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Abstract. A cognitive robot may face failures during the execution of
its actions. These failures are mostly due to the gap between the phys-
ical world and the constructed symbolic plans, some internal problems
that may occur in its embodiment or unexpected external events. In this
paper, we propose a visual scene interpretation system for extracting
spatial relations among objects in a scene and using these relations to
detect failures during the plan execution. Our system uses LINE-MOD
and HS histograms in order to recognize textureless objects with different
shapes and colors. Then, it analyzes the scene to specify the world state
after each action execution. Our focus in this research is on particularly
the following spatial relations: on, on table, clear and unstable. In the
experiments, we test the performance of our system on recognizing ob-
jects, determining pairwise spatial relations among them, and detecting
failures using these relations. Our preliminary results reveal that our sys-
tem can be successfully used to extract spatial relations in a scene, and
to determine failures during plan execution by using this information.

Keywords: cognitive robots, failure detection, spatial reasoning, object
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1 Introduction

A cognitive robot possesses abilities to construct symbolic plans to solve given
problems and to execute these plans in the real world. Automated planners
are commonly used for determining a valid sequence of actions for a robot to
achieve its goals. These planners use high-level description of the problem and
the domain (i.e. initial/goal states and operators corresponding to real-world
actions) to construct a plan. After obtaining a valid plan, the robot needs to
execute the corresponding real-world actions in order to attain the desired goal.
However, it may face several types of failures during the execution of its actions
in the real world [1]. These failures may arise due to the gap between the real-
world facts and their symbolic representations used during planning, unexpected
events that may change the current state of the world or internal problems.

Ensuring robostness is crucial for a cognitive robot in order to accomplish the
given goals in the real world. In this work, we investigate how spatial relations
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among objects are determined using visual data from an RGB-D camera and
how this information is used to detect action execution failures in the real world.
As a motivating example to illustrate the stated problem, consider the object
manipulation task in the blocks world domain. An example plan constructed for
a 3-block problem is given in Figure 1. In this toy problem, the aim is stacking
three blocks on top of each other where all blocks are initially on the table and
without any other objects on top of them (i.e. satisfying clear predicate). During
the execution of the generated plan, the robot may fail in executing action stack.
Possible reasons for this failure might be the weight of the object, improper grasp
position or a vision problem. To ensure robustness in such cases, the robot needs
to continuously monitor the state space for anomalies during action execution.
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Fig. 1. The execution trace for solving the blocks world problem with a three block
case is given. (top) The successor states and the actions taken at each state, (bottom)
the visual scene observed at each world state are presented.

Throughout the paper, we first give some background information on the
areas of automated planning, object recognition and scene interpretation. Then,
we describe the details of our system for determining spatial relations among the
objects in order to detect failures. We then give empirical results of our approach
followed by the conclusions.

2 Background

In this section, we formulate the planning problem and give a brief review of
the approaches used for recognizing objects and determining spatial relations in
the scene. Then, in the following section, we present our solution to the stated
problem.

2.1 Automated Planning

Cognitive robots may use automated onboard action planning for online gener-
ation of action sequences to accomplish given tasks against exogenous events.
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A planning task Π can be described on a state space S containing a finite
and discrete set of states including an initial state s0 and a goal state sG,
and a state transition function st+1 = f(ot, st) where ot ∈ O(st) is an op-
erator applied in state st. State transition function is realized through plan-
ning operators o ∈ O that are defined as symbolically abstracted representa-
tions of real world actions a ∈ A. A planning operator can be formalized as
a tuple o = {pre(o), add(o), del(o), cost(o)} where pre(o) defines the precondi-
tions, add(o) and del(o) define the effects of the operator and cost(o) represents
the cost of the corresponding action. ot ∈ O(st) is defined as the set of ap-
plicable operators in a state st ∈ S determined by checking preconditions of
the operators to satisfy pre(ot) ⊆ st. By applying ot at state st, a new state
st+1 = add(ot)∪ (st \del(ot)) is observed. Planning task is achieved by a planner
to reach sG from s0 by selecting a sequence of operators from O(st) at suc-
cessive states st and executing the corresponding actions at ∈ A in the given
order. After searching the whole space of operators, the planner constructs a
valid plan P = o0:G by considering an optimization criteria (e.g., makespan)
and the duration/cost of each operator. Having generated a valid plan P , the
robot can execute each corresponding action ot → at ∈ A in sequence in the
physical world. If all goes well with execution, the robot successfully attains sG.
However, due to non-deterministic actions and different sources of uncertainty
in physical environments, several failures may be encountered [1]. Our primary
focus is action execution failures. To detect a failure, the robot should monitor
its execution, recognize the objects it interacts with (if any) and interpret the
scene continuously.

