
A Framework for Web-based Interoperation among

Business Rules

Yevgen Biletskiy

Department of Electrical and Computer Engineering

University of New Brunswick

Fredericton, Canada

biletski AT unb.ca

Abstract—The present paper describes the approach and two

technical solutions for interoperation between business rules

represented in various formats. The Semantic Web techniques

are used to enable this interoperation. One of the interoperation

methods uses the Java Interoperation Object (JIO) described in

the context of Positional-Slotted Language (POSL), which a

human-friendly variant of the Rule Markup Language

(RuleML), and Notation 3 (N3) representations. Details of the

connections between these document representations are

demonstrated with the use of query-based interoperation

between POSL and N3. Another solution described in the

present paper is conversion of business rules stored in Microsoft

Excel as decision tables into POSL using OpenL tablets.

Although the current business rules interoperation framework

involves three formats (Excel, POSL, and N3), it can be extended

to other document representations through appropriate

conversions of data in rule bases and queries.

Keywords— Knowledge Representation, XML, RDF, Notation

3, Positional-Slotted Language, Rule Markup Language, Semantic

Web, Query

I. INTRODUCTION

Business rules are becoming ubiquitous in modern industry
and are usually created, stored, and maintained by business
analysts, knowledge engineers and software engineers in
various formats. Some formats are technical, and some formats
are non-technical and more user-friendly. Classically, business
rules are logic constructs (e.g. “IF-THEN” type), and they are
often represented using decision tables or decision trees.
Technically, business rules can also be implemented using a
programming language like C or Cobol, or by the use of a
controlled English. There are many specific solutions for
creation and maintenance of business rules. For instance,
Microsoft Excel tables can be deployed as a user-friendly way
to build documents representing decision tables. Systems like
Drools provide excellent platforms to build and maintain more
complex business rules. There are some standards for business
rules representations. The most known is the Semantics of
Business Vocabulary and Business Rules (SBVR) [1] adopted
by the Object Management Group (OMG). With the wide
proliferation of the Semantic Web techniques, some new
languages for business rules representation appeared, for
instance, Rule Markup Language (RuleML) [2], Positional-

Slotted Language (POSL) [3] and Notation 3 (N3) [4]. These
and other Web-based techniques can be integrated with the
purpose to find better business solutions based on information
stored in different rule bases accessible through Internet. The
purpose of the present work is to enable semantic
interoperability between business rules created in various
formats.

II. THE FRAMEWORK

The resented approach to interoperation is based on

semantic interoperability using a mediator, which can convert

business rules among various knowledge representations. The

software mediator can process and interpret business rules

stored in various formats, as well as convert a query

formulated in any of these formats to search an answer in all

rule bases connected. This will assist clerks, brokers,

managers, and other specialists in finding better business

solutions and decision-making.

Since business rules become Web-based, the modern

solutions for interoperation can be deployed. The solutions

presented in this work use the Sematic Web infrastructure and

related tools. The Semantic Web offers solutions allowing to

semantically enriching business rules using a background

ontology, which serves as a knowledge base (or vocabulary).

On the other hand, the disadvantage of creating and

maintaining business rules in a Semantic Web language is that

rules are difficult for human understanding. Even POSL,

which is more human-oriented than RuleML, is difficult for a

non-specialist to understand. The focus of the present work is

query-based interoperation between two Semantic Web based

languages: POSL and N3, and conversion of business rules in

MS Excel format into POSL. The focused interoperation

framework is presented in Fig. 1.

The framework presented in Fig. 1 consists of the

following main components:

1. POSL rule base, which consists of business rules and facts

in the POSL format. rule base, which consists of rules and

facts in the N3 format.

2. MS Excel database, which contains rules and facts in the

user-friendly format.

3. JIO (Java Interoperation Object), which The Java

Interoperation Object is the basis of interoperation

methods developed for the Knowledgebase Representation

Interoperation Tool (KRLIT) described technically in [5].

