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Transforming Low-level Languages Using FermaT and
WSL
DONI PRACNER AND ZORAN BUDIMAC, University of Novi Sad

There are many known problems in software maintanance, especially in cases where the available code is for whatever reason

given only in low level executable versions. This paper presents a possible approach in understanding and improving such pro-

grams by translating it to an existing language WSL that enables the user to do formal, mathematically proven transformations
of the resulting code. Such transformations can be done manually, but great improvements in the structure of the program can

also be achieved by automatic scripts. Two prototype tools are presented that translate a subset of x86 assembly and a subset

of Java bytecode, illustrated by examples showing the transformation process.

Categories and Subject Descriptors: D.2.7 [Software Engineering] Distribution, Maintenance, and Enhancement

General Terms: Theory, Experimentation

Additional Key Words and Phrases: software evolution, FermaT, WSL, assembly, bytecode, transformations, translation

1. INTRODUCTION

One of the serious problems of modern software engineering is the perceived ageing of software. Al-
though an application correctly written 20 years ago should still work as designed, maybe the under-
lying system is no longer available, making the application useless, or on the other hand maybe the
user now needs a different result due to changes in the “real” world.

The problems of integrating legacy libraries, often available just as assembly code, into modern
software/hardware systems can be tackled in different manners. One of the most efficient approaches,
especially in the short term, is to encapsulate the functionality of reliable software[Sneed 2000]. Some-
times this is not really applicable – like in situations where new features need to be added to the
system or, even worse, when there are bugs in the original software, in which cases it is necessary to
understand and improve the original code.

The focus of this paper is on presenting two tools for working with low level code, that could help
with understanding the logic behind the code and also potentially enable automatic restructuring of the
code. One tool uses a subset of x86 assembly as its input, while the other one works with MicroJava
bytecode. Both of the tools translate the programs into the high level language WSL that enables
formally proven transformations on the source code, resulting in semantically equivalent code that
should be much easier to understand.

The rest of the paper is organised as follows. Section 2 presents the existing transformation system
that was used in this work. Section 3 shows the main steps and principles of the assembly translation
and transformation process, as well as the tools created during this research. Following is an example
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Fig. 1. Work-flow diagram of the tools – current and future

ACTION start:
start == code block 1 END
name1 == code block 2 END
name2 == code block 3 END
...
...
ENDACTIONS

Fig. 2. An action system

of the process, and some issues with the development. Section 4 introduces the bytecode tool, as well as
illustrations of its work. Finally, conclusions, comparisons to related work and tools, as well as options
for future work are given in Section 5.

2. WSL AND FERMAT

WSL (Wide Spectrum Language) is being developed by Martin Ward since 1989[Ward 1989]. A part
of it is MetaWSL which gives the users constructs to write programs that will be able to transform
code (internally represented as abstract syntax trees) using formal transformations. The current im-
plementation is the FermaT program transformation system[Ward and Zedan 2005], and it is almost
completely written in MetaWSL.

The main characteristics of the language is a strong mathematical core and the use of formal trans-
formations, giving a reliable and provable system of improving software. The wide spectrum in the
name means that there are constructs in the language that can be used for a wide spectrum of appli-
cations in development: from abstract specifications to low level program code.

The system was successfully used in many projects migrating legacy assembly code to maintainable
C/COBOL code[Ward 1999; 2000; Ward et al. 2004]. There was also work on expanding the language
to include support for concurrent programming[Younger et al. 1997] and object oriented program-
ming[Chen et al. 2006], as well as incorporating a type system which improves the current state of
transformations and provides a base for many future expansions[Ladkau 2009].

Action systems is a special structure in WSL which was specifically created to cope with unstructured
jumps, which are very common in assembly code. It consists of a number of actions which can call each
other, as shown in Figure 2. Once an action finishes it returns the control to the caller. Therefore an
action system finishes when the start action finishes, or when a special, reserved action name “Z” is
called which results in a momentary stop of the system.

Examples of action systems in use can be seen later in Figures 5 and 7.
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3. ASSEMBLY TRANSFORMATION

Our transformation process consists of two basic steps: first we use our tool Asm2wsl1[Pracner and
Budimac 2011] to translate the assembly code to WSL, trying to capture all of the aspects of the
original code without much effort to optimise at this step. Second, we use Trans.wsl (a script written
in WSL) for automated transformations on the translated code. There is always a possibility to apply
manual transformations, either before or after the automated transformations.

At its base, this approach is similar to those in the past that used WSL. But the difference is that
our main goal in the process is to get a high level version of the original program that will represent all
the aspects of its functioning. The approach using WSL presented in a number of papers [Ward 1999;
2004; Ward et al. 2004] creates additional files during the translation to WSL, which contain data about
the variables and their mapping in the memory. These files are then used when the transformed and
improved code is translated into (for example) C code and the appropriate pointer types are created.

