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Abstract—A combined structure-weight similarity approach
for comparing directed (vertex- and edge-)labeled (edge-)
weighted graphs is presented. Vertex labels (as types) and
edge labels (as attributes) embody semantic information. Edge
weights express assessments regarding the (percentage-)relative
importance of the attributes, a kind of pragmatic information.
These graphs are uniformly represented and interchanged
using a weighted extension of Object Oriented RuleML. We
propose semantic-pragmatic information retrieval and cluster-
ing where a combination of structure and weight similarities
between a query and stored graphs is calculated. The struc-
ture and weight similarity values are used as primary and
secondary criteria, respectively, to rank the retrieved graphs.
The proposed weight similarity algorithm refines the ranking of
retrieved graphs that have identical or nearly identical query-
graph structure similarity but have different edge weights.
It is shown that our approach leads to higher precision
compared to earlier approaches that did not incorporate the
similarity of edge weights. The proposed approach of semantic-
pragmatic information retrieval and clustering can be applied,
for example, in e-Learning, e-Business, social networks, and
Health 3.0. In this paper, the application focus is in e-Health,
specifically the retrieval of mental health records.

Keywords-graph similarity; structure similarity; weight sim-
ilarity; weighted Object Oriented RuleML; e-Health.

I. INTRODUCTION

Semantic information can be represented using hierarchi-
cal structures, which express knowledge in multiple levels
of detail. In the e-Business domain, vertex-labeled, edge-
labeled and edge-weighted trees [1] are used in order to rep-
resent attributes of products. In [2], these weighted trees are
generalized to weighted Directed Acyclic Graphs (wDAGs)
in which substructures can be shared. Efficient similarity
algorithms are required in many applications, such as for
schema matching in databases, buyer-seller matching in e-
Business, and health record retrieval in e-Health. They can
also be used in social networks, e.g. to form similarity-
clustered wellness or patient groups [3]. Calculating similar-
ities between patient profiles (i.e., health records) is difficult,
as the various aspects of a disease should be weighted
differently, which entails that simple matching of attributes
is not adequate in e-Health [4]. Weights are already used
in similarity algorithms [1], [2], [4]. In [4], similar patients
are identified based on similarity of symptoms and diseases.

In this system, different aspects of a disease are weighted
using regression estimation. Then, these calculated weights
are used as coefficients in a weighted distance measure. Note
that each particular user group (e.g., profiles of all patients
having lung cancer) has the same values in the weight
vector. This approach differs from the structural similarity
algorithms [1], [2] which consider different set of weights
for each profile (even if they belong to the same group). The
similarity algorithms in [1], [2] compute the arithmetic mean
of the two weights on corresponding edges of compared
trees/wDAG in order to determine the weighted similarity. In
this way, edge weights are used as scaling factors to ensure
that the overall similarity value is in the real interval [0, 1].
We have found that this approach cannot differentiate trees
nor wDAGs with different edge weights having identical
or nearly identical structure similarity to the given query.
Therefore, we propose modifications to the original weighted
similarity algorithm to address this issue.
In this paper, a combined structure-weight similarity algo-
rithm is proposed based on two component algorithms: a
version of the structure similarity algorithm in [2] and a new
weight similarity algorithm. In our approach, we perform
ranked retrieval over a set of (meta)data represented as
directed (vertex- and edge-)labeled (edge-)weighted graphs,
each optionally associated with a data record. A special case
is that the ‘metadata’ already are the ‘data’ to be retrieved,
with no need for a separate data record. Similar to [2],
graphs must be transformed to an internal representation
before computing their similarity. Such graphs are expressed
using a weighted extension of Object Oriented RuleML
[5]. The XML parent-child structure reflects the hierarchical
structure of the graphs, while the role element <slot> ex-
presses edge labels and the attribute weight expresses edge
weights. Also, the sharing of a rooted subgraph by multiple
parents can be represented using a RuleML element with an
XML key referred to from multiple keyrefs. The graphs
could be expressed using other representation approaches
(e.g., Turtle [6] and RDF/XML [7]) as well. We assume that,
given a query graph, a ranked list of matching (meta)data
graphs (and consequently corresponding records), which are
stored in a dataset, is constructed. The structure similarity
and the weight similarity algorithms match the query graph
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to each (meta)data graph and calculate their structure and
edge weight similarity values, respectively. These pair values
of structure and weight similarities (resulting from matching
the query graph to each (meta)data graph) are considered
as ranking criteria to generate the ranking list of (meta)data
graphs. We demonstrate that this approach is able to differen-
tiate the graphs having identical or nearly identical structure
similarity but different edge-weight similarity to the given
query.

