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Abstract. To cope with a wide variety of tasks, robotic systems need
to perceive and understand their environments. In particular, they need
a representation of individual objects, as well as contextual relations
between them. Visual information is the primary data source used to
make predictions and inferences about the world. There exists, however,
a growing tendency to introduce high-level semantic knowledge to enable
robots to reason about objects. We use the Semantic Web framework to
represent knowledge and make inferences about sensor data, in order
to detect and classify objects in the environment. The contribution of
this work is the identification of several challenges that co-occur when
combining sensor data processing with such a reasoning method.

1 Introduction

Autonomous recognition of structure in an indoor environment is a challeng-
ing task for the robotics community. Relying on depth perception, prior knowl-
edge and logic, humans are particularly adroit at understanding their surround-
ings. Robotic systems rely on imagery and sensor data to build and encode their
knowledge. Yet, we expect some systems to perform tasks such as navigation,
manipulation, or interaction, in cluttered environments, structured for humans.
To improve the way robots structure their knowledge of the world, we can share
a common knowledge management system. Then robots could use our way to
represent, make inferences and take decisions. By finding a representation in De-
scription Logic for common-sense statements, and mapping them to ontological
concepts and relations between those concepts, information such as the book is
on the shelf or the room is empty is shared between humans and robots. This
high level semantic description through ontologies also permits reasoning in a
logical way.

In this paper we aim at verifying if the bottom-up, knowledge-based interpre-
tation of indoor scenes is a reliable approach for 3D object detection. This task
has been heavily performed using statistical methods and pattern recognition.
Detecting and classifying objects by relying on a logical representation has been
less considered in recent years, due to the access to large amounts of data and
computational resources to learn the structure of our visual world.

Our proposed system is used for knowledge modeling and information re-
trieval. We divide the task into three main components: 1) geometric analysis
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and characterization of scanned environment data, 2) semantic description and
ontology mapping of geometric shapes, and 3) knowledge query and rule evalu-
ation.

After scanning the environment, we use 3D point cloud segments to identify
predefined geometric primitives and formalize spatial relations between object
parts (cf. Fig. 1). We store the obtained geometric information and load it in a
knowledge management system to populate an ontology with class instances. For
answering queries over the computed spatial data, we implement a reasoner in
Semantic Web Rule Language (SWRL) and run it under the platform of Protégé,
an ontology editor and knowledge-base framework.

Space and spatial organization are the most common sense knowledge for
humans. To describe them, we make use of Web Ountology Language (OWL).
In our approach, we create an OWL ontology based on Description Logic (DL),
which permits defining instances (description logic individuals), creating classes
(description logic concepts), properties (binary relation specifying class charac-
teristics), and operations (union, intersection, complement, etc). Our framework
relies on reasoning with the 3D geometric information to detect and classify ob-
jects in a human environment. We consider properties such as size, orientation,
position of point cloud segments, as well as spatial relations between segments,
such as intersection, inclusion or parallelism. Our intuition in selecting the fea-
tures is that it is easier to compute spatial relations for simple planar primitives
of a complex object rather than computationally expensive ones for the whole
object.
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Fig. 1. Semantic Interpretation Pipeline. (a) Acquired laser scans are first segmented
into planar regions. (b) Segments and spatial relationships are further analyzed. (c)
Extracted geometric information is loaded in Protégé, on which our Knowledge Man-
agement framework is built. (d) An OWL Ontology encodes prior knowledge. (¢) SWRL
rules represent the restrictions we impose on the objects. (f) By running a reasoner
on the information from (c), (d) and (e), objects of interest in the environment are
detected and classified.

30



KI 2013 Workshop on Visual and Spatial Cognition

Related work in the area of combining 3D point cloud processing with know-
ledge-based reasoning is concerned with architectural reconstructions [2,3]. A
similar 3D object classification approach was taken by [4], however at critical
points, the paper does not formulate solutions. In this paper, we focus on iden-
tifying the challenges in such an approach.