Our approach should give a better understanding of the original code since we are looking at ev-
erything as high level structures, and it also enables us to run the translated programs directly in
the WSL interpreter, without a need for an additional translator from WSL into another (semi) low
level language. The downside is that assembler structures are often obscure, access data in different
manners, and are therefore hard to understand and represent as high level, which limits the current
version of the tools to a smaller subset of assembly code.

Asm2wsl is a tool that translates a subset of x86 assembly to WSL. Of course, being that there
are many different flavours of assembly, and that it is very hard to automatically distinguish and
adequately process them, a decision was made to focus on programs for a single type of assembler. The
choice was the format first introduced in Microsoft Macro Assembler (MASM) that was consequently
accepted by Borland’s Turbo Assembler (TASM)[Borland International 1990], due to the familiarity
with the later tool at our institution. To keep things simpler, at the moment it mostly presumes that we
are working with an 80286 processor, the reason being that as they were developed, newer processors
were mostly extended with more registers, options to work with bigger words and more specialised
commands, which are not of great importance to the concepts we are translating.

The tool has been implemented in Java, making it platform independent and a good match to Fer-
maT, which can also be run on a number of platforms. At its core, this is a line by line translator, with
the focus on translating all aspects of the original code, without considering optimisation at this stage
of the process. This generally results in programs that are much larger than the original assembly,
but later on automatic transformations are able to reduce the size of the code. The same principle was
successfully used in earlier translators which use WSL for transformations [Ward 2000; 2004; Ward
et al. 2004].

Assembly commands work (more or less) directly with the processor. Being that high level languages
do not do this, to capture all the aspects of these commands, we created a “virtual” processor. In it we
have local variables to represent processor registers. Bits from the flag register are all defined as
separate variables, which they practically are in the processor.

The processor can of course work with variables of different sizes, which introduces the need to
work with them differently (the different scopes of values) and another problem – how to detect them?
To handle this an additional overflow variable was introduced, and the translator tries to detect the
size of the target variable from the original context. Based on the value the flag variables (in most
cases overflow) are set like they would be in the real processor. An 80286 processor works with just
two sizes: 8 and 16 bits, which is one of the reasons for presuming an older architecture in the study.

1the tool is available from the project’s page http://perun.pmf.uns.ac.rs/pracner/transformations
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The principle can then be tested on simpler examples and extended in the future as needed to bigger
variable sizes.

In an x86 processor Low and High parts of registers can be accessed independently (i.e. in 16 bits the
lower and higher 8 bits, and analogue in bigger ones). Being that our goal were high level structures,
we wanted to exclude direct memory operations, so these were implemented with additional operations
that set the adequate parts of the register, at the same time preserving the potential side effects of the
original code.

Labels in the original code are translated as Action system names (see Section 2). The whole system
that we generate when we translate a “normal” assembly program is by nature regular (meaning that
none of the calls ever return, that is, all of the actions just call other actions, and the system is finished
with a CALL Z). Because of the special properties, these can be transformed easily into structured code.

Basic operations with arrays are also supported by the tool, with an automatic adjustment to the
indexes, which is necessary since arrays start from 1 in WSL, and from 0 in assembly.

The processor’s internal stack is implemented as a global list/array. The pop and push commands
take and put elements on the start of this list directly. No additional checks (such as element size and
compatibility, presence of elements on the stack) are performed, being that we presume to work with
programs that worked correctly in their original form.

Macro structures are not translated at all at this stage of the development. On the other hand
there are some special macro names that are recognised and translated directly into WSL code to
enable input/output operations. For instance print num x and print str x are directly translated to PRINT(x).
Similarly read num and read str are directly translated to WSL commands for reading numbers and
strings, respectively.

The tool also has support for translating procedures from assembly. They are translated as nested
Action Systems, so that local labels can be created, and it also enables us to return to the point of
the original call once the procedure has finished its work. The translated programs worked from the
interpreter without modifications. Transformations were also successful, despite the process resulting
in action systems that are not regular. In the initial small tests, the procedures were simplified and
then included in the main action system, as will be seen in an example in Section 3.

The second part of the process consists of a small program written is WSL that goes through the
abstract syntax tree of the translated program, and tries to apply some of the available transformations
on adequate nodes. All of the transformations implemented in WSL need to have procedures that will
test if they can be applied to the given node, so this part of the code is relatively simple. For example,
a transformation that unrolls a WHILE loop will (among other things) first check if the given node is in
fact a WHILE statement.