The proposed combined structure-weight similarity ap-
proach is applied in e-Health domain. We represent
(meta)data of Electronic Medical Records (EMRs) using
graphs which express disorders and treatment priorities
of patients. Then, our similarity approach is used to find
mental health EMRs having similar (meta)data graphs to
a given query. To provide patient privacy and security for
health records as well as (meta)data, different technological
safeguards as well as policies could be used [8]. In addition,
using (meta)data could act as an extra level of privacy,
as for extracting some statistics or trend, information in
(meta)data itself is enough. Also, in retrieval applications,
only records related to the ranked results would be retrieved
not all records.

The rest of the paper is organized as follows. Section II
explains our similarity approach. Section III focusses on an
application of the proposed approach in the e-Health domain.
Section IV concludes the paper.

II. COMBINED STRUCTURE-WEIGHT GRAPH
SIMILARITY

In this section, graph representation and the architecture
of the combined structure-weight similarity approach are
presented. The theoretical basis of the proposed weight
similarity is explained and the characteristics of the weight
similarity are mentioned. A recursive weight similarity al-
gorithm and the computational experiments on a synthetic
dataset are presented.

A. Approach

Graph Representation: As stated earlier, we assume that
we are given a set of records, with each record having
an associated (meta)data represented as a graph. Note that
all graphs throughout this paper are single-rooted wDAGs.
All graphs are hierarchical as concepts can be represented
using sub-concepts having different importance. The root
vertex carries a class label, which types the main object.
This object is further described by the labeled weighted
edges leading to other labeled vertices of the graph, etc.
Labels on outgoing edges from each given vertex are unique
and appear in lexicographic (alphabetical) left-to-right order.
Also, edge weights are values in the real interval [0, 1] and
for each graph its edge weights normalized; therefore, the
sum of weights for all outgoing edges from each vertex
equals 1. Further, we assume that given a query graph,

a ranked list of the matching graphs is required to be
constructed. Subsequently, these ranked (meta)data graphs
are used to look up corresponding records. The computed
weight similarity values should be comparable, therefore
(similar to [1]) our graphs have to conform to the same
standard schema.

Architecture: The proposed similarity approach has three
modules: the structure similarity evaluation module, the
weight similarity evaluation module, and the integration
and ranking module (see Figure 1). We have a set of
graphs G = {G1, G2, G3, · · · , Gn}, which represents the
(meta)data for a set of records. Both number of vertices
and edges are assumed to be finite. Given a graph G′,
the structure similarity of G′ with each member of G is
calculated using the recursive graph similarity algorithm
proposed in [2]; here G′ may represent a query. The struc-
ture similarity algorithm is iterative. The given graphs are
traversed from their roots to their leaves (top-down) and
then their similarity is computed bottom-up. The structure
similarity values and weight similarity values are in the
real interval [0, 1]. The weight similarity evaluation module
matches each member of G with G′; then it calculates the
edge-weight similarity value. Figure 1 shows the architecture
of the similarity approach where G and G′ represent a
set of graphs and a given query graph being matched,
sSim(G, G′) denotes their structure similarity values, and
wSim(G, G′) expresses their weight similarity values.

Structure Similarity
Evaluation Module

Weight Similarity
Evaluation Module

Integration
and

Ranking
Module

G

G′

input1

input2
input1

input2

rankedList[G]

sSim(G,G′)

wSim(G,G′)

Figure 1: Proposed Combined Structure-Weight Similarity
Architecture

The structure similarity values and weight similar-
ity values of G and G′ are inputs to the integra-
tion and ranking module. After receiving the similarity
pairs [sSim(Gi, G

′), wSim(Gi, G
′)] for all graphs i =

{1, 2, 3, · · · , n} in set G, the integration and ranking module
ranks the graphs in G based on the structure similarity
and weight similarity. Structure and weight similarity values
could be combined with different approaches. Here, we
consider weight similarity as the secondary criterion in
ranking of graphs. As a result, G1 could appear before
G2 (G1 � G2) in the ranked list if and only if structure
similarity value of G1 to G′ (the query) is greater than the
structure similarity value of G2 to G′; or the difference
between their structure similarity is less than or equal to
a threshold while the weight similarity value G1 to G′ is
greater than the weight similarity value of G2 to G′. Thus,
(a) G1 � G2 if and only if [sSim(G1, G

