A Substrate Description Framework and Semantic

Repository for Publication

and Discovery in Cloud-

Based Conferencing

Jerry Georg#, Fatna Belgasrif, Roch Glithd®, Nadjia Kar&'

#Concordia University, Canac
#j erry. geor ge@oncordi a. ca
#f bel gasni @l umi . concordi a. ca
#gli t ho@ce. concordi a.ca

Abstract — Cloud computing is an emerging paradigm with thre
main facets: Software as a Service (SaaS), Platforas a Service
(PaaS) and Infrastructure as a Service (laaS). Sena benefits
are expected from cloud-based conferencing (e.g.fiefency in
resource usage, easy introduction of new conferemg
applications). This paper proposes a publication ah discovery
architecture for the interactions between the subsate
providers, the infrastructure providers, and the broker of a
cloud based conferencing business model.
Keywords—cloud-based conferencing, publication, discovery,
semantic repository, cloud conference ontology.

I. INTRODUCTION

Conferencing is the conversational exchange of aedi
between several parties. A business model has teeemtly
proposed for cloud-based conferencing [1]. There fare
roles in the proposed business model: connectpityider,
broker, conferencing substrate provider, confernci
infrastructure provider, and conferencing serviceviger.
Conference substrates are elementary building bldwkt can
be virtualized and shared between conferencingicgifns
for resource efficiency purposes. This paper prepoan
architecture for realizing the interactions betweéme
substrate provider, the infrastructure provided #re broker.
The substrates need to be described in a non-aousgu
manner for publication and discovery purposes friooth
technical and business perspectives. Furthermaspasitory
is also required to enable the actual publicatiot discovery
of the substrates.

Our proposed architecture is made up of a semantic-
oriented description framework for substrates and a
repository for publication and discovery of the stlites. The
description framework is made up of a substraterj@son
language and cloud-based conference ontology, dfatiich
should meet ten key requirements.

First, the substrate description framework shoukl b
standards-based. Second, it should enable maohéuzinle
substrate description. Third, the substrate detsonp
framework should hide the heterogeneity of the sabes and
provide the service interfaces in a uniform mantemurth,
the substrate description language and cloud ceméer
ontology should accommodate both the technical
business aspects of the conference substrated, Fife

and

"ETS, University of Quebec, Canada
*4nadj ia. kara@tsntl.ca

substrate description language should be flexiblg b
supporting a wide range of data formats.

Sixth, the repository interface for publication and
discovery should be independent of the stored matest
Seventh, the interface should be based on existiagdard
protocols/APIs. Eighth, to support easy interopéitsip the
interface should be flexible in terms of the suppdr
serialization formats for substrate description.ntNj the
interface should enable the specification of betthhical and
business aspects using standard technologies, while
publishing or discovering the substrates. Tenth, dhbstrate
repository should provide either an extensible igecture for
adding support for new languages or explicit suppor a
chosen description language.

Work has been done on both the substrate descriptio
language [2], [3] and cloud-based conference ogiold4],

[5]. However, none of this related work meets diet
requirements. The next section presents the prdpose
architecture, followed by the implementation aretitire and
prototype. The final section concludes this paper.

Il. PROPOSED ARCHITECTURE

In this section, the overall architecture is présearfirst,
followed by the substrate description frameworld #ren the
substrate repository.

A. OVERALL ARCHITECTURE

Figure 1 depicts the overall proposed architectditee
substrate and infrastructure providers communieéte the
repository via a REST interface. The discovery esfisl are
described using SPARQL, and are transferred as REST
request content.

The substrate repository uses a semantic datatstsgve
the substrate descriptions and the cloud conferentaogy,
which serves as a reference ontology for the vatidaof
substrate description documents during publicatidine
repository includes a set of supporting componentccess,
validate, and manage the substrate descriptionndents and
cloud conference ontology. These components can be
classified into three categories. The first catggupports the
validation and the management of the substraterigésas

and it includes the substrate document validatdrsarbstrate
classifier.

Conference Substrate Provider Conference Substrate Provider

Substrate Description Substrate Description
Publication |
SUBSTRATE REPOSITORY|
— REST API =
Substrate | Semantic Data-Format
Document Ontoloay Ontology Transformation | ﬁ
_ Validator Manager | Crawler Engine | @
Query Engine : Ranking Engine pubsirate |
| | o
e 8 ENEME Clagsifier | Semantic
y REST APL . - Data Store
Discovery

Substrate Description(s)

Fig. 1: Proposed architecture for publication and dscovery

‘: Conference Infrastructure Provider ‘

The second category is used for the managemerteof t
cloud conference ontology and it consists of théology
manager and semantic ontology crawler. The lastgcay
enables efficient discovery of substrates and ittaias the
query and ranking engines. The data-format transition
engine is a supporting component used for both gemant
and discovery of substrates.