Some of the important transformations are collapsing of the action systems into endless loops with
exits in the middle and the subsequent transform of those into WHILE loops. At the same time constants
are propagated through the code and various redundant parts are removed.

Example. This example is an illustration of how the transformation of procedures should work.
SumN is a simple program with a call to a procedure that sums the top of the stack. The original
assembly procedure is shown in Figure 3.

The whole assembly program is, more or less, just loading the data onto the stack and calling the
procedure. As explained before (end of Section 3), the procedure will be translated into a nested action
system, as shown in Figure 5.

Transformations are then applied to the obtained system – removing flags, collapsing action systems,
and transforming the loops to WHILEs. The end result is the procedure transformed into a form shown
in Figure 3, which is directly included into the main program inplace of its call.
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sumn proc
;take n from the top of the stack
;sum the next n top elements of the stack

pop cx
mov bx, 1
mov ax, 0
mov dx, 0

theloop:
pop ax ; get next from stack
add dx, ax ; array sum is in dx
cmp bx,cx ; is it the final one?
je endp ; skip to end if ti is
inc bx
jmp theloop

endp:
push dx ;result
ret

sumn endp

Fig. 3. Assembly version of the SumN procedure

cx := HEAD(stack);
stack := TAIL(stack);
ax := HEAD(stack);
stack := TAIL(stack);
WHILE bx <> cx DO

dx := ax + dx;
IF dx >= 65536 THEN dx := dx MOD 65536 FI;
bx := bx + 1;
ax := HEAD(stack);
stack := TAIL(stack) OD;

stack := <dx> ++ stack

Fig. 4. SumN – transformed

ACTIONS A_S_start:
A_S_start ==
...... stack init etc ......
stack := < n > ++ stack;
CALL sumn;
rez := HEAD(stack);
stack := TAIL(stack);
PRINT(rez);
CALL end1

END
end1 ==

CALL Z END
sumn ==

ACTIONS dummysys:
dummysys ==

cx := HEAD(stack);
stack := TAIL(stack);
bx := 0;
ax := 0;
dx := 0;
CALL theloop

END
theloop ==

ax := HEAD(stack);
stack := TAIL(stack);

...............
bx := bx + 1;
CALL theloop;
CALL endp

END
endp ==

stack := < dx > ++ stack;
CALL Z END

ENDACTIONS
END ENDACTIONS;

Fig. 5. SumN – translated to an Action system

The Main Issues for Further Development. Although the initial results on small programs proved to
be successful, there are several inherent issues with this approach that, when combined, make future
development of the assembly tool less likely.

First is the question of feasibility of obtaining only high level structures in the translation (with-
out auxiliary files). Second is the problem of assembly not being very standardised, even the order
of the operands is not a sure thing, macros are defined in different ways, there are huge architec-
tural changes, quite often there are “hacks” in the code, input output is done through hard to detect
structures, etc. The authors were of course aware of these problem from the start, but were willing to
sacrifice a good piece of the input domain in favour of higher quality end products.

Another problem is the lack of a good assembly base to experiment on. Both of the previous points
make the selection of code very hard, and all of this is worsened by the lack of practical experience
with assembly at our institution, which, taking into consideration the legacy aspects of the work, will
probably not change in the future. This lack of “feel” for assembly and how programs are typically
written with it is another negative factor.

The combination of these factors, as well as the options for the second tool that will be presented
bellow, have led to the decision to focus the development of the tool and examples for use mainly in
Software Evolution and potentially other courses.
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program P
{

void main()
int i;
{

i = 0;
while (i < 5) {

print(i);
i = i + 1;

}
}

}

14: enter 0 1
17: const_0
18: store_0
19: load_0
20: const_5
21: jge 13 (=34)
24: load_0
25: const_0
26: print
27: load_0
28: const_1
29: add
30: store_0
31: jmp -12 (=19)
34: exit
35: return

Fig. 6. MicroJava code and the translated bytecode

4. (MICRO)JAVA BYTECODE TRANSFORMATION

Java Bytecode is the language that is executed inside the standardised Java Virtual Machine[Lindholm
et al. 2011]. In many ways it is similar to “classic” assembly languages, and therefore the reasons for
translations and formal transformations apply here.

Most of the time bytecode is generated by a compiler from source code in the Java programming
language, as it would be expected. But there are other languages and projects that try to use all
the advantages of the standardised and very popular JVM that is available for most of the computer
platforms that are in use today. For instance there are compilers for Python, Ruby, Pascal, C, Lisp,
Scheme, PHP, JavaScript, and many other languages that produce Java Bytecode. The programming
language Scala is compiled for either JVM or .NET machines.