The objective of KLIRT is to facilitate interoperation

among existing knowledge representation paradigms

through a universal Java-based architecture, which used

RuleML as a building block. The current KRLIT has been

successfully developed and used for query-based

translation between POSL and N3 knowledge bases.

4. Excel – POSL converter is presented in [6]. POSL can be

generated from Excel decision tables. Before this, it is

necessary to identify and extract the facts and rules

contained within the tables. OpenL Tablets [7] provides an

API that facilitates simple creation and processing of Java-

based tables in Microsoft Excel. While OpenL itself has a

rule engine capable to process these decision tables, this

engine does not offer semantic enrichment with a

background ontology and application-independence. As a

result, OpenL is used solely for its ability to process Excel

tables and externalize Java code from the application logic.

The OpenL table parser uses templates to extract the

relevant information (data and rules) from the decision

tables into memory, where it can generate semantically

rich POSL.

5. Reasoning engines: OOjDREW [8] for RuleML/POSL and

Euler for N3.

6. Parsers – to syntactically analyze business rules in POSL

and N3, and convert them into the JIO format.

7. Reverse parses – to convert business rules from JIO format

into a format required by the user.
In the present framework, the user can query the knowledge

bases using POSL or N3 formats, and receive the answer in the
same format as query.

III. JIO, POSL AND N3

The technical details of JIO (Java Interoperation Object)

architecture and the use of JIO within the KRLIT are

explained in [5]. The Java Interoperation Object is the basis of

methods for business rules interoperation. The objective of

this component is to capture as many aspects of the various

knowledge representation paradigms available. This concept is

used to translate supported POSL and N3 rule bases. JIO uses

atoms to represent chunks in a rule base (e.g. for POSL this is

a relation, for N3 this is a subject).

POSL provides object-centered instance descriptions via

binary properties, taxonomies over classes and properties,

class-forming operations and class/property axioms, and

derivation, integrity, transformation, and reaction rules [3].

POSL is a more human-readable language than the XML-

based RuleML [2], but has the same language constructs.

POSL has two representation paradigms which it can use,

depending on what the user requires. The first of which is

positional; this means that slots are not used to represent

relation contents. The second option is slotted; this means that

property names are associated with every element in a

relation. The latter best suits our JIO framework, and so this

paradigm has been chosen.

Notation 3 is a compact, rule-extended version of RDF's

XML syntax [4]. In this way, RDF’s complex machine

understandable language becomes more readable to humans.

RDF facts and rules are still written with triples (subject –

property - object) and so this language is expressive in nature,

but also good for human comprehension.

In order to deal with any input and fetch the answers from the

available Knowledge, the system should re-present this input

in order to convert it to intermediate JIO representation

(RuleML building blocks) which from-and-to the system can

POSL Answer

Figure 1. Focused Business Rules Interoperation Framework

Conversion Rules
N3 Rule Base

Ontology

OOjDREW

Parsers

POSL Rule Base

JIO

 Reverse Parsers
Euler

Excel Rule Base
Excel-POSL

Converter

POSL Query

N3 Query

N3 Answer

be interoperated to the target language. The interoperation

process using the JIO representation can be done by

implementing Parser and ReverseParser.
The main goal of Parser is to take a query or answer of a

query of a language from a File, URL or as a String in the form
of InputObjectCollection, and then parses it (breaks down) to
RuleML building blocks, which will compose a single
AtomCollection as JIO representation in order to provide it to
ReverseParser as input. Similarly, ReverseParser takes this
JIO AtomCollection as input and reverse parses it (translates) to
the target language as output with option of returning the result
as an answer or query. Details of parser’s implementation are
presented in [5].

