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We present a semantic-based ontology mapping framework 

that offers instance transformation and discovery of new 

mapping using reasoning. Our framework comprises an 

expressive OWL-Full Mapping Representation Ontology (MRO) 

and a mapping translation method. Ontology mappings are 

represented in terms of an instantiation of the MRO. We define 

formal semantics for our ontology mapping representation by 

translating the ontology mappings in OWL-Full to OWL and 

SWRL in order to derive new ontology mappings and perform 

instance transformation using reasoning. We have evaluated the 

workings of our ontology mapping framework by mapping three 

ontologies each representing a disease specific Clinical Practice 

Guideline (CPG) to a general CPG representation ontology. The 

intent of the mapping is to provide knowledge-driven decision 
support for the management of patients with multiple diseases. 

Keywords—Ontology; Semantic Web; Ontology mapping; 

Instance Transformation; SWRL, OWL 

I.  INTRODUCTION 

Complex knowledge-centric systems demand the 
integration of multiple knowledge objects in order to achieve a 
comprehensive knowledge model. Given the open nature of 
semantic web, several heterogeneous knowledge models exist 
for representing the knowledge in any domain area. For 
instance, in healthcare, there exist variety of knowledge models 
to model and computerize clinical practice guidelines (CPG)—
these models share a range of concepts but differ in the 
interpretation and specification of these concepts. To develop a 
holistic knowledge model based on multiple heterogeneous 
knowledge models, therefore demands the establishment of 
standardized interoperability specifications and criterion, at 
both the structural and semantic levels, to achieve the 
integration of multiple heterogeneous knowledge models.  

Lately, ontologies have emerged as expressive knowledge 
representation formalisms, together with methods to reason 
over the knowledge. An ontology typically represents a 
specific aspect of knowledge with varying levels of abstraction 
and description. To formulate a broader and holistic knowledge 
model, researchers aim to integrate multiple existing ontologies 
that demand an interoperability solution that aligns 
heterogeneous ontologies in keeping with the domain-specific 
interpretations and constraints surrounding knowledge 
consistency. A semantic interoperability framework aims to 
establish explicit and well-defined mapping between two 

ontologies. In practice, ontology mappings methods map the 
ontology elements between two ontologies based on the 
similarity of their names, their relations and their shared 
instances using name-based, structure-based and instance-
based approaches respectively ‎[10].  

An alternative mapping approach is called semantic-based 
ontology mapping. This approach has two steps ‎[10]: (i) 
anchoring step in which a number of initial mappings or 
anchors are created between two ontologies using name, 
instance or structure based ontology mapping approaches; (ii) 
reasoning step in which a reasoner performs reasoning on the 
mappings and the mapped ontologies to (a) transform instances 
between the two ontologies; and (b) improve the existing 
mappings by discovering new ones based on the formal 
semantics of the mappings and the mapped ontologies. 
Typically, proprietary reasoning algorithms ‎[1]‎[4]‎[14], 
propositional logic ‎[11]‎[12] and Description Logic (DL) 
‎[5]‎[6]‎[7]‎[8]‎[9] are used in the reasoning step.  

The quality of ontology mapping based on a semantic-
based approach is contingent on the ontology mapping 
representation language’s‎ level‎ of‎ expressivity‎ and‎ formal‎
semantics—reasoning over a more expressive ontology can 
yield more new mappings as opposed to reasoning over a less 
expressive ontology. Our review of the existing mapping 
representation languages ‎[1]‎[2]‎[3]‎[4]‎[9]‎[11]‎[12]‎[13]‎[15] and 
an existing surveys ‎[13] reveal that most of the current 
ontology mapping languages suffer from lack of expressivity 
and formal semantics. Lack of formal semantics stops us from 
using the mappings in a semantic-based ontology mapping 
approach. 