2.2 Object Recognition

There are various approaches for recognition of objects in a scene using dif-
ferent types of visual clues. These approaches can be categorized as 2D object
recognition approaches based on local invariant feature descriptors and 3D ob-
ject recognition approaches based on surface normals computed from the depth
map. In the case of 2D color data, local feature descriptors are used to determine
patterns in the image which differ from the other pixels in their neighborhood.
These distinguishing parts of the image (i.e. keypoints) are generally chosen by
considering sharp changes in color intensity and texture. To store the keypoints,
descriptors are computed around them which are suitable for measuring their
similarity. The idea of using local invariant descriptors became popular when
Scale-Invariant Feature Transform (SIFT) [2] was proposed in 1999. SIFT is a
keystone in the area, and it is used as the base of the state of the art techniques.
It is known to be invariant against geometric transformations such as scale, ro-
tation, translation and affine transformation to a sufficient extent for a lot of
applications. It is also claimed to perform well against noises and changes in the
illumination. However, SIFT-based approaches are known to have deficiencies
in recognizing textureless objects. Information on the 3D shapes of the objects
and their colors can be used in order to deal with this problem. By the develop-
ment of RGB-D sensors, it is possible to get depth information as well as color
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and texture information for this purpose. To utilize the depth values captured
using these types of sensors, different 3D descriptors have been proposed [3].
These descriptors can be divided in two categories: local descriptors and global
descriptors. Local descriptors are used to describe the local geometric proper-
ties of distinguishing points (i.e., keypoints) whereas global descriptors capture
depth-based features globally for a presegmented object without storing local
information for extracted descriptors. Among these, LINE-MOD [4] is unique
as it is a linearized multi-modal template matching approach based on weak
orientational features which can be used to recognize objects very fast making
this approach the most suitable one for real-time robotic applications.

2.3 Determining Spatial Relations

Detecting and representing structures with spatial relations in a scene is known
as the scene interpretation problem. While this is a trivial task for humans, in-
terpreting spatial relations by processing visual information from artificial vision
systems is not a totally solved problem for autonomous agents [5]. In the recent
years, some approaches have been proposed to solve this problem [6–9]. Some
of these works use 2D visual information for extracting qualitative spatial rep-
resentations in a scene [6, 7]. In these works, some topological and orientational
relations among objects are determined in the scene. In another work, proximity-
based high-level relations (e.g., relative object positions to find objects that are
generally placed together) are determined by comparing Euclidean distance be-
tween pairs of recognized objects in the scene [8]. This system relies on 3D data
obtained using an RGB-D sensor and an ARToolkit marker acting as a reference
coordinate system. Sjöö et al. have proposed a method for determining topo-
logical spatial relations on and in among the objects, and this information is
used to guide the visual search of a robot for the objects in the scene [9]. Object
recognition approach used in their work is based on matching SIFT [2] keypoints
on a monocular image of the environment.

Our proposed work differs from the previous studies in two ways. First, de-
termining spatial relations is done for a higher level task of detecting failures
after action executions. Second, the object recognition system used in this work
is more generic as it can deal with textureless objects that do not have any
distinguishing texture information.

3 Scene Interpretation for Monitoring Action Executions

We propose a failure detection system based on visual information. The system
involves three main procedures, namely, object recognition, scene interpretation
and failure detection. In the system, first, each object of interest is modelled
by creating multi-modal LINE-MOD [4] templates from different viewpoints.
A template involves the surface normals within an object and the color gradi-
ents around its borders. As well as the multi-modal templates of LINE-MOD,
a color histogram is generated to model each template in Hue-Saturation-Value
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(HSV) color space. In this histogram, V(value) is omitted as it is strongly depen-
dent on illumination conditions, and normalized values are taken for H(hue) and
S(saturation). By using these histograms, object recognition process is improved
as color values inside the templates are also considered. Then, LINE-MOD tem-
plates for all the objects of interest are searched in the scene using a sliding
window approach to find matches. The threshold is specified as 80% by taking
into account the noisy data captured using an RGB-D sensor. These matches are
then verified comparing HS histograms of corresponding templates with match
regions based on normalized correlation, and false positives are eliminated. The
threshold value is taken as 0.5 by considering the changes in the illumination.

After the objects are recognized and located in the scene, qualitative spatial
relations are determined for failure detection. In the blocks world domain, these
relations are on, on table, clear and unstable. Initially all the recognized objects
are assumed to be on table and clear. Then the on relation is determined between
each pair of objects as follows,

∀obji, objj , (EC(obji, objj) ∨ PO(obji, objj)) ∧N(obji, objj) ⇒ on(obji, objj)

where EC(externally connected) and PO(partially overlapping) are topological
predicates of RCC8 [10] and N(north) is a directional predicate of cardinal direc-
tion calculus [11]. After determining the on relation, clear and on table relations
are updated for the objects involving in this relation as follows,

∀obji, objj , on(obji, objj) ⇒ ¬on table(obji) ∧ ¬clear(objj)

To eliminate false positives in the extraction of on table relations due to
recognition failures, the area under the object is checked in order to see if it is
planar or not. If the area is not a horizontal plane, than it is assumed that the
corresponding object is not on the table. Finally, unstable relation is determined
by checking the horizontal projections of the aligned object templates. If the
horizontal projection of the upper object in the on relation has an unsupported
part (i.e., out of the area covered by the object below) of more than 1/4 ratio
to its length, this on relation is assumed to be unstable.