′) >
sSim(G2, G

′)], or [|sSim(G1, G
′)− sSim(G2, G

′)| ≤



Threshold and wSim(G1, G
′) > wSim(G2, G

′)].
(b) G1 � G2 or G2 � G1 if [|sSim(G1, G

′) −
sSim(G2, G

′)| ≤ Threshold and wSim(G1, G
′) =

wSim(G2, G
′)]

In this paper, we consider the threshold equal to 0. For
each graph, we keep a count of the number of edges,
assigning a unique integer j to each edge, starting from
1 in top-down (root to leaf) and left-to-right order. As a
result, each edge is represented by ej , j ε {1, 2, 3, · · · , z},
considering z as the total number of edges in a graph. As
all edges are directed, the source vertex u and the destination
vertex v of each edge ej can be represented as an ordered
pair (u, v). Also, the weight of edge ej is represented
as w(ej). The edge ej in graph G and the edge ej′ in
graph G′ are called corresponding edges if and only if they
have identical edge labels as well as identical source vertex
labels and destination vertex labels. The relation between
corresponding edges ej and ej′ is denoted as ej

.
= ej′ .

Consider du as the depth of vertex u. In our graphs, du
and du′ are equal for two corresponding edges ej and ej′ .

B. Weight Similarity

In the proposed weight similarity approach, the similar-
ity of weights related to two corresponding edges can be
calculated based on two similarity measures [9], viz. Man-
hattan distance, Equation 1, or Min/Max similarity measure,
Equation 2, as given below:

weSim1 = 1− |w(ej)− w(ej′)| (1)

weSim2 =
min(w(ej), w(ej′))

max(w(ej), w(ej′))
(2)

The importance of each edge can be considered to be a
function of the depth of its source vertex. As stated earlier,
the root vertex carries a class label, which types the main
object; therefore, the outgoing edges from the root have
the highest importance. This importance decreases as the
depth of the source vertex of the edge increases. Similarly,
contribution of the weight similarity of two corresponding
edges in weight similarity of two graphs depends on the
depth of the source vertex related to corresponding edges.
The coefficient for adjusting the contribution of edge weight
similarity needs to decreases as the depth of the source
vertex of corresponding edges increases. One approach for
defining this coefficient is using an exponential function with
D as the fixed base and d + 1 as the variable exponent.
Therefore, in this paper, the adjustment coefficient is ex-
pressed as Dd+1. If p enumerates the pairs of corresponding
edges in depth d and md (md ≥ 0) denotes the number of
corresponding edges in depth d, the weight similarity value
of graphs is expressed using Equation 3. In this equation,
each edge similarity value is multiplied by Dd+1, in which
D is the global depth degradation factor (D ≤ 0.5) and d is
the depth of the source vertex of the edge. 0 ≤ d ≤ dmax,

where dmax is the maximum possible depth of the source
vertex of corresponding edges in two graphs.

Sim =

dmax∑
d=1

(

md∑
p=1

weSimp ·Dd+1) (3)

As the similarity of weights, numbers in the real interval
[0, 1], related to two corresponding edges is calculated
using the Manhattan distance (Equation 1) or the Min/Max
similarity measure (Equation 2), the similarity value of a
pair of weights weSimp, p ε {1, 2, 3, · · · ,md} is in interval
[0, 1]. Also d, which is the depth of the source vertex related
to an edge, could be a value larger than or equal to 0. As a
result, Dd+1 is a positive number. Thus, the summation of
(weSimp · Dd+1) for all corresponding edges could result
in a value larger than 1 and therefore Sim could be greater
than 1. In order to express the graph similarity as a value
in real interval [0, 1], the combined edge weight similarity
values (viz. Sim) is normalized by the sum of the Dd+1

used in various iterations of the recursive weight similarity
algorithm. Starting from the first level in graphs, each time
a pair of weights is compared, the related depth factor is
added and this process is repeated for all levels of graphs.
The normalization factor denoted by F is expressed as,

F =

dmax∑
d=1

(

md∑
p=1

Dd+1) (4)