For the preprocessing phase we use the Felzenszwalb and Huttenlocher seg-
mentation algorithm. Recently, we presented a segmentation method for 3D
point clouds acquired with state-of-the-art 3D laser scanners extending the
method of Felzenszwalb and Huttenlocher [1]. From the 3D points an unori-
ented graph is constructed. The graph is then segmented by using a k-nearest
neighbor search and a similarity measure based on surface normals, resulting in
a point cloud segmentation in planar patches. Fig. 2 shows two examples.

Fig. 2. Felzenszwalb and Huttenlocher Segmentation. Top: 3D Point Cloud of an empty
room and of a staircase. The scene has been rendered with black fog to enhance depth
perception. Bottom: 3D Point Cloud segmented using the parameters p = 0,0 = 1,
N =10, k£ = 1000.
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2 The Protégé platform and Ontology Web Language

We model in an ontology our prior knowledge of the environment, making
use of the Protégé-OWL editor. Protégé-OWL is an extension of Protégé that
permits loading and saving ontologies, define logical class characteristics as OWL
expressions, and most importantly, execute reasoners such as description logic
classifiers. To complete the modeling process we add semantic rules developed
with Semantic Web Rule Language (SWRL) and run Pellet, a Description Logic
Reasoner, designed to work with OWL. Pellet is an implementation of a full deci-
sion procedure for OWL-DL which provides support for reasoning with individ-
uals (asserted or inferred), user-defined datatypes and debugging and comparing
ontologies.

Objects of interest in the scene are modeled under the class BuildingObject,
while the rest map to geometries: either point cloud segments or pairs of point
cloud segments. We therefore restrict our definition of an object to anything
composed of them.

( Primitive b
A —

e — s
_GeometricPrimitive <———=8———— Pair §

( Ceiling )
7I”aired0bjectPart »

1 Floor )

1 sidewall )
1 shelf
(shelfpelirmiter )
= § _iga staircase )
( BuildingObject T —
2kl - RN -,
R 1 Bookshelf )

Fig. 3. Classes used for semantic interpretation.

Within the OWL ontology, not only we create appropriate object classes,
but also class properties, through which we encode object geometry and spa-
tial relations between segments in the scene (cf. Fig. 3). To integrate 3D data
processing with Semantic Web technologies, we considered attributes such as:
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size (Since we are only considering planar surfaces, we refer to size as the area
of the segment. It is the most distinguishable segment property.), position (We
consider minX, maxX, minY, maxY, minZ, maxZ as some objects are expected
at a certain relative position inside a scene.), orientation (Individuals of vertical
or horizontal segments are directly instantiated under the appropriate class.).
Equally important as segment attributes, are the spatial relations between seg-
ments: connected, parallel, perpendicular, the pairs being instantiated under the
classes Pair or PairedObjectPart.

3 SWRL Rules

The purpose of our semantic interpretation approach is to enable querying
the spatial knowledge base. After populating our Protégé classes with individu-
als, we see their properties and their relationships as logical predicates (asserted
knowledge), and we use logical rules to derive new facts and instances (inferred
knowledge). The SWRL rules incorporate the restrictions that we impose on the
environment: our knowledge about the scene configuration and about the shape
of the objects. A rule takes the form of an implication between an antecedent
and a consequent, and supports either a final decision or an intermediate deci-
sion in interpretation process. For instance, we know that a bookshelf essentially
consists of a series of parallel segments at certain intervals. We make a similar
judgement that if we have two stairs in the same sequence of primitives, the
object is a staircase. Two example rules are as follows:

LowShelf(?x) — HorizontalSegment(?x) A hasSize(?x, ?size)
A swrlb : greaterThan(?size, 0.02) A swrlb : lessThan(?size, 1.0)
A hasMaxY (7x, 7maxY) A swrlb : greaterThan(?maxY, 0.6)
A swrlb : greaterLess(?maxY, 1.5)

Staircase(?x) — hasHVConnectedPair(?x, ?pairl) A Stair(?pairl)
A hasHVConnectedPair(?x, ?pair2) A Stair(?pair2)
A GeometricPrimitiveSequence(?x)

4 Results

To show the potential of our approach we exhibit three different simulations
in which we query the knowledge system for different building objects. Our
approach is also viable for different geometries, in particular after extending the
method to curved spaces by adding properties and rules accordingly.