To address the lack of expressivity and formal semantics in 
ontology mapping languages, in this paper we use semantic 
web technologies to present a semantic-based ontology 
mapping approach that entails: (a) a general purpose OWL-Full 
based Mapping Representation Ontology (MRO) that serves as 
an expressive ontology mapping language that can represent 
complex mappings such as predefined mapping patterns, 
conditions, condition satisfaction criteria, variables, structural 
modifications and mathematical operators. An instance of the 
MRO represents the mappings between a source and a target 
ontology; and (b) translation algorithm to translate the 
instantiations of the MRO (which are in OWL-Full and hence 
undecidable) to OWL-DL or OWL 2 RL + SWRL which is a 
decidable combination. The translated mappings and the 



mapped ontologies are reasoned over to achieve both instance 
transformation and to discover new mappings. Please note that 
our approach is not problem-specific and can be used for 
mapping any two ontologies as long as they are represented in 
OWL. 

We chose to represent mappings in OWL-Full and then 
translate them to OWL+SWRL instead of using OWL+SWRL 
directly because of the following reason: (a) The expressivity 
of MRO being OWL-Full—i.e. using properties and classes as 
instances—makes the ontology mappings more readable and 
less verbose—i.e. with fewer triples compared to OWL-DL; (b) 
It enables us to support conditional mappings and complex 
condition satisfaction criteria, meta modelling, Boolean 
operators and converting ontology elements and creating new 
ones which are not directly supported by either OWL or 
SWRL. These aspects of ontology mapping are supported by 
automatic generation of several OWL axioms and SWRL rules 
that simulate the lacking feature during the translation process; 
(c) SWRL rules are difficult to write and can easily become 
undecidable if not written correctly. In our translation 
algorithm, DL-Safe SWRL rules are generated automatically 
thus relieving the user about decidability concerns.  

In order to evaluate the efficacy of our ontology mapping 
framework, we instantiated MRO to map three disease-specific 
CPG ontologies to a general CPG ontology. We then 
successfully transformed instantiations of the source ontologies 
to instantiations of the target ontology. The problem being 
pursued here is to handle comorbidities by integrating two or 
more disease-specific CPG to manage a patient with multiple 
simultaneous diseases. 

II. RELATED WORK 

In this section, we review the existing semantic-based 

ontology mapping approaches and the existing mapping 

representation languages. 

A. Semantic-Based Ontology Mapping Approaches 

These approaches can be categorized based on the 
reasoning techniques that they use. Literature reports on using 
proprietary reasoning algorithms ‎[1]‎[4]‎[14], propositional 
satisfiability solvers ‎[11]‎[12] and description logic reasoners 
‎[5]‎[6]‎[7]‎[8]‎[9].  

Methodologies that use proprietary reasoning algorithms 
such as ‎[1]‎[4]‎[14] are not desirable because of the following 
disadvantages: (a) Because of their proprietary algorithms, they 
can’t‎ benefit‎ from‎ the‎ existing‎ reasoners‎ and‎ a‎ special‎
reasoning engine should be developed in order to perform the 
reasoning step; (b) Since these engines can only perform 
reasoning on the mappings and not the ontology representation 
languages they cannot exploit the internal structure 
(knowledge) of the ontologies to draw new mappings based on 
them.  

There are semantic-based algorithms that use propositional 
logic to perform reasoning. In these approaches, a theory is 
built by conjunction of the axioms from the mapped ontologies. 
This theory can be constructed by using one of the name, 
instance or structure based approaches. Then, a matching 
formula is made for each pair of classes from the mapped 

ontologies. Afterwards, the validity of the formula is checked 
by using a propositional satisfiability solver. BerkMin ‎[11] and 
GRASP ‎[12] are two examples to name. None of these 
approaches goes beyond finding equivalence, subclass, and 
complement relationship between classes. We believe that this 
is due to lack of expressivity in propositional logic for the task 
of ontology mapping.  

Description logic reasoners have also been used in the 
reasoning step of semantic-based ontology mapping 
approaches. Two approaches that use description logic to find 
disjointness, overlap, inclusion and equivalence relations 
between concepts are reported in ‎[5]‎[7]. Meilicke and 
colleagues ‎[6] used description logic to debug the mappings by 
detecting inconsistencies. In a theoretical work ‎[8] it is 
suggested that description logic can be used for reasoning 
about the mapping themselves to find containment, minimality, 
consistency and embedding attributes in them. Therefore, DL 
has been used for reasoning about the mappings, debugging 
them and deriving simple mappings (class equivalence, etc.) 
but no attempt has been made to represent more complex 
mappings such as value transfer mappings or mathematical 
computations. We believe that lack of an expressive mapping 
representation language that formally defines the mapping 
semantics in DL is limiting the capabilities of DL-based 
semantic-based mapping methodologies.  

