
A Substrate Description Framework and Semantic
Repository for Publication and Discovery in Cloud-

Based Conferencing
Jerry George#1, Fatna Belqasmi#2, Roch Glitho#3, Nadjia Kara*4

Abstract – Cloud computing is an emerging paradigm with three
main facets: Software as a Service (SaaS), Platform as a Service
(PaaS) and Infrastructure as a Service (IaaS). Several benefits
are expected from cloud-based conferencing (e.g. efficiency in
resource usage, easy introduction of new conferencing
applications). This paper proposes a publication and discovery
architecture for the interactions between the substrate
providers, the infrastructure providers, and the broker of a
cloud based conferencing business model.
Keywords—cloud-based conferencing, publication, discovery,
semantic repository, cloud conference ontology.

I. INTRODUCTION

Conferencing is the conversational exchange of media
between several parties. A business model has been recently
proposed for cloud-based conferencing [1]. There are five
roles in the proposed business model: connectivity provider,
broker, conferencing substrate provider, conferencing
infrastructure provider, and conferencing service provider.
Conference substrates are elementary building blocks that can
be virtualized and shared between conferencing applications
for resource efficiency purposes. This paper proposes an
architecture for realizing the interactions between the
substrate provider, the infrastructure provider, and the broker.
The substrates need to be described in a non-ambiguous
manner for publication and discovery purposes from both
technical and business perspectives. Furthermore, a repository
is also required to enable the actual publication and discovery
of the substrates.

Our proposed architecture is made up of a semantic-
oriented description framework for substrates and a
repository for publication and discovery of the substrates. The
description framework is made up of a substrate description
language and cloud-based conference ontology, both of which
should meet ten key requirements.

First, the substrate description framework should be
standards-based. Second, it should enable machine-readable
substrate description. Third, the substrate description
framework should hide the heterogeneity of the substrates and
provide the service interfaces in a uniform manner. Fourth,
the substrate description language and cloud conference
ontology should accommodate both the technical and
business aspects of the conference substrates. Fifth, the

substrate description language should be flexible by
supporting a wide range of data formats.

Sixth, the repository interface for publication and
discovery should be independent of the stored substrates.
Seventh, the interface should be based on existing standard
protocols/APIs. Eighth, to support easy interoperability, the
interface should be flexible in terms of the supported
serialization formats for substrate description. Ninth, the
interface should enable the specification of both technical and
business aspects using standard technologies, while
publishing or discovering the substrates. Tenth, the substrate
repository should provide either an extensible architecture for
adding support for new languages or explicit support for a
chosen description language.

Work has been done on both the substrate description
language [2], [3] and cloud-based conference ontology [4],
[5]. However, none of this related work meets all the
requirements. The next section presents the proposed
architecture, followed by the implementation architecture and
prototype. The final section concludes this paper.

II. PROPOSED ARCHITECTURE

In this section, the overall architecture is presented first,
followed by the substrate description framework, and then the
substrate repository.

A. OVERALL ARCHITECTURE

Figure 1 depicts the overall proposed architecture. The
substrate and infrastructure providers communicate with the
repository via a REST interface. The discovery requests are
described using SPARQL, and are transferred as REST
request content.

The substrate repository uses a semantic data store to save
the substrate descriptions and the cloud conference ontology,
which serves as a reference ontology for the validation of
substrate description documents during publication. The
repository includes a set of supporting components to access,
validate, and manage the substrate description documents and
cloud conference ontology. These components can be
classified into three categories. The first category supports the
validation and the management of the substrate descriptions

#Concordia University, Canada
#1jerry.george@concordia.ca

#2fbelqasmi@alumni.concordia.ca
#3glitho@ece.concordia.ca

*ETS, University of Quebec, Canada
*4nadjia.kara@etsmtl.ca

and it includes the substrate document validator and substrate
classifier.

Fig. 1: Proposed architecture for publication and discovery

The second category is used for the management of the

cloud conference ontology and it consists of the ontology
manager and semantic ontology crawler. The last category
enables efficient discovery of substrates and it contains the
query and ranking engines. The data-format transformation
engine is a supporting component used for both management
and discovery of substrates.
B. SUBSTRATE DESCRIPTION FRAMEWORK

The description framework defines a new cloud-based
conference ontology and reuses OWL as the description
language. The cloud conference ontology consists of three
key constituent ontologies – cloud infrastructure, substrate
description and conference ontologies. The reasoning support
for these ontologies can be supported by OWL-DL reasoners.
It reuses existing ontology (e.g. Linked-USDL) concepts,
which extends to meet the conferencing specifics.

