involve just more defect detection activities. Obviously, the misclassification costs are
unequally weighted and this is the main obstacle in applying standard machine learning algorithms,
because they usually assumes the same or similar conditions in learning and application environment
[Provost 2000].

The study [Provost 2000] makes a survey of data imbalance problems and methods addressing these
problems. Although different methods are recommended for data imbalance problems, it does not give
definite answers regarding their applicability in the application context. Some answers are obtained
by other researchers in that field afterwards, and a more recent survey is given in [He and Garcia
2009]. Still no definite guideline exists that could guide practitioners.

2.1 Dataset considerations

The most popular approach to the class imbalance problem is the usage of artificially obtained balanced
dataset. There are several sampling methods proposed for that purpose. In a recent work [Wang and
Yao 2013] an experiment with some of the sampling methods is conducted. However, it is concluded in
[Kamei et al. 2007] that sampling did not succeed to improve performance with all the classifiers. In
[Hulse et al. 2007] it is identified that classifier performance is improved with sampling, but individual
learners respond differently on sampling.
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Another problem with datasets is that in practice, the datasets are often very complex, involving a
number of issues like overlapping, lack of representative data, within and between class imbalance,
and often high dimensionality. The effects of these issues were widely analyzed separately sample size
in [Raudys and Jain 1991], dimensionality reduction: [Liu and Yu 2005], noise elimination [Khosh-
goftaar et al. 2005], but not in conjunction with the data imbalance. The study performed in [Batista
et al. 2004] observes that the problem is related to a combination of absolute imbalance and other
complicating factors. Thus, the imbalance problem is just an additional issue in complex datasets such
as datasets for software defect prediction.

Different aspects of feature selection in relation to class imbalance has been studied in [Khoshgof-
taar et al. 2010; Gao and Khoshgoftaar 2011; Wang et al. 2012]. All these studies were performed on
datasets from the NASA MDP repository. In this work we also used a stepwise feature selection as a
preprocessing step, because the dataset is high dimensional and we experiment with logistic regres-
sion. Hence, we were able to investigate the stability of the performance with and without feature
selection procedure over different levels of imbalance.

Besides the methods explained above for obtaining artificially balanced datasets, another approach
is to adapt standard machine learning algorithms to operate for imbalance datasets. In that case
the learning approach should be adjusted to the imbalanced situation. A complete review of such ap-
proaches and methods can be found in [He and Garcia 2009].

2.2 Evaluation metrics

Another problem of standard machine learning algorithms for imbalanced data is in usage of inad-
equate evaluation metrics during learning procedure or to evaluate final result. Evaluation metrics
are usually derived from the confusion matrix and are given in Table I. They are defined in terms
of the following score values. A true positive (TP) score is counted for every correctly (true) classified
fault-prone module, and a true negative (TN) score for every correctly (true) classified non-fault-prone
module. The other two possibilities are related to false prediction. A false positive (FP) score is counted
for every false classified or misclassified non-fault-prone module (often referred to as Type II error),
and a false negative (FN) score is counted for every false classified or misclassified fault-prone module
(often referred to as Type I error) [Runeson et al. 2001; Khoshgoftaar and Seliya 2004]. For example,
classification accuracy ACC, the most commonly used evaluation metric in standard machine learn-
ing algorithms, is not able to value the minority class appropriately, and leads to poor classification
performance of minority class.

In the case of class imbalance, the precision (PR) and recall (TPR) metrics given in Table I are
recommended in number of studies [He and Garcia 2009], as well as the F–measure and G–mean
which are not used here. The precision and recall in combination give a measure of correctly classified
fault–prone modules. Precision measures exactness, i.e., how many fault–prone modules are classified
correctly, and recall measures completeness, i.e., how many fault–prone are classified correctly.

Table I. Evaluation metrics
Metrics Definition Formula
Accuracy (ACC) number of correctly classified modules TP+TN

TP+FP+TN+FN

divided by total modules
True positive rate (TPR) number of correctly classified fault–prone TP

TP+FN

(sensitivity, recall) modules divided by total number of fault-prone modules
Precision (PR) number of correctly classified fault–free TP

TP+FP

(positive predicted value) modules divided by total number of fault–free modules
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The output of a probabilistic machine learning classifier is the probability for a module to be fault-
prone. Therefore, a cutoff percentage has to be defined in order to perform classification. Since choosing
a cutoff value leaves room to bias and possible inconsistencies in a study [Lessmann et al. 2008], there
is another measure that deals with that problem called the area under curve, AUC [Fawcett 2006].
It takes into account the dependence of TPR and a similar metric for false positive proportion on the
cutoff value.

All of the aforementioned techniques are not cost sensitive, and in the case of rare cases with very
high misclassification cost of type I error the key performance indicator is cost. The most favorable
evaluation criteria for imbalanced datasets are cost curves and is also recommended in [Jiang et al.
2008] for SDP domain.