There are also approaches such as ‎[1] and ‎[3] that translate 
the mappings to OWL and SWRL to use OWL reasoners. 
These methodologies transform the mapping to either OWL or 
SWRL but not a combination of them. However, we believe 
that OWL or SWRL cannot be used separately for mapping 
ontologies unless we need very low levels of expressivity. 
Therefore, we can conclude that complex mappings are not 
possible to be transformed using these approaches. Moreover, 
no explanation or details of the translation process have been 
provided in this regard.  

B. Ontology mapping representation languages 

In this section, we review the expressivity levels of the 
mapping representation languages with formal semantics. We 
reviewed the literature trying to define the requirements of the 
mapping representation languages ‎[13]‎[15]. The support for 
mathematical, Boolean, string and structural modification 
operators, frequently used mapping patterns, predefined set of 
relations between ontology elements, variables and the ability 
to express conditions and condition satisfaction criteria are the 
most important expressivity requirements identified in these 
publications. 

Many of the existing mapping representation languages 
such as MAFRA ‎[4], C-OWL ‎[9] and many others 
‎[1]‎[4]‎[5]‎[6]‎[8]‎[9]‎[11]‎[12] are only capable of expressing 
simple relations such as equivalent, disjoint, subclass and super 
class between ontology classes. A review of 13 of these 
languages in ‎[13] shows that 61% of all of them are only 
capable of expressing the equivalence relationship. Only C-
OWL has formal semantics that can be used by reasoners in the 
semantic-based ontology mapping. Even though authors of 
MARFA claim that they have formal semantics no details are 
provided in that regard. OWL is more expressive than these 



languages as it supports a wide range of predefined relations 
between classes, properties and instances. It also supports a 
large number of class and property manipulation operators that 
can be used towards structural modification. The rest of the 
desired features described earlier are not supported by OWL. 
Having formal semantics makes it possible to use OWL in the 
reasoning step of a semantic-based ontology mapping 
approach. 

An important requirement of these languages is the ability 
to support variables and to express mathematical, Boolean, 
date, string computation and comparison and structural 
modification operators. SWRL is the only language that is able 
to express a wide list of the necessary functions for mappings 
that are supported by the concept of built-ins. This language 
however cannot support Boolean operators, mapping patterns, 
conditions, qualified cardinality restrictions and some of the 
property relations and structure modifications operators that are 
expressible in OWL such as union operator. SWRL also has 
formal semantics and can be used in semantic-based ontology 
mapping approaches. 

Two expressive mapping languages are discussed in ‎[2] and 
‎[3]. The language in ‎[2] supports a wide range of mappings 
patterns, conditions and variables. However, this language does 
not support representation of complex condition satisfaction 
criteria, and mathematical, Boolean, string and date operators. 
The language in ‎[3] supports a large number predefined set of 
relations between ontology elements, mapping patterns, ability 
to express conditions and structural modification operators. 
Even though some descriptions of the formal semantics of 
these languages are discussed, enough details for a practical 
implementation of a semantic-based ontology mapping 
approach are not provided. 

III. OUR ONTOLOGY MAPPING APPROACH 

Our ontology mapping approach entails the following two 
components: A Mapping Representation Ontology (MRO) in 
OWL-Full to represent the ontology mapping; and a translation 
algorithm that transforms an instantiation of the MRO to OWL 
+ SWRL. Our ontology mapping approach is pursued by 
performing the following three steps: 

1. Anchoring (MRO Instantiation): In the first step, 
initial inter-ontology mappings are created by establishing 
semantic relations between classes, properties and instances of 
the mapped ontologies. These mappings can be either created 
using existing automatic discovery algorithms such as methods 
based on similarity of names or by a domain expert. Due to 
complexity of the mappings between ontologies of our domain 
area, we opted to create the initial mappings manually. 
Therefore, a mapping between two ontologies is an 
instantiation of the MRO created by the domain expert. For 
instance, by instantiating MRO we may indicate that classes 
Person and Human from source and target ontologies are 
equivalent classes. Source and target ontologies are represented 
by o1: and o2: name spaces in the rest of the paper. 