The long term plan of this project is to build translators to and from WSL, that would allow both
formal verification and transformation. While “regular” bytecode generated from Java can usually be
decompiled quite successfully, this is not the case with code compiled from non-Java languages, or in
cases where there was bytecode instruction injections for some particular purpose (such as persistance
or additional security checks).

As a proof of concept the first step would be to work on a subset of the language. In this case the
existing MicroJava specification was chosen.

MicroJava2 was developed by Hanspeter Moessenboeck, for use in Compiler Construction courses
with focus on the main features of a programming language without the distracting details3. For in-
stance the only types are int and char primitives, arrays and basic class support. The concepts present
in the MicroJava version of bytecode are very similar to “full” Java Bytecode, but simplified, with
less instructions. It is also important to note that types are not explicitly encoded in MJ bytecode. An
example of a program in this language and the code generated from it can be seen in Figure 6.

For the purposes of translating bytecode to WSL a new tool is being developed mjc2wsl (mjc – Micro-
Java Compiled). The basic concept are similar to asm2wsl – local variables are used to represent the
registers, stack and other structures in the virtual machine. An example of translated bytecode can be
seen in Figure 7.

The tool is currently in a closed prototype testing stage, but the plan is to publish it under an open
source licence on the project’s page4.

2The name MicroJava may associate to “Java ME” (Micro Edition), but they are not related at all.
3Handouts for the course, available at http://ssw.jku.at/Misc/CC/
4http://perun.dmi.rs/pracner/transformations/
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...

18: store_0

19: load_0

20: const_5

21: jge 13 (=34)

24: ....

ACTIONS
.....
CALL a18 END
a18 ==
loc0 := HEAD(estack ); estack := TAIL(estack );
CALL a19 END
a19 ==
estack := <loc0 > ++ estack;
CALL a20 END
a20 ==
estack := <5 > ++ estack;
CALL a21 END
a21 ==
tempa := HEAD(estack ); estack := TAIL(estack );
tempb := HEAD(estack ); estack := TAIL(estack );
IF tempb >= tempa THEN CALL a34 FI;
CALL a24 END
.....

Fig. 7. MicroJava Bytecode and its WSL translation

5. CONCLUSIONS AND FUTURE WORK

This paper presents two tools for translating low level languages to a high level language WSL, which
provides commands and structures for formal, provable transformations of the resulting code.

The first tool, asm2wsl, works with a subset of the Turbo Assembler flavor of x86 assembly language.
The code gets translated into WSL with set up variables and structures that emulate the operations
of the processor including all of the side effects. The complete logic of the program is translated to
high level structures, without any memory mappings, unlike previous approaches[Ward et al. 2004].
Needless to say, the resulting code tends to grow in size, but this is not important as a series of au-
tomatic transformations can reduce the length of the program while keeping the logic intact. Manual
transformations can be applied at any point for improved end results.

The initial results on small test programs were good, but this approach has a lot of limitations –
many structures in assembly are practically impossible to detect and translate into high level counter-
parts. The input output system is a big problem for translation. Finally the available applicable code
base and the amount of work being done at our institution with assembly is just not big enough for
good tests. Therefore the decision was reached to turn this tool into a mainly educational helper in
software evolution and potentially some other courses.

The second tool, mjc2wsl, works with MicroJava bytecode, which is a subset of Java bytecode (used in
Java Virtual Machines). The basic inner workings are similar to the first tool. The strict specification
solves most of the problems described above.

Direct bytecode changes can be used for a number of applications. DYPER [Reiss 2008] and J-
RAF2 [Hulaas and Binder 2008] are monitoring resources through instrumentation. ASM Frame-
work [Kuleshov 2007] is used by a number of tools, including Jython, JRuby, Eclipse and some of
Oracle’s persistance systems. Soot is used in a number of research tools, as well as students’ courses
[Lam et al. 2011].

The end goal of this project is the expansion of mjc2wsl to Java bytecode and to take advantage of
WSL that has already shown good results in real life applications and it’s formally provable transfor-
mations, that are not available in other tools, both for optimisation and verification.

The obvious future steps are improvements to MJ bytecode automatic transformations, as well as de-
veloping translators from WSL back to bytecode and testing the potential improvements, and tools for
verifying the correctness of the transformations. Further steps would be the expansion of the transla-
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tion and transformation process to the complete Java Virtual Machine specification including two way
translation between bytecode and WSL.

WSL has no static type system, and therefore transformations can not check type consistency which
is a possible source of errors. For “full” Java Bytecode this would be necessary. A Wide Spectrum Type
System was developed by Matthias Ladkau in his PhD thesis[Ladkau 2009], but it is not yet fully
integrated into FermaT. This system could be used to improve many of the transformations, which is
one of the goals of this project.

Another path of development would be the adaptation of the tools and good examples for courses in
software evolution, software engineering and others.
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