3. PRELIMINARY CASE STUDY

To illustrate the application of the research strategy proposed in Section 1.2, verify strategy, provide
evidence for the dependence of the machine learning performance on the level of data imbalance, and
indicate our future goals, we have undertaken a preliminary case study.

(1) Dataset KC1 from NASA MDP repository has been acquired. It consists of n = 29 features, i.e.,
independent variables Xj . The dependent variable in this dataset is the number of faults in a
system module. From this variable we derived binary dependent variable Y by setting ten different
thresholds for fault proneness, from 1 to 19 with step of 2 (1, 3, 5,...). In this way we obtained ten
different samples S and we continue the analysis for all of them.

(2) (a) The well known issues with the dataset are eliminated using data cleaning tool [Shepperd et al.
2013].

(b) For each of the ten samples obtained in step (1), we made 50 iterations of the random splitting
into training and validation samples. Thus we obtained k = 500 samples Ti and Vi with the
range of data imbalance from 51% to 96%. The samples are categorized into ` = 5 categories of
equal length (each spanning 9%).

(c) In the case study we also consider the influence of a feature selection procedure, as already
mentioned in 2. We consider the forward and backward stepwise selection procedure [Han and
Kambar 2006]. The decision for inclusion and exclusion of a feature is based on level of statis-
tical significance, the p − value. The common significance levels for inclusion and exclusion of
features are used as in [Mausa et al. 2012; Briand et al. 2000] with p in = 0.05 and p out = 0.1
respectively. The percentage of inclusion of a feature for both procedures and different cate-
gories of data imbalance are given in Table II. We conclude that feature selection stability of
some features is very tolerant to data imbalance (e.g. Feature 5, 22, 28, 29 is always excluded,
for both forward and backward model). Some features are very stable until certain level of bal-
ance (for example Feature 2 is always included 100% until category with data imbalance of
78%). It is also interesting to observe that some features have similar feature selection stabil-
ity in ideal balance case and highly imbalanced case, whereas for moderate imbalance have
opposite feature selection decision.

(3) (a) Learning models are built using multivariate binary logistic regression (LR) [Hastie et al.
2009]. The model incorporates more than just one predicting variable and in fault predicting
case performs according to the equation

π (X1, X2, ...Xn) =
eC0+C1X1+...+CnXn

1 + eC0+C1X1+...+CnXn
, (1)

where Cj are the regression coefficients corresponding to Xj , and π is the probability that a
fault was found in a class during validation. In order to obtain a binary outgoing variable,
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Table II. Percentage of inclusion of a feature
’51% -60%’ ’60% -69%’ ’69% -78%’ ’78% -87%’ ’87% -96%’

Forw. Back. Forw. Back. Forw. Back. Forw. Back. Forw. Back.
Ft. 1 4,8% 26,2% 1,7% 20,3% 0,0% 9,1% 5,2% 12,2% 14,8% 15,8%
Ft. 2 100,0% 100,0% 100,0% 100,0% 95,5% 100,0% 73,3% 72,7% 44,3% 43,2%
Ft. 3 78,6% 76,2% 91,5% 84,7% 34,1% 77,3% 30,8% 63,4% 16,9% 38,3%
Ft. 4 2,4% 9,5% 10,2% 45,8% 18,2% 52,3% 0,6% 6,4% 0,0% 1,6%
Ft. 5 7,1% 14,3% 5,1% 16,9% 2,3% 22,7% 1,2% 27,3% 2,2% 7,1%
Ft. 6 0,0% 11,9% 5,1% 11,9% 0,0% 4,5% 2,3% 16,9% 3,8% 29,0%
Ft. 7 9,5% 23,8% 42,4% 47,5% 15,9% 50,0% 4,7% 13,4% 0,0% 9,8%
Ft. 8 2,4% 14,3% 8,5% 16,9% 15,9% 20,5% 55,2% 52,9% 84,2% 88,0%
Ft. 9 4,8% 28,6% 10,2% 37,3% 0,0% 22,7% 3,5% 26,7% 0,5% 19,1%
Ft. 10 2,4% 23,8% 6,8% 32,2% 2,3% 20,5% 1,2% 37,2% 2,2% 60,1%
Ft. 11 0,0% 11,9% 0,0% 15,3% 2,3% 43,2% 20,9% 40,7% 13,7% 17,5%
Ft. 12 7,1% 23,8% 1,7% 22,0% 54,5% 86,4% 35,5% 65,1% 9,8% 26,8%
Ft. 13 9,5% 42,9% 20,3% 39,0% 0,0% 27,3% 5,8% 43,6% 2,2% 60,1%
Ft. 14 21,4% 19,0% 16,9% 16,9% 0,0% 6,8% 2,9% 15,1% 0,0% 13,1%
Ft. 15 4,8% 23,8% 5,1% 13,6% 0,0% 13,6% 0,6% 8,1% 6,0% 19,1%
Ft. 16 11,9% 21,4% 1,7% 6,8% 0,0% 25,0% 1,2% 15,7% 2,2% 19,1%
Ft. 17 4,8% 40,5% 1,7% 27,1% 0,0% 11,4% 4,7% 14,0% 17,5% 23,5%
Ft. 18 9,5% 16,7% 27,1% 18,6% 2,3% 38,6% 18,6% 26,2% 12,6% 21,3%
Ft. 19 7,1% 11,9% 25,4% 37,3% 0,0% 9,1% 1,2% 27,3% 0,0% 21,9%
Ft. 20 0,0% 45,2% 1,7% 54,2% 0,0% 45,5% 0,0% 43,6% 2,2% 22,4%
Ft. 21 4,8% 16,7% 0,0% 39,0% 0,0% 27,3% 0,0% 31,4% 0,0% 44,3%
Ft. 22 0,0% 9,5% 3,4% 8,5% 0,0% 0,0% 0,0% 2,3% 0,0% 0,5%
Ft. 23 7,1% 21,4% 16,9% 30,5% 0,0% 6,8% 1,2% 26,2% 0,0% 13,1%
Ft. 24 0,0% 21,4% 0,0% 27,1% 0,0% 20,5% 0,0% 20,9% 0,5% 20,2%
Ft. 25 11,9% 35,7% 10,2% 71,2% 0,0% 9,1% 1,7% 18,0% 10,9% 29,5%
Ft. 26 7,1% 52,4% 1,7% 59,3% 0,0% 20,5% 0,0% 30,8% 1,1% 33,3%
Ft. 27 35,7% 50,0% 8,5% 20,3% 0,0% 4,5% 2,3% 16,9% 11,5% 23,0%
Ft. 28 2,4% 14,3% 11,9% 13,6% 6,8% 4,5% 0,6% 10,5% 1,6% 15,3%
Ft. 29 0,0% 11,9% 1,7% 3,4% 4,5% 0,0% 0,6% 2,3% 0,0% 1,6%

