
Comparing Major Web Service Paradigms

Steffen Stadtmüller, Sebastian Speiser, Martin Junghans, and Andreas Harth

AIFB/KSRI, Karlsruhe Institute of Technology, Germany
firstname.lastname@kit.edu

Abstract. We identify three foundational tasks for clients interacting with Web
services, and study how to realise these tasks using major paradigms (WS-*, Se-
mantic Web Services, RESTful APIs and Linked APIs). We identify relative mer-
its of each approach and point out how the combination of resource-oriented ser-
vices with Linked Data can enable an interoperable ecosystem of Web services.

1 Introduction

Services are an integral part of the Web, giving access to functionalities and data in
a wide range of scenarios. For example, forms in Web pages give end users access
to the “Deep Web”, JSON-based APIs enable mashups to combine several Web 2.0
applications and service-oriented computing technology enable businesses to integrate
each other’s systems.

There exist several approaches that attempt to bring services to the Semantic Web.
We survey these approaches and discuss their relative merits. We structure the compar-
ison according to two major classes of Web services as identified in a W3C Note1:

– Services that expose an arbitrary set of operations as often designed when adhering
to the variety of specifications and languages commonly referred to as WS-* stack.

– Resource-oriented services with a uniform set of stateless operations, that comply
to the constraints of a Representational State Transfer (REST) architecture.

We thus classify Web service paradigms firstly according to the distinction between
services that allow for arbitrary operations, and services that require a uniform set of
operations, and secondly according to syntactic approaches and semantic ones (i.e.,
those that include logic-based knowledge representation formalisms). Table 1 lists the
paradigms we cover.

To compare the approaches, we study the following three basic tasks that service
consumers face in their interaction with services: (i) invocation which can be seen as
the most basic ability a service has to provide to be useful; (ii) the connection or the
sequential calling of services which is a foundational workflow pattern [1]; (iii) substitu-
tion of one service for another which reflects the ability to establish uniform interfaces,
thus facilitating an ecosystem of fungible services on the Web. To illustrate and compare
the different paradigms, we use a scenario where a client first invokes a picture hosting
service to upload a picture, then invokes a micro blog service to post information about
the picture, and finally replaces the micro blog service with another equivalent service.

1 http://www.w3.org/TR/ws-arch/#relwwwrest

SALAD 2013 Workshop – Services and Applications over Linked APIs and Data 28



Table 1: Matrix of Web service approaches.

arbitrary operations uniform operations

semantic Semantic Web Services Linked APIs

syntactic WS-* Services REST

Section 2 explains how to realise the foundational tasks with services that allow
for the definition of arbitrary operations: the WS-* stack and semantic Web service
technologies. Section 3 shows how to realise the tasks with services that prescribe a set
of uniform operations: RESTful services and Linked APIs. Section 4 concludes with a
detailed comparison of the different paradigms.

2 Services with arbitrary operations

2.1 WS-*

Approaches that allow for the definition and exposition of arbitrary operations pro-
vide an interface for calling methods with corresponding parameters and return values.
A prominent specimen is the WS-* stack of standards, including technologies such
as SOAP (Simple Object Access Protocol) and WSDL (Web Service Definition Lan-
guage).

Communication partners in the WS-* world exchange messages using SOAP. While
SOAP supports several transportation channels, HTTP is the most widely used. Another
standard, WSDL, specifies in an XML document the operations that a Web service pro-
vides, including their parameters and return values. The description also contains infor-
mation about the binding to so-called service endpoints, which allows for the automatic
construction of code that provides an interface to the operations.

WSDL documents provide means for syntactic interoperability only, as data mod-
elling is typically performed using XML Schema. XML Schema is a language for defin-
ing hierarchical document models, especially their structure and syntax. Thus, WSDL
enforces a hierarchical representation on the data which may be seen as less natural
than a network-structured modelling approach [2].

2.2 Semantic Web Services

Several approaches extend the existing WS-* stack with semantic capabilities by lever-
aging ontologies and rule-based descriptions (e.g., [15, 6, 5]) to achieve an increased
degree of automation in high level tasks, such as service discovery, composition and
mediation. Those approaches extending WS-* became known as semantic Web services
(SWS).

One common feature of different SWS approaches is the lifting and lowering of
messages (usually specified in XSLT scripts), which establish the relation of data ele-
ments in WSDL documents to terms defined in formal ontologies. Furthermore, SWS

SALAD 2013 Workshop – Services and Applications over Linked APIs and Data 29



approaches model the functionality of services by giving semantic descriptions of in-
puts, outputs, preconditions and effects.

2.3 Example

In the following, we describe how the proposed scenario can be realised with WS-*
services and SWS in general.