2. Translation to OWL-DL + SWRL: In the next step, we 
transform the instantiation of MRO to a combination of OWL-
DL or OWL2 RL + SWRL depending on the expressivity 
needs of the mappings. To avoid the possible undecidability as 

the result of using SWRL rules, only DL-Safe rules ‎[17] are 
added in the translation process. As an example, the 
instantiation of MRO that expresses Human and Person classes 
are equivalent is translated to:  

o1:Human owl:equivalentClass o2:Person. 

3. Reasoning: Finally, we use OWL reasoners to perform 
reasoning on the translated mappings and the mapped 
ontologies to improve the mapping by discovering new ones 
and to perform instance transformation. As an example, The 
following SWRL rule which is the result of the translation of 
an instantiation of MRO to SWRL, calculates the Body Mass 
Index (BMI) of an instance of the class o1:Person and assigns 
it to the class o2:ObesePerson if the value of the BMI is 
greater than 30 and the condition c1 is satisfied.  

o1:Person(?InstVar), o1:hasHeight(?InstVar, 

?HeightVar), o1:hasWeight(?InstVar, 

?weightVar),swrlb:divide(?BMIVarVar, 

?func1SWRLVar,?HeightVarVar),swrlb:divide(?fun

c1Var,?weightVar,?HeightVar),swrlb:greaterThan

(?BMIVar, 30),SatisfiedCondition(c1)-> 

o2:ObesePerson(?o1InstVar), 

o2:hasBMI(?o1InstVar, ?BMIVar) 

As a result of reasoning on this rule and source and target 
ontologies all together, the reasoner infers that an instance of 
the Person class in the source ontology with the weight of 97kg 
and height of 179cm belongs to the class o2:ObesePerson in 
the target ontology and has the value 32.2 for the property 
o2:hasBMI. In this way, instances of the o1:Person class in the 
source ontology are transformed to instances of the 
o2:ObesePerson class in the target ontology. We have used 
Pellet as our reasoner since it supports both OWL and SWRL. 
Any other reasoners with support for OWL and SWRL can be 
used for this purpose. 

IV. MAPPING REPRESENTATION ONTOLOGY 

In this section, we describe MRO, its classes, properties and 
instances. In order to easily identify classes, properties and 
instances in the text, class names are italicized and their first 
letter are Capitalized (e.g. ClassNameExample), property 
names are italicized (e.g. propertyExample) and instance 
names are underlined (e.g. instanceExample). 

A. Mappings and Relations 

In order to represent mappings between instances, 
properties and classes of source and target ontologies we have 
created the Mapping class. Three types of mappings have been 
modeled in MRO using the following classes: 
RelationalMapping, TransformationMapping and 
ValueTransferMapping. 

RelationalMappings express a relation between two 

ontology elements. hasSource and hasTarget properties with 

the domain of Mapping and range of OWL:thing are used 

assign the source and the target elements to a mapping. The 

hasRelation Property with the domain of RelationalMapping 

and the range of MappingRelation defines the relation in a 

relational mapping. Depending if the relation is between two 



instances, properties or classes, one of the instances of the 

InstanceRelation, PropertyRelation or ClassRelation classes is 

used. In the following example we have used 

subClassRelation an instance of the ClassRelation to map the 

o1:Father class as a subclass to the o2:MalePerson class: 

:m1 a:RelationalMapping; 

  :hasSource   o1:Father; 

  :hasTarget   o2:MalePerson; 

  :hasRelation :subClassRelation 

TransformationMapping specifies how the source ontology 
elements need be structurally modified and transformed to 
elements of the target ontology. Two types of transformation 
mapping have been modeled: (i) Property to class mapping 
represented by PropToClassTransMapping class. As an 
example, a property to class transformation mapping 
transforms the OWL triple o1:john o1:isMarriedTo 

o1:jane to 

o2:john_jane_marriage a o2:Marriage; 

 o2:hasMalePartner o1:john; 

 o2:hasFemalePartner o1:merry. 