Thus, the normalized weight similarity of two graphs
(wSim) is given as,

wSim =
Sim

F
, (5)

which lies in real interval [0, 1]. The global depth degrada-
tion factor (D) could be equal to 1. In this case, the proposed
similarity approach gives the same importance to the weight
similarities of various levels of the graphs and the arithmetic
mean of the weight similarity values is calculated. Therefore,
the result of such a calculation is identical to considering
the weight similarity of all attributes having the same effect
on the weight similarity of two graphs. This approach
results in a linear trend of similarity values. In Equation
6, mtotal denotes the number of corresponding edges in
total. weSim1(w(ej), w(ej′)) is the similarity of weights
related to two corresponding edges based on the Manhattan
distance, while wSim is the global weight similarity of two
graphs based on the Manhattan distance. The same relation
holds when the weight similarity is calculated based on the
Min/Max similarity measure as well.

wSim = (1/mtotal) ·
mtotal∑
k=1

(weSim1(w(ej), w(ej′))) (6)

The weight similarity also has the following characteristics:
(a) The similarity value generated by the weight similarity



approach is a non-negative number. The minimum similar-
ity value equals 0. (b) The weight similarity of a graph
to itself is 1.0. The similarity of each pair of weights
weSim(w(ej), w(ej′)) is 1.0. Therefore, Sim has the same
value as F and as a result the weight similarity of two
graphs (i.e., wSim) is equal to 1.0. (c) The weight similarity
measure is a symmetric function, as the order of pair of
graphs does not affect the result of the computation of
weight similarity. (d) The weight similarity like many other
similarities does not obey triangular inequality. The weight
similarity measure is a partial matching approach as only the
weights related to the corresponding edges are compared.

C. Algorithm

Algorithm 1, which calculates the weight similarity of two
graphs based on Manhattan distance, is represented in Figure
2.

1: procedure WSIMILARITY(G, G′)
2: if G or G′ only contains a single vertex then
3: return 0
4: end if
5: if G.root.label 6= G′.root.label then
6: return 0
7: else
8: d← root(G).depth
9: k ← 1

10: k′ ← 1
11: while k ≤ G.root.outDegree

∧ k′ ≤ G′.root.outDegree do
12: ej ← G[k].root.edge
13: e′j ← G′[k′].root.edge
14: if ej

.
= ej′ then

15: F ← F +Dd+1

16: weSim← (1− |w(ej)− w(ej′)|)
17: Sim← Sim+ weSim ·Dd+1

+ wSimilarity(G.subgraph(ej),
G′.subgraph(ej′))

18: k ← k + 1
19: k′ ← k′ + 1
20: else if ej � ej′ then
21: k ← k + 1
22: else
23: k′ ← k′ + 1
24: end if
25: end while
26: wSim← Sim/F
27: return wSim
28: end if
29: end procedure

Figure 2: Algorithm 1. Weight Similarity of two Graphs
based on Manhattan Distance

Algorithm 1 (see Figure 2) gives the weight similarity
algorithm, which traverses two input graphs G and G′ in
a left-right depth-first strategy. The parameter of the algo-
rithm is D, which represents the global depth degradation
factor. Here we assume that D is equal to 0.5; however, a

learning component could be used to adjust the parameter.
Considering graphs G and G′ as the inputs of the algorithm,
G.subgraph(ej) denotes the sub-graph rooted at destination
vertex of ej in graph G. G.root.label, G.root.inDegree,
and G.root.outDegree represent vertex label, in-degree,
and out-degree of the root of graph G, respectively. Also,
ej � ej′ represents that ej could appear before ej′ in
a lexicographic ordered list. weSim is the similarity of
weights related to two corresponding edges. root(G).depth
is a function which gives the depth for root of graph G
relative to the root of the original graph. The output, wSim,
is the weight similarity value of G and G′.
The proposed weight similarity algorithm traverses two
given graphs in a top-down (root-leaf) order to compute the
edge-weight similarity of the graphs. If two edges being
traversed are corresponding edges, their weight similarity is
calculated using Equation 1 or 2. Two pointer variables, k
and k′, indicate the positions of two outgoing edges being
matched. If ej � ej′ , k is set to point to the next outgoing
edge in G, while if ej′ � ej , k′ would be increased to
point to the next outgoing edge in G′. If ej