B. SUBSTRATEDESCRIPTIONFRAMEWORK

infrastructure ontology.

ﬁsd]:CompositeService]
,//

dc:crcmm.' [det:publisher] "-w—-i“f :
rdfs:subPropertyOf rdfs:subPropertyOf rdfs:subClassOf
= S
e f_c—loud:cmatnr S o
(gr:BusinessEntity) ‘ (subs:CompositeSubstrate)
. . J— — — 'y
rdfs:subClassOf —€loud:InfrastructureProvider—{ cloud:subscribedTo
<2 R e

~ :lbud:SubstrarePrnvi(i-é} r— usdl:hasProvider
Seddgginin -0

rdfs:subClassOf:

subs:substrateRank |«~—subs:SubstrateDescrip ion
ESbEosaorank 25 o e

subs:Substrate) —rdfs:subClassOf—»(usdl:Service /
R —~ o

Fig. 2: Cloud Infrastructure Ontology

The conferencing substrates are modelled as Linked-
USDL services, allowing the reuse of the Linked-USD
models for expressing the pricing (e.g. per user, month,
etc.) and the constraints information. Linked-USBIllows
constraints specification for both atomic substaie.g.
signalling substrate) and composite substrates (Badrout
audio conference substrate).

The substrate description ontology (Figure 3) dbssr

The description framework defines a new cloud-based the technical aspects of the substrates, sucheamtitrfaces

conference ontology and reuses OWL as the desmmipti
language. The cloud conference ontology consistshigfe
key constituent ontologies — cloud infrastructusepstrate
description and conference ontologies. The reagosupport
for these ontologies can be supported by OWL-Dlisoears.

It reuses existing ontology (e.g. Linked-USDL) cepts,
which extends to meet the conferencing specifics.

The cloud infrastructure ontology describes theirmss
aspects of the cloud conferencing infrastructusehsas the
substrate and the infrastructure providers’ infarorg and
the subscription information (i.e. which infrastiuie
provider is subscribed to which substrate). Fig2ingresents
the main concepts and properties that constituée clbud

(usdl:exposes |—(
dcterms:format

stibs:SubstrateFeatur
Collection

and the substrate features. The substrate interface
described through the set of operations they enesmmlong
with the inputs and outputs of each operation. Gperations
are described as per the SA-REST service modethmive
extend in order to support asynchronous substiageations.
We added a collection of seven properties to defime
asynchronous callback end-point. The substrateurfest
indicate the other functional features of the swbst (i.e.
other than the interface ones), such as the stbdtee (e.g.
audio mixing, signalling). Composite substrates nieayve
multiple features or capabilities, which are ddsedi using an
RDF list. The substrate description ontology pregida
classification for the common conferencing substfaatures,

< \
rdf:itype—— rdf:List)

P Y - -~

pr i
(W skos:Concept
rdfs:subClassOf
rdfs:subClassOf

~_subs:supportsDataformat | _—— 7 (subs:hasFeature|
= (_subs:CompositeSubstrate
/ subs:hasCallBackDataformat | v

subs:isAsynchronous | (~subs:dependsOn

subs:mirrors

- P ——
(sarest:Operation { subs:hasCallBackMethod |

&‘\ subs:hasCallBackResponseCode |

subs:hasCallBackUri |

subs:Substrate

subs:hasCallBackBodyParameter

subs:hasCallBackUriParameter |

(usdl:exposes |
Sty

(dct:license'\

ctag:tagged |

Q;g :T? - _— S E——

P 2 .
(subs:Signalin; rdfs:subClass(R N L
=

\\(/ \
> (subs:SubstrateFeature
(subs:Messagi
b g5 rdfs:subClassOf o

rdfs:subClassOf rdfs:subClassOf

_ gy
(subs:ConferenceManager,

A
rdfs:sul':ClassOf rdfs:subClassOf
1

e B S
subs:FloorControl (subs:PolicyManager

\{ subs:hasBodyParameter

(_subs:hasUriParameter ’j

usdl:Parameter

usdl:hasInterface
Operation

Protocol

AT T PR e JE—_ = ——
usdl:haslnteraction Fw/sdl:lnternctionl’mtoco usdl:hasInteraction

~usdl:Interaction >

-

Fig. 3: Substrate Description Ontology

including signalling, mixing, and advanced confeen
control features such as floor control and poli@gnagement.