Our simulations concern half of an empty room, a staircase and a bookshelf.
For each scenario, a set of SWRL rules was designed that allows for labeling of
intermediate object parts such as a ceiling, shelf planes or stairs, as well as label-
ing of the entire object of interest. Labels correspond to object categories. We
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map the segmentation output to the ontology via a mapping language, and ob-
tain asserted instances. By running the reasoner, we further label the segments,
and create inferred instances. For the three examples, the results are shown in
Table 1. Not all mapped segment get a labeling, which is due to the challenges
described next.

Table 1. Asserted and inferred segment labels

point cloud #mapped segments #labeled segments

empty room 9 5
bookshelf 18 18
staircase 17 5

5 Challenges

Several challenges were encountered during the implementation of the pre-
sented object classification method. More precisely, we coped with:

Thresholds. As the description logic reasoner uses crisp logic, we had to set
hard thresholds for property predicates, e.g. swrlb : greaterLess(?maxY, 1.5).
Finding these constants was done manually and it was time-consuming.

Coordinate frames. In our experiments the constants refer to the scanner
own coordinate system and we used single scans. It is an open question how
this extends to an arbitrary (project or robot) coordinate system or even to
global coordinates, i.e., to include georeferencing.

Missing data. We experienced that mapped segments are not labeled due to
missing data. The laser scanner gages only objects visible. However, multiple
3D scans and scan registration are necessary to completely digitalize scenes.

Efficiency for multi-values predicates. For extracting relations between in-
dividuals they have to be compared. Currently, we perform this comparison
while processing the point cloud in C++, exploiting spatial data structures
such as k-d trees.

Memory efficiency. Due to the presence of many segments in realistically sized
real-world scenes, Pellet reasoner tends to run out of memory due to the com-
plexity of the used description logic.

Designing the data processing tool chain. It is not clear, which parts of
the interpretation process should be implemented at the point cloud pro-
cessing level, i.e., in the C/C++ part that acquires the sensor data, calcu-
lates the normals and performs the segmentation, and which parts should

34



KI 2013 Workshop on Visual and Spatial Cognition

be performed by description logic reasoning in the knowledge-based system.
The question is, when and where to call Pellet and the used ontology.

6 Conclusion

We presented a framework for semantic interpretation of point clouds which
takes advantage of Semantic Web technologies. Built on the platform of Protégé-
OWL, our alternative method of linking top level semantic qualification with
low level geometric calculations uses a connectivity-preserving segmentation al-
gorithm, an ontology structure and a reasoner. We believe that the logical struc-
ture of an ontology is suitable for semantic knowledge representation and that
under the Semantic Web framework, Web Ontology Language is appropriate for
defining spatial knowledge. Such an approach provides a better understanding
of a 3D scene, by facilitating detection and recognition in 3D point clouds.

Needless to say, a lot of work remains to be done. To avoid the use of crisp
thresholds, we plan to add fuzziness to the system and/or use probabilistic rea-
soning. A promising approach is given by Pu and Vosselmann in [5]. They use
semantic building knowledge to reconstruct a polyhedron model of outdoor ter-
restrial 3D scans. They also describe the uncertainty and make expected de-
cisions [6]. Further future work will aim at interpreting multiple registered 3D
scans. As our system relies on plane segmentation, this extension seams straight-
forward. However, a combination with next-best-view planning is highly desir-
able.
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