IV. INTEROPERATION BETWEEN POSL AND N3 BUSINESS

RULES

The present work describes POSL-N3 interoperation using

an example of an insurance company Farm Insurance and two

on-line insurance brokers, which are insurance companies

Mainland Insurance and Healthy Life. The companies use

different knowledge representation languages, but use the

same schema for their facts and rules. Assume the Farm

Insurance has a business rules set describing automobile

insurance Age-Class discounts as follows:

Age From Age To Customer Class
Discount

Value

16 20 Economic 0.0

21 25 Economic 0.1

26 30 Economic 0.2

16 20 Gold 0.2

21 25 Gold 0.3

26 30 Gold 0.4

16 20 Platinum 0.5

21 25 Platinum 0.6

26 30 Platinum 0.7

This rule base is not accessible by individual users because it

is not Web-based, but can be accessed by insurance brokers

through some internal communications.

Mainland Insurance focuses primarily on Economic-

class customers, and prefers to use an N3 knowledge base as

follows (policy for providing a discount of 10% to an

Economic customer who is between the age of 21 and 25):

{ ?Client

 :type :client;
 :clientID ?ClientID;
 :age ?Age;
 :name [:type :fullname; :first ?FName; :last ?LName];
 :class ?b.
?Age math:notLessThan 21 .
?Age math:notGreaterThan 25 .
?b log:equalTo :Economic. }
=>
{?resultDiscount
:type :Discount;

:company :MainlandInsurance;
 :clientID ?ClientID;
 :age ?Age;
 :class ?b;
 :discount 0.1.}.

Healthy Life focuses on Gold and Platinum-class

customers, and prefers to use a POSL knowledge base as

follows (policy for providing a discount of 20% to a Gold

customer who is between the age of 16 and 20):

Discount(company->HealthyLife; clientID->?ClientID; age-> ?a:Integer;
 class-> ?b;discount-> 0.2:Real) :-
 client(clientID->?ClientID;age->?a:Integer;
 name->fullname[
 first->?FName;
 last->?LName];
 class-> ?b),

 greaterThanOrEqual(?a, 16 : Integer),
 lessThanOrEqual(?a, 20 : Integer),

 equal(?b, Gold).

Suppose the customer is familiar with POSL only, but

wants to find discount policies of both insurance brokers. The

query is:

Discount(company->?All; clientID->?clientID; age->?age;
 class-> ?b;discount->?discount).

If business rules interoperation is not enabled, the only

Healthy Life database is accessible. During query processing

time, this query is transformed by POSL parser into JIO, and

the N3 reverse parser class accepts the transformed query as

input. This provides the N3 representation of this POSL query

as follows:

 ?subject

 :type :Discount;
 :company :MainlandInsurance;

 :clientID ?ClientID;
 :age ?Age;
 :class ?Class;

This query in POSL is given to OOjDREW, whose answers

are returned in POSL. Since now the equivalent N3 query is

available, it can be given to Euler as input, whose answers are

given in N3. The answer is used by N3 parser and stored in

JIO. It is then sent to the POSL reverse parser to generate the

POSL representation of the N3 answers. This answer is

combined with the OOjDREW answer resulting in the

following combined POSL answer:

Discount(company->MainlandInsurance;
 clientID->1:Real;age->19:Real;class->Economic;discount->0.0:Real).
Discount(company->MainlandInsurance;
 clientID->6:Real;age->17:Real;class->Economic;discount->0.0:Real).
Discount(company->MainlandInsurance;
 clientID->2:Real;age->22:Real;class->Economic;discount->0.1:Real).
Discount(company->HealthyLife;
 clientID->3:Real;age->19:Real;class->Gold;discount->0.2:Real).
Discount(company->HealthyLife;
 clientID->5:Real;age->30:Real;class->Gold;discount->0.4:Real).

Discount(company->HealthyLife;
 clientID->4:Real;age->29:Real;class->Platinum;discount->0.7:Real).

The answer is consistent with the business rules maintained
by the Farm Insurance.