For the invocation of the picture host service, the developer uses a tool to generate
from the corresponding WSDL document a client stub, i.e., code that provides local
methods in the target programming language. The tool derives the signatures of the
client methods by a mapping from the XML datatypes to types in the target program-
ming language. The developer can program the Web service client as if it would use a
local library. Typical problems at this stage include the interpretation of parameters and
return values, understanding the functionality of the operations, and error handling. In
case of a SWS, we assume that we have a semantically described WSDL-based Web
service and that the client uses a semantically described data model internally. The
lowering of the input data and lifting the expected returned information needs to be
implemented manually, e.g., by an XLST script. Once this mapping is provided, the
underlying Web service can be invoked as described for any WSDL service.

To establish the connection of the picture service with a micro-blogging service,
the developer generates a new client stub from the WSDL description of the micro-
blogging service. He extends the local code to first post the image to the picture ser-
vice, and then create an entry in the micro blog timeline, including a link to the picture,
which is returned by the picture service. Typical problems at this stage are the conver-
sion of return values and input parameters of the different services, in this case the URI
of the uploaded picture. With SWS, the pattern requires the specification of lifting and
lowering schemes for both services. Then, messages returned from the picture hosting
service can be processed on a semantic level (which eases the parameter conversion as
the client’s data model is defined on the same level). Then, the lowered representation
of the parameter is passed to the subsequent micro-blogging service. Still, checking the
compatibility between subsequent services can take place on the semantic level. Alter-
natively, one can use the Business Process Execution Language (BPEL) to compose
the services following a programming in the large approach. BPEL is an XML-based
language for process specification, which besides other more complex constructs also
supports the sequence pattern, which can be used to connect the picture hosting and the
micro-blogging services. Extraction of the right return values of the response of the pic-
ture hosting service, can be selected via XPath and transformed via XSLT to generate
the correct input of the micro-blogging service. The BPEL process can be deployed on
and executed by a BPEL process engine, and exposes the composed functionality again
as a WSDL service.

Finally we analyse the substitution of the micro-blogging service. Without using
BPEL, the developer of a service composition generates a new client stub for the new
micro-blogging service. To further use the code of the service composition, the devel-
oper has to emulate the methods and data model of the original service, as the automatic
tooling used for WSDL-based services leads to a tight coupling of the client to a service.
Such a coupling can bring problems when substituting the service, due to differently

SALAD 2013 Workshop – Services and Applications over Linked APIs and Data 30



grained interfaces and incompatible protocols. With SWS, again appropriate lifting and
lowering scripts need to be adapted for the replacement service. The generation of a
client stub for the integration of the service call into the client’s application is required
as described for WS-* services.

3 Services with uniform operations

3.1 RESTful APIs

Repelled by the complexity of the WS-* stack, there is a community proposing to move
toward a service model that is centered around resources for which the services pro-
vide a set of uniform operations. A major role plays Representational State Transfer
(REST [7]) as software architecture for distributed systems. In a REST architecture
client and server communicate in a synchronous request-response pattern. On the Web,
the constrained set of operations consists of HTTP verbs (e.g., GET, PUT, POST and
DELETE), in contrast to a SOAP communication design, where arbitrary operations
can be implemented all using the same verb (POST). A client applies the HTTP opera-
tions to resources addressed via individual URIs. A resource is anything that clients can
interact with while progressing toward their goal.

Client and server communicate representations of the state of resources. The for-
mat of a representation (i.e., content type) is supposed to be negotiated between client
and server, which use content type processors to read and produce the resource repre-
sentations in the supported formats. If client and server agree upon a specific content
type, they promise to understand and deliver the corresponding format of the resource
representation, thus forming a service contract.

The communication itself is stateless, which means a server immediately forgets
about a client after a request is served and a client can not assume that the resources of
the response remain unchanged on server after invocation. Every HTTP operation can
be performed independently from previous operations, due to the stateless communica-
tion.

Another feature of REST, the so-called hypermedia constraint, requires a server to
include links in the resource representations, so a client can discover new resources to
interact with. The provided links to other resources reflect possible next steps that a
client can take.

3.2 Linked APIs

Many approaches to semantically enable RESTful services [8, 14, 16] leverage the ad-
vantages coming from the combination of Linked Data technologies2 and service tech-
nologies [10]. These approaches (referred to as Linked APIs) view services primarily
as RDF prosumers, i.e., the state of resources is represented in RDF. RDF-based com-
munication enables service descriptions using graph patterns either in N3 or SPARQL.
An input graph pattern precisely describes the expected input graph, which is submitted
in a request. An output graph pattern formalises the content of the state representation

2 http://www.linkeddata.org/

SALAD 2013 Workshop – Services and Applications over Linked APIs and Data 31



in the response. The output pattern reuses variables from input pattern to make the rela-
tion between input and output explicit. The variables in the output, that do not originate
from the input pattern are bound by the service functionality.