The conference ontology gives in-depth informatibout
the conference and its participants (Figure 4)oAference is
depicted as a composition of a set of substraterference
is also defined as a Linked-USDL resource, to aapthe
fact that it is the concrete object that implemetie
conferencing service. The participants are desdribsing
three important descriptors — signalling, media prederence
descriptors.
C. SUBSTRATEREPOSITORY

The substrate provider may choose to publish the
substrate description document in any supported RDF
serialization format. Prior to storing a publishédcument,
the substrate repository converts the document ¥t
format using the data transformation engine. Thiestsate
repository then checks the document validity agdathe
cloud conference ontology and set of inferencestulehis
function is handled by the substrate document atdid
which seeks the help of the ontology manager tderet the
latest version of the ontology from the semantitadstore.
Once the validation is completed, the substratergg®n
document is stored in the semantic data store.efular
intervals of time, the substrate classifier indetkespublished
documents based on the substrates’ type (e.g. [émna
mixing, etc.). Indexing periodically instead of efteach
publication optimizes the repository resource usagd up
time. For instance, the indexing may be schedwegériods
when traffic is low, and use the full capacity bétrepository
to answer the users’ requests during the busiesddoelhe
indexing reduces the response time for simple dmsgo
requests (e,g. those based on substrate type),itais
performed only when needed. The infrastructure igewvcan
look for a substrate by providing the criteria riegd as part
of the request content. The criteria are specifisthg the
SPARQL specification. Upon receiving the requeste t
substrate repository uses the query engine to pHrse
SPARQL query and ensures the request is coherehttiag

owl-unionOf > ;éonf:PolicyDescriptm\'

confihasPolicy rdfs:subPropertyOf

Descriptor | conf:Conference
|- ~Descriptors " |
owl:unionOf

conf:hasC
Descriptors

<

confthasFloor |

_ Descriptor h-dfs:subl’mpcrlyOf
[

conf:hasConferenceld *

= E;)nf:FloorDescriptof p
;/

Conferenceld),dfs:subClassOf . & conf:Urildentifier)

| de:description JTZ‘M@\ (ébnf:l’a{f@
RS o ﬁ7 O

(ﬂiconl':C(mferenceY { conf-hasParticipant |

owl:sameAs
A
\ -

9
rdfs:subClassOf

"c/o/l;;':Partici an;ld
g

rdfs:subClassOf ™
_ t rdfssubClassO

—| conf:hasParticipantld
= -

¢ rdfs:subClassOf.
L1

<§Eﬁs:€ posi

ate ‘ z . |
<R PATatipans rdfs:subClassOf rdfsisubClassOF rdfs:subClassOf

(i g —— conf:MediaDése, conf:Preferenc
\\Desnﬂ)‘ygonﬁSignalingl)escriptor L rip‘tozrf l\co'ge:::i‘::::c -~

owl:unionOf I

owl:unionOf

[co iaDescriptor | |

nf Descriptor |
rdfs:subPropertyOf ‘
h 2

(ignali iptor |
[
rdfs:subPropertyOf-

»(confl]
Descriptors |

ifs:subPropertyOf

l:unionOf-

Fig. 4: Conference Ontolog!

described ontologies. The query engine is then used
optimize the query using SPARQL re-writing rules basic
graph pattern (BGP) based on the index generatethdy
substrate type classifier. The infrastructure pteximay limit
the number of substrates to get in the responsghich case
the ranking engine is used to prioritize the resulfhe
ranking engine utilizes the multi-criteria decisionaking
scheme proposed in [6] to rank the substrates baisesbme
of their characteristics (e.g. latency, availapjliand cost).
The description documents of the selected substeatethen
reformatted (if needed) according to the data forieag.
XML, JSON, N3) supported by the infrastructure pdev.
Such a transformation is performed by the data
transformation engine.

l1l. IMPLEMENTATION

We first present the implemented prototype, folldviey the
performance measurements.

A. Prototype

The prototype consists of a substrate repositotl bth
publication and discovery interfaces, and a set
infrastructure and conference substrate providerbe
semantic data store component of the repositobaged on
Sesame and the other components are implemented usi
Sesame and RDF2Go libraries. Sesame is an opeoesour
framework for storing and querying RDF data, andF2Bo
provides an abstraction layer for easier commuitioatith
the Sesame data store. The built-in SPARQL quetiyniger
of Sesame is extended to support optimizations coase
BGPs related to substrate types. To support inéereand
validation, the Sesame framework’s parser modulesisd
along with OWLIM', a family of semantic-based database
management systems. The data transformation engias
Apache Any23 libraries for transformation betweba RDF
serialization formats. The REST interfaces are enmnted
using Jersey, a reference implementation of JSR 311

To have a near-realistic view of the system exeautive
needed a test bed setup with several dozens otratéss
belonging to different providers, as well as randomd varied
constraints. We implemented a benchmarking toduiding a
substrate test data generator and a query generator
representing a set of substrate and infrastruguoziders
respectively. Both generators are implemented usiaga
concurrency APl and can issue varying numbers ofligh
requests to the substrate repository. Some of Histirgy
benchmarking tools for RDF-based repositories suash
Berlin SPARQL Benchmafkallow only the benchmarking of
pre-defined use cases with specific sets of produmuplates.