V. INTEROPERATION BETWEEN MS EXCEL AND POSL

USINESS RULES

Assume Healthy Life would like to update its rule base

automatically using data from Excel sheets created by Farm

Insurance. The business rules below need to be converted

from the user-friendly Excel format into POSL:

Age From Age To Customer Class
Discount

Value

16 20 Gold 0.2

21 25 Gold 0.3

26 30 Gold 0.4

16 20 Platinum 0.5

21 25 Platinum 0.6

26 30 Platinum 0.7

Using rule transformation templates, the table was

automatically converted to POSL syntax, parsed, and loaded

into the OO jDREW reasoning engine [8]. Examples POSL

rules derived from the rules above are:

Discount(?a : Integer, ?b : Customer, 0.2 : Real) :-greaterThanOrEqual(?a, 26 :
Integer), lessThanOrEqual(?a, 30 : Integer), equal(?b, Economic : Customer).

Discount(?a : Integer, ?b : Customer, 0.2 : Real) :- greaterThanOrEqual(?a, 16 :
Integer), lessThanOrEqual(?a, 20 : Integer), equal(?b, Gold : Customer).

As a test, the following query was issued to OO jDREW:

Discount(25 : Integer, Gold : Customer, ?discount : Real).

The query asks “what is the discount value for a customer

with age 25 and type Gold?” The results of query, issued using

the OO jDREW Top-Down reasoning engine, are as follows:

?discount = 0.3 of type Real.

The solution presented allows automatically updating the rule
base in POSL using rules created in Excel. A similar solution
can be developed for N3. This allows business analysts to work

with user friendly formats rather than to use heavily human
readable Semantic Web languages.

CONCLUSION AND FUTURE WORK

The present paper has described the business rules

interoperation framework as a solution to the Web-based

interoperation gap issue. The work has focused on

interoperation between business rules created in two different

Semantic Web languages. The usage examples have been

presented. The second focus of the paper is a methodology to

partially automate the process of converting human-readable

business rules stored in the form of MS Excel tables to

machine-processible POSL, with the goal of combining the

ease of use of Excel-based rule tables with the semantically-

rich queries supported by reasoning engines. Although the

work in current state covers Excel, POSL and N3 formats

only, it can extend to other business rules representations.

ACKNOWLEDGMENT

The present work includes business rules interoperation
techniques which had been implemented as part of students’
projects conducted at the University of New Brunswick under
supervision of the author. The students were Girish R
Ranganathan (Dr. Ranganathan now), J Anthony Brown,
Taylor Osmun, and Patrick Thébeau. The main funding sources
for this work are NSERC Discovery Grant and ACOA AIF.

REFERENCES

[1] SBVR. Available: http://www.omg.org/spec/SBVR/1.0/

[2] H. Boley, The RuleML Family of Web Rule Languages, Invited Talk.
Proc. Fourth Workshop on Principles and Practice of Semantic Web
Reasoning, Budva, Montenegro, LNCS 4187, Springer-Verlag (2006) 1-
15.

[3] H. Boley, POSL: An Integrated Positional-Slotted Language for
Semantic Web Knowledge (2004). Available:
http://www.ruleml.org/submission/ruleml-shortation.html.

[4] T. Berners-Lee et. al. Notation (N3), A readable RDF Syntax. Available:
http://www.w3.org/TeamSubmission/n3/

[5] T. M. Osmun, P. Thébeau, Y. Biletskiy. Knowledgebase Representation
Language Interoperation Tool. In Proc RuleML America, LNCS 7018,
Springer-Verlag (2011) 58-65.

[6] Y. Biletskiy, G. R. Ranganathan, J. A. Brown. Representing User-
Friendly Business Rules in a Semantic Web-Based Format. ISAST
Transactions on Computers and Software Engineering 2(1) (2008) 8-12.

[7] OpenL Tablets, Available: http://openl-
tablets.sourceforge.net/index.html

[8] Ball M., Boley H., Hirtle D., Mei J., and Spencer B. The OO jDREW
Reference Implementation of RuleML. In Proc. Rules and Rule Markup
Languages for the Semantic Web (RuleML-2005), LNCS 3791,
Springer-Verlag (2005) 218–223.

[9] Euler. Available: http://eulersharp.sourceforge.net/

.