3.3 Example

For discussing the implementation of the example using REST technologies we assume
the following resources: the uploaded picture (http://rest-PicHost.org/bucket/
pic01), the timeline of a micro blog (http://rest-MicroBlog.org/timeline),
and the post on the timeline that informs about the newly uploaded picture (http:
//rest-MicroBlog.org/timeline/post45).

Fig. 1: Client-server interaction with a RESTful API.

A client invokes a single service via submitting an HTTP request to a URI-identified
resource. A client interacting with the picture host API can upload a new picture by per-
forming an HTTP PUT, thus creating a new resource on the server. The request contains
the applied HTTP verb and if necessary a body, which holds input data. The request
header provides information about the content-type of the input data (e.g., image/jpeg)
and the content type of the expected output data. The response contains in its header
the status code, which provides information about the success of the request. The body
of the response contains optionally output data about the resource state (e.g., size of
the picture). The difference between the invocation of a traditional REST service and a
Linked API is that the content type of the transported data is RDF.

SALAD 2013 Workshop – Services and Applications over Linked APIs and Data 32



The connection of two services is simply a sequential execution of HTTP requests to
different resources. After uploading the picture, a client can publish information about
the picture upload to the user’s micro blog timeline by POSTing the information to his
timeline. The hypermedia constraint requires that the resource representation contains
links to other resources a client can interact with. This enables a client to discover the
next steps in his interaction toward his goal. If in our example the picture host coop-
erates with the micro blog (e.g., because he is owned by the same company), he can
include a link to the timeline resource in his response to the picture upload. A client can
be implemented to automatically POST information to the provided link, thus realising
a more flexible sequence of HTTP requests: If the picture host decides to outsource the
micro blog, he can simply include a different link in his responses without breaking
the interaction with existing clients. Figure 1 illustrates the client server interactions.
Linked APIs automatically fulfill the hypermedia constraint, due to the inherent design
of RDF. The communicated RDF data contains URIs that identify resources; the rep-
resentation of these resources can be retrieved via HTTP GET. However, to enable a
sophisticated interaction, links to resources should be included, which allow the appli-
cation of other HTTP verbs. In a Linked API a client can not only identify links, but
use the graph pattern-based descriptions to infer the effect an interaction has: the graph
patterns allow for a description of what should be communicated and provide an under-
standing of how the interaction influences a given resource. Therefore the descriptions
support a client in making automated interactions in a series of HTTP requests. The
descriptions provide a clear understanding of the effect an interaction with a resource
has and enable decisions on client side during runtime.

Substitution of a REST service primarily means an exchange of the resources (and
therefore URIs) a client interacts with. E.g., to submit the information about the picture
upload to a different micro blog timeline, the client has to send a similar HTTP POST
request using another URI that identifies the new micro blog timeline. If the new re-
source (i.e., timeline) understands different formats than the original resource, a client
in a traditional RESTful interaction would have to use another content type processor.
In an Linked API a client is relieved from choosing appropriate content type proces-
sors: since the resource representations are in RDF, client and server can use schema
information of the used RDF vocabularies to understand the communicated data. Fur-
thermore, the published graph patterns allow for clients to infer the required structure
of the submitted RDF data.

4 Discussion

Comparing the WS-* stack with REST architectures shows that WS-* and its semantic
extensions aim to establish a service model, that covers as many aspects of services as
possible (e.g., design, interaction, discovery, process description). REST only provides
a lean framework based on a constrained set of uniform operations, thus focussing on
the core aspects of services. The diversified service model of WS-* has lead to an intri-
cate design and interaction process, based on a variety of standards. Standards are in-
terchangeable due to a layered service model. Many of these standards focus on aspects
that are not directly addressed by HTTP-based REST services (e.g., policy, security).

SALAD 2013 Workshop – Services and Applications over Linked APIs and Data 33



The WS-* approach builds on the availability of tools to master much of its com-
plexity. One standard class of tools for WS-* are those that automatically create WSDL
descriptions from source code and vice versa. Such tools make it very easy to provide
and consume services for developers, but also lead to service interfaces that directly
reflect the internal implementation, because it is very easy to expose all methods of a
class. The tools can also create code that can be called like local code but encapsulate
a call to the service. Changes in the implementation of the service will often also re-
sult in changes in the service interface, although the basic functionality is unchanged
or only extended. Changes in the service interface will break the clients, which include
compiled code that was generated based on old versions of the WSDL file.