Two laptops were used to run the prototype. Trat fine
was used to run the substrate repository, whileséoend was
used to run the benchmarking tool for publicationd a
discovery.

of

L OWLIM - http://www.ontotext.com/owlim
2Berlin SPARQL Benchmark (BSBM) - http:// bit.ly/1XRHZ

B. PERFORMANCEMETRICS

The performance of our prototype is assessed imstef
time delays for
publication delay measurements were taken for rmdiffe
numbers of substrate providers, different number
simultaneous requests, and for the cases whereretiff
numbers of substrates were published prior to ime tof
measurements. The discovery delays were measurdd/do
types of queries: simple and complex. Simple qgesie, for
instance, those based only on the substrate typepl@x
gueries may include multiple relational criteria.g(e
capacity>=100 and latency<=1000ms), textual opemati
(e.g. textual search for a specific provider orsdidie within
a specific region), or ranking criteria (e.g. gatadered list
of the first 10 recommended audio mixers in Canauég
also compared the discovery delays of simple gsenigh
and without optimization to show the added valuettod
optimization algorithm.

C. PERFORMANCHRESULTS
Figure 5 shows the results. Each measurement
calculated as an average of 15 experiments. Fiduse

80000 1" publishing with empty repository (@)

70000 -—I—Pnbh?kﬂng-wﬁh—ie-ﬂw
60000 Publishing with 100 substrates/50 providers

- @i Publishing with 150 substrates/75 provids

£ 50000 tshi i

N’

@ 40000 —
=

= 30000)(/

20000
10000 -

500

400
—
w1
g 300
S’
v
g 200 -
=

100 -

0 T T T .
1 2 3 4 5

20000 - - -
_ === Discovery using complex queries » (C)
Z 15000
E /
-’
@ 10000
= 35000 X

0 T T T T)
1 2 3 4 5
No of ParallelRequests

Fig. 5: Performance measurements fosubstrate repository: a)
publication delays; b) discovery delays for simpleueries; c) discovery
delays for complex queries.

both publication and discovery. The

of

is

displays the measurements for publishing up towd&tsates
simultaneously by varying the number of existingpstates
in the semantic data store. As expected, the delaysase
with the number of simultaneous publications asl &slthe
number of substrates already in the registry. Nbedgss, the
delays remain acceptable considering that the gaiidin is a
one-time operation performed by the substrate peyei

The discovery delay measurements were performed on
substrate repository containing 100 substrates.di$eovery
requests are randomly generated by the benchmatgirig
according to the chosen request complexity (i.enp& or
complex). Figure 5.b compares the discovery delfors
optimised and non-optimised simple queries. Theaultes
show that optimization reduces delays by about s
percentage can be further increased by creatingxesl for
frequently-used BGPs, such as substrate providgiome
Complex discovery queries require more processing and
induce much larger delays compared to simple gsierie
(Figure 5.c). An optimization solution for such ges is
therefore worth investigation.

IV. CONCLUSION

We proposed a substrate description framework and
semantic repository architecture for cloud-basetfer@ncing
substrates. A proof-of-concept prototype was imgetad,
deployed, and successfully tested. The performagsalts
for the proposed architecture delivers satisfactesults for
publication and discovery of conference substratesvever,
methods for further optimization need to be ingatéd for
complex queries. Our future work is also directedvard
extending the already-implemented repository agchitre to
other providers of the cloud-based conferencinginess
model.

REFERENCES

R. H. Glitho, ‘Cloud-based Multimedia Conferemg:
Business Model, Research Agenda, State-of-the-itwr2011
IEEE 13th Conference on Commerce and Enterprise
Computing (CEG)2011, pp. 226 —230.

R. Kanagasabai, ‘OWL-S Based Semantic CloudiSer
Broker’, inWeb Services (ICWS), 2012 IEEE 19th
International Conference 92012, pp. 560-567.

Jos de Bruijn and Dieter Fensel, ‘Web Servicedeling
Language (WSML) - W3C Submission’. [Online]. Avdile:
http://www.w3.0org/Submission/WSML/. [Accessed: &
2013].

J. Liand F. Yang, ‘Resource-Oriented convergetivork
service modeling’, ilCommunications Technology and
Applications, 2009. ICCTA’09. IEEE International
Conference 0n2009, pp. 895-899.

N. Loutas, E. Kamateri, and K. Tarabanis, ‘Av@atic
Interoperability Framework for Cloud Platform aService’,
in Cloud Computing Technology and Science (CloudCom),
2011 IEEE Third International Conference, @011, pp.
280-287.

Y. Cui, C. Chen, and Z. Zhao, ‘Web Service $&tm Based
on Credible User Recommended and QoSCamputer and
Information Science (ICIS), 2012 IEEE/ACIS 11th
International Conference 02012, pp. 637—-642.

(1]

(2]

(3]

(4]

(5]

(6]