a cutoff value splits the results into two categories. Researchers often set the cutoff value to
0.5 [Zimmermann and Nagappan 2008]. However, the logistic regression is also robust to data
imbalance and this robustness is achieved with setting of cutoff value to optimal value depen-
dent on misclassification costs [Basili et al. 1996]. Our goal is to explore learning performance
over different imbalance levels. However, in this study, due to space limitation, we provide
preliminary results exploring learning performance stability of standard learning algorithms.
Therefore, we provide results of experiments with cutoff value set to 0.5 (that is how standard
learning algorithms equally weight misclassification costs). We considered there three differ-
ent models (with forward feature selection, backward feature selection and without feature
selection) and for each of these models, the coefficients are calculated separately.

(b) For all validation samples from step (2b) we count the TN, TP, FN and FP scores of the corre-
sponding model, and calculate the learning performance evaluation metrics ACC, TPR (Recall),
AUC and Precision using formulas in Table I.

(4) We made a statistical analysis of the behavior of evaluation metrics measured in step (3b) between
different categories introduced in step (2c). Since the samples are not normally distributed, we used
the non-parametric tests. The Kruskal-Wallis test showed for all metrics that the values depend
on the category. To explore the differences further, we applied multiple comparison test. It reveals
that all considered evaluation metric become unstable at the level of imbalance of 80%. According
to the theory explained in section 2, we expect that we will get significantly different mean values
for all metrics in category of highest data imbalance (90% - 100%).
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4. DICUSSION

Data imbalance problem has been widely investigated and there were numerous approaches studying
its effects aiming to propose a general solution to that problem. However, from the experiments in
machine learning theory it becomes obvious that this is not only related to proportion of minority over
majority class but there are also other influences present in complex datasets. As the datasets in soft-
ware defect prediction (SDP) research area are usually extremely complex, there is a huge unexplored
area of research related to applicability of these techniques in relation to the level of data imbalance.
That is exactly our main motivation for this work.

There are many approaches, depending on particular dataset, to SDP and development of the learn-
ing model. Since we are interested in the performance stability of machine learners over SDP datasets,
we should rigorously explore the strengths and limitations of these approaches in relation to the level
of data imbalance. Therefore, we present an exploratory research strategy and an example of a case
study performed according to this strategy. Although, we use our experiment to eliminate as much as
possible inconsistencies and threats of applying the strategy, there is still place for improvement.

In our case study we present how performance stability is significantly degraded at a higher level of
imbalance. This confirms the results obtained by other researchers using different approaches. That
conclusion have proved reliability of our strategy. Moreover, with the help of our research strategy we
confirmed that feature selection becomes instable with higher data imbalance. We have also observed
that the feature selection is consistent across levels of imbalance for some features.

Future work should involve extensive exploration of SDP datasets with the proposed strategy. Our
vision is that at the end we can gain deeper knowledge about imbalanced data in SDP and applicability
of techniques in different levels of imbalance. Finally, we would like to categorize datasets using the
proposed strategy and results of this exhaustive research that would serve as a guideline for practi-
tioners while developing software defect prediction model.
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