As you can see, an instance of the class o2:Marriage for 
each pair of instances connected by the property 
o1:isMarriedTo should be created. The following instantiation 
of the mapping class represents this mapping from o1 to o2.  

:m a :PropToClassTransMapping; 

   :hasSourceProperty o1:isMarriedTo 

   :hasTargetClass o2:Marriage; 

   :hasTargetProperty1 o2:hasMalePartner; 

   :hasTargetProperty2 o2:hasFemalePartner. 

Please note the hasSourceProperty, hasTargetClass, 
hasTargetProperty1 and hasTargetProperty2 properties in this 
mapping and their purposes.  

 (ii) Class to property mapping which is the exact opposite 

of the property to class mapping. This mapping is represented 

by the ClassToPropertyTransMapping class. The following 

instantiation of the mapping ontology performs the exact 

opposite transformation in the abovementioned example from 

o2 to o1: 

:m a :ClassToPropertyTransMapping; 

   :hasTargetProperty o1:isMarriedTo 

   :hasSourceClass o2:Marriage; 

   :hasSourceProperty1 o2:hasMalePartner; 

   :hasSourceProperty2 o2:hasFemalePartner. 

Please note the hasTargetProperty, hasSourceClass, 
hasSourceProperty1 and hasSourceProperty2 properties in this 
mapping and their purposes.  

ValueTransferMappings perform mathematical, string and 
date computation and comparison to find the new value in the 
target ontology based on the value of the source ontology. An 
instance of this mapping would be computing the Body Mass 
Index in the target ontology based on the weight and the height 
of a person in the source ontology. No relation is assigned to 
this type of mapping. The hasFunction property with the range 
of Function is used to assign the participating functions in data 
transformation to a mapping.  

B. Variables 

Variables that are represented by the Variable class can be 
used to represent values or a fragment of the ontology and be 
used as the source or target of the mappings. Fig. 1 shows 
subclasses of the Variable class. It has two subclasses: 
ClassVariable, InstanceDataVariable.  

 

Fig. 1. Subclasses of the Variable Class 

1) ClassVariable: This class and its associated properties 

can be used to represent a class of instances. It has two 

subclasses: ClassPropertyHasValue and 

ClassPropertyQualifiedCardinality. ClassPropertyHasValue 

can be used to create a variable which represents a class whose 

instances have a specific value for a specific property. For 

instance, the following class variable represents the students 

who have taken course math101 for the summer: 

:cv1 a :ClassPropertyHasValue; 

 :classVariableHasClass o1:Student; 

 :classVariableHasProperty o1:hasSummerCourse; 

 :classPropertyRestrictionHasValue o1:math101. 

An instance of the ClassPropertyQualifiedCardinality class 
represents instances that have a restriction on the number and 
type of values that a specific property can have. For instance, 
we can create a class that represents students who have 
registered for at least two elective courses: 

:cv2 a: ClassPropertyQualifiedCardinality; 
  :classVariableHasClass o1:Student; 

  :classVariableHasProperty o1:hasCourse; 

  :classPropertyQCROnClass o1:ElectiveCourse 

  :hasCardinalityType :min; 

  :hasNumericValueForCardinality “2”^^xsd:int. 

hasCardinalityType with the range of Cardinality 
represents the cardinality type. Instance of the Cardinality class 
are any, all, min and max.  

2) InstanceDataVaraible: They have a similar purpose to 

data varible in programming languages. They can hold a 

string, numeric, boolean values or represent an instance of the 

ontology using sublcasses StringVariable, NumericVariable, 

BooleanVariable and InstanceVariable respectively. In the 

following example, we create an instance variable which 

represents all the instances of the Student class in the source 

ontology and a data variable which represents the weight of 

the student represented by the instance variable: 

:studentVar a :InstanceVariable. 

:weightVar a :NumericVariable. 

 



:cv1 a :ClassPropertyHasValue; 

 :hasInstanceVariable :studentVar; 

 :classVariableHasClass o1:Student; 

 :classVariableHasProperty o1:hasWeight; 

 :classPropertyRestrictionHasValue :weightVar. 