The cloud infrastructure ontology describes the business
aspects of the cloud conferencing infrastructure, such as the
substrate and the infrastructure providers’ information, and
the subscription information (i.e. which infrastructure
provider is subscribed to which substrate). Figure 2 presents
the main concepts and properties that constitute the cloud

infrastructure ontology.

Fig. 2: Cloud Infrastructure Ontology

The conferencing substrates are modelled as Linked-
USDL services, allowing the reuse of the Linked-USDL
models for expressing the pricing (e.g. per user, per month,
etc.) and the constraints information. Linked-USDL allows
constraints specification for both atomic substrates (e.g.
signalling substrate) and composite substrates (e.g. dial-out
audio conference substrate).

The substrate description ontology (Figure 3) describes
the technical aspects of the substrates, such as the interfaces
and the substrate features. The substrate interfaces are
described through the set of operations they encompass, along
with the inputs and outputs of each operation. The operations
are described as per the SA-REST service model, which we
extend in order to support asynchronous substrate operations.
We added a collection of seven properties to define an
asynchronous callback end-point. The substrate features
indicate the other functional features of the substrate (i.e.
other than the interface ones), such as the substrate type (e.g.
audio mixing, signalling). Composite substrates may have
multiple features or capabilities, which are described using an
RDF list. The substrate description ontology provides a
classification for the common conferencing substrate features,

Fig. 3: Substrate Description Ontology

including signalling, mixing, and advanced conference
control features such as floor control and policy management.

The conference ontology gives in-depth information about
the conference and its participants (Figure 4). A conference is
depicted as a composition of a set of substrates. A conference
is also defined as a Linked-USDL resource, to capture the
fact that it is the concrete object that implements the
conferencing service. The participants are described using
three important descriptors – signalling, media and preference
descriptors.
C. SUBSTRATE REPOSITORY

The substrate provider may choose to publish the
substrate description document in any supported RDF
serialization format. Prior to storing a published document,
the substrate repository converts the document into XML
format using the data transformation engine. The substrate
repository then checks the document validity against the
cloud conference ontology and set of inference rules. This
function is handled by the substrate document validator,
which seeks the help of the ontology manager to retrieve the
latest version of the ontology from the semantic data store.
Once the validation is completed, the substrate description
document is stored in the semantic data store. At regular
intervals of time, the substrate classifier indexes the published
documents based on the substrates’ type (e.g. signalling,
mixing, etc.). Indexing periodically instead of after each
publication optimizes the repository resource usage and up
time. For instance, the indexing may be scheduled for periods
when traffic is low, and use the full capacity of the repository
to answer the users’ requests during the busiest period. The
indexing reduces the response time for simple discovery
requests (e,g. those based on substrate type), and it is
performed only when needed. The infrastructure provider can
look for a substrate by providing the criteria required as part
of the request content. The criteria are specified using the
SPARQL specification. Upon receiving the request, the
substrate repository uses the query engine to parse the
SPARQL query and ensures the request is coherent with the

described ontologies. The query engine is then used to
optimize the query using SPARQL re-writing rules for basic
graph pattern (BGP) based on the index generated by the
substrate type classifier. The infrastructure provider may limit
the number of substrates to get in the response, in which case
the ranking engine is used to prioritize the results. The
ranking engine utilizes the multi-criteria decision making
scheme proposed in [6] to rank the substrates based on some
of their characteristics (e.g. latency, availability, and cost).
The description documents of the selected substrates are then
reformatted (if needed) according to the data format (e.g.
XML, JSON, N3) supported by the infrastructure provider.
Such a transformation is performed by the data
transformation engine.

III. IMPLEMENTATION

We first present the implemented prototype, followed by the
performance measurements.

A. Prototype

The prototype consists of a substrate repository with both
publication and discovery interfaces, and a set of
infrastructure and conference substrate providers. The
semantic data store component of the repository is based on
Sesame and the other components are implemented using
Sesame and RDF2Go libraries. Sesame is an open-source
framework for storing and querying RDF data, and RDF2Go
provides an abstraction layer for easier communication with
the Sesame data store. The built-in SPARQL query optimizer
of Sesame is extended to support optimizations based on
BGPs related to substrate types. To support inference and
validation, the Sesame framework’s parser module is used
along with OWLIM1, a family of semantic-based database
management systems. The data transformation engine uses
Apache Any23 libraries for transformation between the RDF
serialization formats. The REST interfaces are implemented
using Jersey, a reference implementation of JSR 311.