.
= ej′ , k and

k′ are set to point to the next outgoing edges in G and G′,
respectively. The loop is terminated as soon as any one of
the following conditions is met: k > G.root.outDegree or
k′ > G′.root.outDegree.
The algorithm is recursive, so the base case and recursive
case should be defined. The base case is where the problem
can be solved directly, while in the recursive case the prob-
lem is expressed as subproblems that are closer to the base
case [10, pp. 228]. In this algorithm the base of the recursion
is where G or G′ only contains a single vertex (Algorithm
1, lines 2-4) or if G.root.label 6= G′.root.label (Algorithm
1, lines 5-6). In both cases, their weight similarity is 0. The
algorithm is tail recursive, i.e., the recursive invocation is
the very last thing which is performed [10, pp. 245]. In
the recursive case, the algorithm recursively invokes itself
using the roots of two sub-graphs of G and G′ as arguments
(Algorithm 1, line 17).
As stated earlier, the labels of outgoing edges from each
vertex are arranged in the lexicographic order. Also, two
pointers indicate the positions of two edges being matched.
Using these features, the time complexity of the algo-
rithm is improved. If G or G′ only contains a single
vertex or G.root.label 6= G′.root.label for the roots
of two graphs, then the algorithm sets the weight sim-
ilarity directly to 0 without any further computation; If
G.root.label = G′.root.label, the algorithm uses one loop
(Algorithm 1, line 11) to find the corresponding edges.
For two graphs, consider t, t ε {1, 2, 3, · · · , r}, in which
r equals to the total number of pairs of matched non-leaf
vertices. When matching all outgoing edges of a pair of
vertices, three cases should be considered: (i) If ej � ej′

or ej
.
= ej′ , for all values of k and k′, the number

of iterations equals to IG
t = G.root.outDegree, (ii) If



ej′ � ej , for all values of k and k′, the number of
iterations is equal to IG′

t = G′.root.outDegree, and
(iii) If only for some values of k and k′, ej � ej′ or
ej

.
= ej′ , the number of iterations to find the corresponding

edges is in the interval [min(IG
t, IG′

t),max(IG
t, IG′

t)].
The number of iterations for finding all corresponding
edges in graphs, I , equals to the summation of itera-
tions performed for each pair of vertices; I is in interval
[
∑r

t=1 min(IG
t, IG′

t),
∑r

t=1 max(IG
t, IG′

t)]. In the worst
case, I =

∑r
t=1 max(IG

t, IG′
t)], and therefore the com-

plexity of the algorithm is Θ(
∑r

t=1 max(IG
t, IG′

t)).

D. Computational Experiments

Now, we test the proposed weight similarity algorithm on
a synthetic dataset, in which weights are changed systemati-
cally to understand the effects of structure and weights on the
similarity. The dataset contains graphs structurally identical
to the graphs given in Figure 3, but with different weights.
The graphs are balanced with maximum breadth assuming
branching factor of 2. The dataset contains 29 graphs.
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Figure 3: Graph Structure of Metadata in Dataset

In this dataset, we have five possible values for a
pair of edge weights: [0.01, 0.99], [0.25, 0.25], [0.5, 0.5],
[0.75, 0.25], or [0.99, 0.01]. In G1 of dataset, weights of all
edges having the same source vertex are [0.01, 0.99]. Now,
we change the edge weights from right to left in a level
and then bottom-up for various levels, exhausting the five
possible sets of edge weight pairs. This results in 29 graphs
in the dataset, of which eight graphs, G1 to G8, are shown
in Table I, where each row represents the weights related to
a graph 1. Enabling a compact specification and description
of the weights, this notation is used to illustrate different
weight values for one graph structure.

Considering this systematic changes in weights, the
weight similarities of G1 in the dataset with respect to
the remaining graphs are expected to decrease gradually.
Therefore, the synthetic dataset provides a starting point for
an evaluation of our weight similarity algorithm.

1The complete dataset is available from authors.

Table I: Edge Weights of a Subset (G1 to G8) of 29
Graphs (G1 to G29) with the Structure given in Figure 3

((a)) Weights of Edges e1 to e7

Graph w(e1) w(e2) w(e3) w(e4) w(e5) w(e6) w(e7)
G1 0.01 0.99 0.01 0.99 0.01 0.99 0.01
G2 0.01 0.99 0.01 0.99 0.01 0.99 0.01
G3 0.01 0.99 0.01 0.99 0.01 0.99 0.01
G4 0.01 0.99 0.01 0.99 0.01 0.99 0.01
G5 0.01 0.99 0.01 0.99 0.01 0.99 0.25
G6 0.01 0.99 0.01 0.99 0.25 0.75 0.25
G7 0.01 0.99 0.25 0.75 0.25 0.75 0.25
G8 0.25 0.75 0.25 0.75 0.25 0.75 0.25