The value of the weightVar variable can be compared with 
a predefined number and the result can be used to make the 
decision whether the instance variable studentVar belongs to 
the class o2:ThinStudent or o2:NormalWeightStudent in the 
target ontology. In order to perform such a mapping we need to 
be able to define mathematical functions.  

C. Functions and Operators  

Expressivity of a mapping representation language is highly 
dependent on its support for representation of Boolean, 
mathematical, string, date and instance comparison and 
computations.  

The Function class is the smallest entity that can be used 
for computation in our mapping ontology. Each function 
accepts an operator, a set of input variables and generates an 
output. A function has at most two inputs that are assigned to it 
by hasInput1 and hasInput2 properties with the domain of 
Function and range of Variable. Outputs of functions are 
assigned to them by the object property hasOutput with the 
range of Variable class. The operator of a function is assigned 
to it by the hasOperator property with the range of Operator. 
The Operator class represents all the possible operators that 
can be applied to ontology elements during the mappings. Fig. 
2 shows the subclasses of the Operator class. 

 
Fig. 2. Subclasses of the Operator class 

Other than Boolean, mathematical and string operators, we 
have created the following operators to help with the 
mappings: 1. SetOperator: They are used to create intersection, 
unions and complements of classes. 2. ConvertOperator: 
Instances of the ConvertOperator that are convertToClass, 
convertToInstance and convertToProperty are used to convert 
any element of the source ontology to a class, instance or 
property respectively in the target ontology. 3. 
CraeteOperator: class is used for creating new elements in the 
target ontology during the mapping. 4. 
ClassComparatorOperator: Class comparators are used in the 
functions that compare classes to find sub-class, super-class 
and equivalence relations. 5. InstanceOperator: Instances of 
this class are equalInstance and notEqualInstance. The output 
of a function comparing two instances using equalInstnace is a 

Boolean‎ variable‎with‎ the‎ value‎ “true”‎ if‎ they are equivalent 
classes or with the value “false”‎ otherwise. notEqualInstance 
works the opposite way.  

D. Conditions 

Mappings may be conditional. Property hasCondition with 
the domain of Mapping and range of Condition assigns 
conditions to a mapping. Condition class represents the 
conditions. hasCardinalityType with the domain of Mapping 
and the range Cardinality represents the cardinality type. 
Instance of the Cardinality are any, all, min and max. Data type 
property hasNumericValueForCardinality with the domain of 
Mapping shows the number of conditions that should be 
satisfied. A mapping whose condition satisfaction criterion is 
met is considered for mapping and instance transformation 
otherwise it is ignored. Using the abovementioned properties, 
one is able to express that at least three conditions of a 
mapping should be satisfied in order to participate in the 
mapping process. 

V. TRANSLATION OF MRO FROM OWL-FULL TO OWL-
DL + SWRL 

In order to use an instantiation of MRO (representing an 
ontology mapping) in the reasoning step of our semantic-based 
ontology mapping approach, we translate it to a combination of 
OWL-DL + SWRL or OWL2-RL + SWRL depending on the 
level of expressivity needed to represent the mapping. In this 
way, the translated mappings, the source and the target 
ontologies all can be regarded as a single ontology and an 
OWL reasoner can be used to improve the existing mappings 
by discovering new ones and perform instance transformation. 
Our translation algorithm performs the following steps on each 
mapping: 

(1) Put all the non-output class variables in list1. Put all the 
output variables (Except for Boolean variables) in list2. 
Put all input Boolean output variables in list3.  

(2) Translate the variables in list1 until no further 
transformation is possible.  

(3) Translate the variables in list2 until no further 
transformation is possible.   

(4) If list1 and list2 are empty, go to 5 else go to 2.  
(5) Translate all the Boolean variables in list3 and process 

conditions.  
(6) If all mappings are translated then go to 7 otherwise go to 

the next mapping 
(7) Prepare the translated mapping for reasoning according to 

the translated variable.  