To have a near-realistic view of the system execution, we
needed a test bed setup with several dozens of substrates
belonging to different providers, as well as random and varied
constraints. We implemented a benchmarking tool including a
substrate test data generator and a query generator,
representing a set of substrate and infrastructure providers
respectively. Both generators are implemented using Java
concurrency API and can issue varying numbers of parallel
requests to the substrate repository. Some of the existing
benchmarking tools for RDF-based repositories such as
Berlin SPARQL Benchmark2 allow only the benchmarking of
pre-defined use cases with specific sets of product templates.

Two laptops were used to run the prototype. The first one
was used to run the substrate repository, while the second was
used to run the benchmarking tool for publication and
discovery.

1 OWLIM - http://www.ontotext.com/owlim
2

 Berlin SPARQL Benchmark (BSBM) - http:// bit.ly/17RxHHZ

Fig. 4: Conference Ontology

B. PERFORMANCE METRICS
The performance of our prototype is assessed in terms of

time delays for both publication and discovery. The
publication delay measurements were taken for different
numbers of substrate providers, different number of
simultaneous requests, and for the cases where different
numbers of substrates were published prior to the time of
measurements. The discovery delays were measured for two
types of queries: simple and complex. Simple queries are, for
instance, those based only on the substrate type. Complex
queries may include multiple relational criteria (e.g.
capacity>=100 and latency<=1000ms), textual operations
(e.g. textual search for a specific provider or substrate within
a specific region), or ranking criteria (e.g. get an ordered list
of the first 10 recommended audio mixers in Canada). We
also compared the discovery delays of simple queries with
and without optimization to show the added value of the
optimization algorithm.

C. PERFORMANCE RESULTS

Figure 5 shows the results. Each measurement is
calculated as an average of 15 experiments. Figure 5.a

displays the measurements for publishing up to 32 substrates
simultaneously by varying the number of existing substrates
in the semantic data store. As expected, the delays increase
with the number of simultaneous publications as well as the
number of substrates already in the registry. Nevertheless, the
delays remain acceptable considering that the publication is a
one-time operation performed by the substrate providers.

The discovery delay measurements were performed on a
substrate repository containing 100 substrates. The discovery
requests are randomly generated by the benchmarking tool,
according to the chosen request complexity (i.e. simple or
complex). Figure 5.b compares the discovery delays for
optimised and non-optimised simple queries. The results
show that optimization reduces delays by about 7%; this
percentage can be further increased by creating indexes for
frequently-used BGPs, such as substrate provider region.
Complex discovery queries require more processing time and
induce much larger delays compared to simple queries
(Figure 5.c). An optimization solution for such queries is
therefore worth investigation.

IV. CONCLUSION

We proposed a substrate description framework and
semantic repository architecture for cloud-based conferencing
substrates. A proof-of-concept prototype was implemented,
deployed, and successfully tested. The performance results
for the proposed architecture delivers satisfactory results for
publication and discovery of conference substrates. However,
methods for further optimization need to be investigated for
complex queries. Our future work is also directed toward
extending the already-implemented repository architecture to
other providers of the cloud-based conferencing business
model.

REFERENCES
[1] R. H. Glitho, ‘Cloud-based Multimedia Conferencing:

Business Model, Research Agenda, State-of-the-Art’, in 2011
IEEE 13th Conference on Commerce and Enterprise
Computing (CEC), 2011, pp. 226 –230.

[2] R. Kanagasabai, ‘OWL-S Based Semantic Cloud Service
Broker’, in Web Services (ICWS), 2012 IEEE 19th
International Conference on, 2012, pp. 560–567.

[3] Jos de Bruijn and Dieter Fensel, ‘Web Service Modeling
Language (WSML) - W3C Submission’. [Online]. Available:
http://www.w3.org/Submission/WSML/. [Accessed: 18-Jan-
2013].

[4] J. Li and F. Yang, ‘Resource-Oriented converged network
service modeling’, in Communications Technology and
Applications, 2009. ICCTA’09. IEEE International
Conference on, 2009, pp. 895–899.

[5] N. Loutas, E. Kamateri, and K. Tarabanis, ‘A Semantic
Interoperability Framework for Cloud Platform as a Service’,
in Cloud Computing Technology and Science (CloudCom),
2011 IEEE Third International Conference on, 2011, pp.
280–287.

[6] Y. Cui, C. Chen, and Z. Zhao, ‘Web Service Selection Based
on Credible User Recommended and QoS’, in Computer and
Information Science (ICIS), 2012 IEEE/ACIS 11th
International Conference on, 2012, pp. 637–642.

Fig. 5: Performance measurements for substrate repository: a)
publication delays; b) discovery delays for simple queries; c) discovery

delays for complex queries.