((b)) Weights of Edges e8 to e14

Graph w(e8) w(e9) w(e10) w(e11) w(e12) w(e13) w(e14)
G1 0.99 0.01 0.99 0.01 0.99 0.01 0.99
G2 0.99 0.01 0.99 0.01 0.99 0.25 0.75
G3 0.99 0.01 0.99 0.25 0.75 0.25 0.75
G4 0.99 0.25 0.75 0.25 0.75 0.25 0.75
G5 0.75 0.25 0.75 0.25 0.75 0.25 0.75
G6 0.01 0.25 0.75 0.25 0.75 0.25 0.75
G7 0.01 0.25 0.75 0.25 0.75 0.25 0.75
G8 0.25 0.75 0.25 0.75 0.25 0.75 0.25

Figure 4 depicts the similarity values of G1 for the
synthetic dataset with the remaining graphs using the graph
similarity algorithm in [2] as well as our combined structure-
weight similarity algorithm (using the similarity measure
based on the Manhattan distance).
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Figure 4: Similarity of G1 to 29 Graphs in the Dataset

While similarity values based on the previous graph
similarity algorithm [2] are always equal to 1, our com-
bined structure-weight similarity approach differentiates the
structurally identical graphs with different weights. Also,
Figure 4 gives a comparison of the two similarity measures,
the similarity measure based on the Manhattan distance and
the Min/Max similarity measure. Here again we compute
the similarity w.r.t. G1. For the depth degradation factor
equal to 0.5 and for the same set of weights for a dataset,
both similarity measures generate similarity values with a
decreasing trend. It is important to note that for Figure 4, the
similarity decreases as a result of the systematic change of
weights of edges (having the same source): gradual increase
of the edge weight for the left vertex and gradual decrease
of the edge weight for the right vertex. The bumps in the
similarity plots (e.g. at G8, G15, and G22) are observed as
the result of level transitions, i.e., the systematic changes of
weights in each level of the graph.



We have given above the computational results for the
similarities of members of a dataset. We can generalize
the behavior of the similarity computation to other possible
graph structures such as trees [1], and generalized trees [11],
and conclude that the proposed weight-similarity algorithm,
with any one of the similarity measures, is effective in
differentiating graphs having identical or nearly identical
structure similarity values (but different weights). Weight
similarity considers only weight of common subgraphs of
two graphs being compared, while structure similarity takes
into account common as well as uncommon subgraphs.
Therefore, two graphs could be similar from weight sim-
ilarity perspective, while their uncommon sub-graphs are
large (i.e. small structure similarity). Note that although the
numerical similarity values of the two similarity measures
are different, they result in the same relative ranking of
the graphs for the given query. Since there is no universal
benchmark for evaluating similarity [12], it is not possible
to select or recommend one of the similarity measures over
the other and both similarity measures could be used for the
purposes of relative ranking.

III. E-HEALTH APPLICATION: MENTAL HEALTH
ELECTRONIC MEDICAL RECORD

Group therapy is used as a treatment option for drug
abusers [13, pp. 577-620]. Newcomers should be placed in
groups with at least one or two similar members. Open group
membership in which new members are allowed to enter
as others leave is the norm [14, pp. 262-273]. Therefore,
retrieving similar mental health EMRs to select patients for
group therapy is a challenging task. This selection should be
based on the gathered dynamic, behavioral, and diagnostic
information in a screening interview [15, pp. 934]. Consider
the scenario where the user (e.g., a psychologist) wants to
find an appropriate group for a new patient in order to
schedule group therapy sessions. In this case, mental health
EMRs that describe similar disorders as well as treatment
priorities should be found. Each (meta)data expresses the
individualized treatment plan about patient’s disorders and
the treatment priorities based on the last psychological
evaluation. Similar to [2], we represent the attributes of each
(meta)data using a graph based on a standard schema. The
attributes of this schema are extracted from [15], [16], and
the terms representing the (meta)data are based on DSM IV
[16]. The attributes express possible affective, behavioral,
and cognitive problems of a patient. The edge weights in
graphs represent the relative priority regarding treatment
of each disorder in the group therapy session. Therefore,
severe, influential, and dangerous disorders as well as the
items for which treatments have the greatest benefit have
higher priority (i.e., higher weight) in our treatment-oriented
(meta)data. As treatment priorities change over time, edge
weights could be different in each evaluation phase by the
psychologist. In order to select patients for group therapy,
in the proposed system the edge weights of (meta)data are

always related to the last psychological evaluation of patients
(available in the mental health records). Figure 5 illustrates
the generic structure of (meta)data of mental health EMRs
in the database as well as a query having the same structure.