Lists 1 and 2 are repeatedly swept for variables to be 
translated until both of the lists are empty. The reason is that 
translation of all of the output variables depends on the input 
variables and the translation of some of the input variables may 
depend on output variables. For example, an instance variable 
may belong to a class using property classVariableHasClass 
that is the output of a set function. In order to translate that 
instance variable, the class variable that it belongs to should be 
translated in list2 first. Steps 2, 3, 5 and 7 are further discussed 
in the following sub-sections. 



A. Step 2 translation of list1 

These variables are either translated to OWL constraints or 
SWRL axioms. If a variable has a value for one of the 
properties hasInstanceVariable or classVariableHasValue, it is 
translated to a SWRL axiom. In order to understand the 
translation process we go through the following example: 

:cv1 a :ClassVariable; 

 :hasInstanceVariable :personVar; 

 :classVariableHasClass o1:Student; 

 :classVariableHasProperty :hasWeight; 

 :classVariableHasValue o1:weightVar. 

Firstly, two SWRL variables are made with the name of the 
values of properties hasInstanceVariable and 
classVariableHasValue +‎“SWRLVar”: 

:personVarSWRLVar a swrl:Variable.   
:weightVarSWRLVar a swrl:Variable. 

Then a SWRL class atom is made to represent the class to 
which the created instance variable belongs. This class which is 
represented by the classVariableHasClass property is 
o1:Student: 

[a swrl:ClassAtom ; 

  swrl:argument1 :personVarSWRLVar; 

  swrl:classPredicate o1:Student]. 

Finally, another axiom is created to show that the created 
SWRL variables are connected using the property indicated by 
the classVariableHasProperty that is hasWeight here: 

[a swrl:DatavaluedPropertyAtom ; 

swrl:argument1 :personVarSWRLVar; 

swrl:argument2 :weightVarSWRLVar; 

swrl:propertyPredicate o1:hasWeight;] 

Depending if the translated class variable belongs to the 
source or the target of the mapping, these created SWRL 
axioms are added to the body or the head of SWRL rule 
representing this mapping respectively. 

If a variable is not translated to SWRL rules, it is translated 
to OWL axioms. Depending on the values of the properties 
classPropertyQCROnClass, hasCardinalityType, and 
hasNumericValueForCardinality a class variable is translated 
to a cardinality restriction in OWL-DL or a qualified 
cardinality restriction in OWL-2. In the following example, cv1 
class variable represents instances that have maximum of two 
different values from the SummerCource class for the 
hasCourse property: 

:cv1 a :ClassVariable 

 :classPropertyQCROnClass o1:SummerCourse; 

 :classVariableHasProperty o1:hasCourse; 

 :hasCardinalityType :max; 

 :hasNumericValueForCardinality “2”^^xsd:int. 

The above example is translated to the following OWL 
triples: 

[a owl:Restriction; 

  owl:onClass o1:SummerCourse; 

  owl:onProperty o1:hasCourse 

  owl:maxQualifiedCardinality “2”^^xsd:int] 

B. Step 3 translation of list2 

Output variables with different operators are translated 
differently. For instance, set operators are translated to OWL 
axioms that make use of owl:intersectionOf, owl:unionOf etc. 
As an example, considering the following mapping function: 

:func1 a :Function; 

  :functionHasInputVariable1 o1:Male 

  :functionHasInputVariable2 o1:Parent 

  :functionHasOperator :intersectionSO 

  :functionHasOutputVariable :func1OutVar. 

This example is translated to: 

:func1OutVar :variableHasClassValue  

[a owl:class; 

owl:intersectionOf( :Parent :Male)]. 

Output variables of functions that make use of 
mathematical operators are translated to SWRL rules that make 
use of SWRL built-ins. For instance, in order to add up two 
variables a and b and put the result in the variable c, we create 
the following function: 

:a a :NumericVariable. :b a :NumericVarable. 

:addFunc a : Function; 

  :hasInput1 :a; :hasInput2 :b; :hasOutput :c; 

  :hasOperator :mathDivide. 

This example is translated to: 

[a swrl:BuiltinAtom ; 

 swrl:arguments (:outputSWRLVar :bSWRLVar    

 :aSWRLVar); swrl:builtin swrlb:divide]. 