Action execution failures are detected by checking the state of the world with
respect to spatial relations after each action execution. We consider three states
after executing an action [12], namely success, fail-safe and fail-unsafe of which
we repeat definitions here for convenience.
Definition 1 (success state) If all the desired effects of the action occurs in
the environment, the situation is specified as success.
Definition 2 (fail-safe state) If the state of an execution is not success but
the state does not change, the situation is specified as fail-safe. For example, the
robot fails in picking up an object but the state of the object is not changed.
Definition 3 (fail-unsafe state) If the execution of an action fails and there is
any damage and/or dangerous situation (e.g., an undesirable state is observed)
or the robot cannot judge whether there is any harmful situation, the situation
is specified as fail-unsafe. For example, the robot fails in picking up an object,
and the object is broken into pieces or fallen down the ground out of reach of
the robot.
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4 Experimental Evaluation

In the experiments, the proposed system is evaluated in real time for different
possible situations in the scene using the real-world data captured by an RGB-D
sensor. The objects used in these experiments are three paper blocks, two plastic
toy grapes and a single toy box (Figure 2). These objects are selected as they
have different shape and/or color features.

box

red block

blue block

green block

green grapespurple grapes

Fig. 2. The objects used in the experiments.

First, the overall recognition performance has been evaluated by comparing
the results of LINE-MOD and our approach combining LINE-MOD with HS
histograms. The results are illustrated in Table 1 as a confusion matrix for 120
different scenes (20 scenes for each object). As expected, both LINE-MOD and
our approach give good recognition rate for different shaped objects. However,
LINE-MOD cannot always distinguish similar shaped objects with different col-
ors. Our approach based on checking HS histogram correlations on the results
obtained using LINE-MOD leads to much better results in these situations. False
negatives in recognition are slightly greater in our approach since some correct
results are eliminated by checking color correlation.

Table 1. Confusion matrix for recognition: LINE-MOD / LINE-MOD&HS histograms.

red block green block blue block green grapes purple grapes box not found
red block 12/19 3/0 4/0 0/0 0/0 0/0 1/1
green block 2/0 13/18 4/0 0/0 0/0 0/0 1/2
blue block 5/0 2/0 12/18 0/0 0/0 0/0 1/2
green grapes 0/0 0/0 0/0 13/20 7/0 0/0 0/0
purple grapes 0/0 0/0 0/0 6/0 13/18 0/0 1/2
box 1/0 2/0 0/0 0/0 0/0 17/20 0/0

Second, the performance of our system for extracting spatial relations: on,
on table, clear and unstable has been tested in an experiment involving 100
scenes (50 scenes for the blocks, 50 scenes for the grapes and the box). The
results are shown in Figure 3. As given in these results, our system can be used
to successfully detect relations for all the objects used in our tabletop scenarios.
The highest error is in determining on relation by 20% and this is caused by the
objects that cannot be recognized. When the object that is located below another
object cannot be recognized, this also affects the success of determining on table

KI 2013 Workshop on Visual and Spatial Cognition

18



relation. Similarly, there are some errors in determining clear relation for an
object when another object that is located on top of it cannot be recognized.
Errors in unstable relation are due to the failures in recognition or bad alignment
of the recognized templates.
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Fig. 3. Performance of the proposed system on determining spatial relations.

In the last set of experiments, the performance of the failure detection process
has been tested on 20 different scenes that are set for each execution state:
success, fail-safe and fail-unsafe. Similar to the previous set of experiments, it
has been observed that, spatial relations are determined correctly in 85% of the
scenes where the action is executed successfully. Moreover, the system has been
observed to label 90% of the scenes with a fail-safe state correctly where the state
of the world does not change after executing an action. In these experiments,
when the object to be stacked is fallen down the table and this object cannot be
recognized in the scene, the state is assumed to be a fail-unsafe state. With this
assumption, the system has identified all fail-unsafe examples in the 3-blocks
problem correctly.

5 Conclusion

We have presented an approach for detecting failures to ensure robust task ex-
ecution in cognitive robotic applications. Our approach is based on using visual
information extracted from the scene in order to determine spatial relations
among the objects that are involved in manipulation scenarios. First, we have
shown how our system can be used to recognize objects with different geometric
shapes and colors. Then, we have given the details of the visual scene interpreter
for specifying spatial relations among the objects of interest and evaluating these
relations for detecting failures during action executions. The preliminary results
of the conducted experiments on our system indicate that the system can be used
to successfully detect states with failures in an object manipulation scenario. In
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our future studies, we plan to conduct experiments on larger sets of scenes in-
volving various objects to justify our research. Our ongoing work includes the
integration of temporal reasoning into spatial reasoning in order to detect the
possible causes of failures from previous states (e.g., an unstable stack of blocks
causing a failure when stacking another block on top of them).
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