Mental Health EMR

Affective Set
Behavioral Set

Cognitive Set

Panic Disorder

Anorexia Nervosa

Aggression Set
Cocaine Intoxication

Physical

e1

e2

e3

e4

e5
e6

e7

e8

e9 e10

Figure 5: Graph Structure of a Query and Metadata of
Mental Health EMRs

Table II represents the edge labels of the generic structure
(in Figure 5), in which l(ej) denotes the label of edge ej ,
j ε {1, 2, 3, · · · , 10}. The patients have panic disorder and
also delirium due to cocaine intoxication. Other disorders
of the patients are anorexia nervosa and physical aggression
including fantasies and real acts [15, pp. 421].

Table II: Edge Labels of a Query and Metadata Graphs
(having the Structure in Figure 5) for Mental Health EMRs

l(e1) Affective disorders l(e6) Aggression
l(e2) Behavioral disorders l(e7) Delirium
l(e3) Cognitive disorders l(e8) Substance induced panic
l(e4) Anxiety l(e9) Real act
l(e5) Appetite disorder l(e10) Fantasies

Edge weights of four EMR (meta)data, representing the
diagnosis segment of a mental health EMR, and a query are
illustrated in Table III. Note the different last subscripts for
the two edges emanating from the Aggression vertex and
terminating at the same Physical destination vertex. Further,
there are three edges from the root vertex.

Table III: Edge Weights of a Query (G′
1) and four

Metadata Graphs (having the Structure in Figure 5) for
Mental Health EMRs

Graph w(e1) w(e2) w(e3) w(e4) w(e5) w(e6) w(e7) w(e8) w(e9) w(e10)
G′

1 0.01 0.01 0.98 1.0 0.01 0.99 1.0 1.0 0.01 0.99
G1 0.01 0.01 0.98 1.0 0.01 0.99 1.0 1.0 0.01 0.99
G2 0.5 0.25 0.25 1.0 0.25 0.75 1.0 1.0 0.25 0.75
G3 0.4 0.3 0.3 1.0 0.5 0.5 1.0 1.0 0.5 0.5
G4 0.3 0.35 0.35 1.0 0.75 0.25 1.0 1.0 0.75 0.25

Now we compare the similarity of query with the four
(meta)data graphs G1, G2, G3, and G4 of the EMRs given
in Tables II and III using the combined structure-weight
similarity algorithm. The computed similarity values are
given in Table IV. The structure similarity values between



query G′ and any of four (meta)data graphs are identical;
therefore, we cannot distinguish between them using the
structure similarity alone. The edge weight similarity results
using the proposed algorithm are also shown in Table IV.

Table IV: Computational Results for the Metadata of
Mental Health EMRs and the Query in Table III

Graph Graph Structure
Similarity

Manhattan
Approach

Min/Max
Approach

Rank

G′ G1 1.0 1.0 1.0 1
G′ G2 1.0 0.6834 0.3762 2
G′ G3 1.0 0.6356 0.3492 3
G′ G4 1.0 0.5878 0.3249 4

We can clearly see that the similarities are different and
they can be used to rank four (meta)data graphs. Further,
both similarity measures (see columns 4 and 5 in Table IV)
are equally acceptable as they result in the same relative
ranks. Instead of ranked graphs based on their similarity to a
given query, the proposed approach could cluster the mental
health EMRs based on a threshold to facilitate creation of
supportive virtual communities, which is one of the main
goals of Health 3.0 [17].

IV. CONCLUSION

Our combined structure-weight similarity approach is able
to distinguish graphs having identical or nearly identical
structure but different weights. By considering the weight
similarity in addition to the structure similarity, preferences
of user are compared with the preferences expressed as
edge weights of graphs stored in dataset. The similarity
of edge weights is calculated in a recursive way, giving
more importance to weights of edges in higher levels of a
graph. The combined structure-weight similarity algorithm
has been implemented in Java and it has been applied to
retrieve mental health electronic medical records (EMRs).
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