C. Step 5 translation of list3 and processing Conditions 

Since OWL and SWRL do not support Boolean operators, 
mappings are first translated into a single mapping rule without 
considering the Boolean functions in it. Then we iterate 
through all the possible combination of values of the non-
output Boolean variables and compute the values of the 
Boolean output variables in list3. As we iterate through the 
values, we create a copy of the existing SWRL rule created for 
the current mapping and add the SWRL axioms that represent 
the current values of both input and output Boolean variables. 
In this way, each rule is copied to several rules each 
representing a combination of the Boolean input variables. In 
this way, each created SWRL rule handles a specific 
combination of input Boolean variables.  

In order to handle conditions, we go through the created 
rules in the previous step and discard the SWRL rules in which 
the assigned Boolean variables do not meet the condition 
satisfaction criteria. In this way, a great number of created 
SWRL rules are discarded in this step. 

D. Step 7 preperation of the mappings for reasoning 

Mappings represented by SWRL rules are ready for 
reasoning. However, relational mappings that are represented 
by OWL axioms need the final translation from OWL-Full to 
OWL-DL. During this translation, all the variables are replaced 
by their translated values. For instance, consider the following 
translated variable and mapping: 

:func1OutVar :variableHasClassValue  



 [a owl:class; 

  owl:intersectionOf(o1:Parent o1:Male)]. 

:m1 a:RelationalMapping; 

  :hasSource   o1:func1OutVar; 

  :hasTarget   o2:Father; 

  :hasRelation :subClassRelation 

This example is translated to: 

[a owl:class; 

 owl:intersectionOf(o1:Parent o1:Male) 

] rdfs:subClassOf o2:father. 

VI. EVALUATION 

Mapping health informatics related ontologies especially 
CPG ontologies is usually a challenging task due to their high 
levels of expressivity. In order to evaluate the efficacy of our 
mapping representation language, we used it to map 3 CPG 
ontologies with a total of 9 instantiations to a general CPG 
representation ontology. During the mapping process, we did 
not come across a mapping pattern or an operator that was not 
supported by our mapping ontology. We translated the 
mappings to OWL + SWRL and performed reasoning on them 
in order to discover new mappings and to perform instance 
transformation. We executed all the 9 transformed 
instantiations using the execution engine developed in ‎[16] for 
executing our general CPG ontology. We also executed these 
CPG in their original format using their own proprietary 
execution engine. We compared the execution results generated 
by our execution engine and the original execution engines for 
three imaginary patient scenarios. In all 9 cases, both execution 
engines generated the exact same recommendations. This 
indicates that the mapping has been accurate and the instances 
are transformed successfully. In all three mappings, the 
translation algorithm translated the mappings to either to 
OWL-DL or OWL 2-RL + SWRL. This is important to ensure 
the decidability of the process of discovering new mappings 
and instance transformation.  

Comparison of our mapping ontology with the existing 
mapping representation languages against a comprehensive set 
of mapping patterns surveyed in ‎[2] shows that our mapping 
representation ontology supports the widest range of these 
mapping patters. For instance, unlike most of these languages, 
our mapping ontology supports variables, meta-modelling and 
a wide range of operators that are needed for data manipulation 
and structural modifications. We also introduced the possibility 
of conditions and complex condition satisfaction criteria. 

VII. CONCLUSION 

In this paper, we introduced a new semantic-based ontology 
mapping approach based on semantic web technologies. We 
used our approach to map three CPG ontologies to a general 
CPG ontology and to transform their instances. Execution 
results showed that our approach represents the mapping 
accurately and performs instance transformation correctly. Our 
mapping approach has three advantages over existing mapping 
approaches: (1) higher levels of expressivity; (2) better 
shareability and acceptance due to support by several semantic 
web tools developed for manipulation, visualization and 
reasoning; (3) Formal semantics in OWL and SWRL that 
enables us to improve the existing mappings and perform 

instance transformation automatically in a semantic-based 
ontology mapping approach. For future work, we are interested 
in using the functions provided by either SQWRL or 
SPARQLE query languages to improve the mapping 
representation expressivity. 
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