Semantic Web services inherit the benefits and complexity of WS-* and excel in the
increased degree of automation, e.g., in service discovery, mediation, and composition
However, the development and maintenance of necessary complex tool suites for the
SWS approaches suffers from missing industry backing. Furthermore, the manual pro-
vision of lifting and lowering can be very elaborate and hampers the flexibility of the
SWS vision.

REST aims at horizontal scalability by focussing on an extensible service model
that is integrated in the Web, rather than just using the Web as transportation layer for
messages. In a RESTful architecture loose coupling is the primacy of service design to
enable a dynamically interoperating ecosystem of services in the Web. Services realise
loose coupling by constraining the allowed operations to a uniform set of HTTP verbs
(in contrast to arbitrary operations in WS-*) to manipulate resources. Also the hyper-
media constraint contributes to the loose coupling by providing high flexibility in the
face of server-side changes: links to other resources, which are served by the server,
control the client behaviour at runtime. The interaction is not determined by something
that was decided in the past (like in a BPEL description for WS-* services).

There are no explicit mechanisms to support information integrity to prevent tight
coupling between client and server. REST services are ambivalent toward dangling
pointers. Only the response status codes allow a client to deal with moved or deleted
resources.

Performance is a drawback of REST services, due to the stateless synchronous
request-response pattern. A server is required to forget about a client after a response
(sessions are not allowed), therefore every request must contain all necessary informa-
tion. However, this issue can be mitigated by caching of resource representations.

Application-specific content types of various service providers require a client to
use specific content type processors. Even though this design fosters loose coupling
it results in heterogeneity of services, thus hampering service interoperability. Linked
APIs improve on service interoperability by leveraging RDF as self-descriptive content
type with shared understanding across domains.

Furthermore the use of RDF as state representation format allows to abandon the
introduction of an additional semantic layer in the service model, i.e., the linking of
syntactical descriptions to ontological concepts in the semantic extensions of WS-* (cf.
Section 2). The hypermedia constraint allows a client to see the next possible steps in
his interaction with a service. Linked APIs allow additionally to infer the consequences
of an interaction by providing graph pattern-based descriptions.

SALAD 2013 Workshop – Services and Applications over Linked APIs and Data 34



References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow pat-
terns. Distributed and Parallel Databases 14(1), 5–51 (2003)

2. Blaha, M.: Data modeling is important for soa. In: Trujillo, J., Dobbie, G., Kangassalo,
H., Hartmann, S., Kirchberg, M., Rossi, M., Reinhartz-Berger, I., Zimányi, E., Frasincar,
F. (eds.) Advances in Conceptual Modeling – Applications and Challenges, Lecture Notes
in Computer Science, vol. 6413, pp. 255–264. Springer Berlin / Heidelberg (2010), http:
//dx.doi.org/10.1007/978-3-642-16385-2_32, 10.1007/978-3-642-16385-2 32

3. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The web service modeling language wsml:
An overview. In: ESWC. pp. 590–604 (2006)

4. Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Tanasescu, V., Pedrinaci, C., Norton, B.:
Irs-iii: A broker for semantic web services based applications. In: In proceedings of the 5 th
International Semantic Web Conference (ISWC 2006. pp. 201–214 (2006)

5. Cardoso, J., Sheth, A.: Semantic Web Services, Processes and Applications. Springer (Au-
gust 2006)

6. Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., Domingue, J.:
Enabling Semantic Web Services: The Web Service Modeling Ontology. Springer (Novem-
ber 2006)

7. Fielding, R.: Architectural Styles and the Design of Network-based Software Architectures.
Ph.D. thesis, University of California, Irvine (2000)

8. Krummenacher, R., Norton, B., Marte, A.: Towards Linked Open Services. In: 3rd Future
Internet Symposium (September 2010)

9. Nitzsche, J., Van Lessen, T., Karastoyanova, D., Leymann, F.: Bpel for semantic web services
(bpel4sws). In: Proceedings of the 2007 OTM confederated international conference on On
the move to meaningful internet systems - Volume Part I. pp. 179–188. OTM’07, Springer-
Verlag, Berlin, Heidelberg (2007), http://dl.acm.org/citation.cfm?id=1780909.
1780953

10. Pedrinaci, C., Domingue, J., Krummenacher, R.: Services and the Web of Data: An Unex-
ploited Symbiosis. In: AAAI Spring Symposium (March 2010)

11. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media (May 2007)
12. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier,

C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied Ontology 1(1), 77–106
(2005)

13. Sbodio, M., Moulin, C.: SPARQL as an Expression Language for OWL-S. In: Workshop on
OWL-S: Experiences and Directions at 4th European Semantic Web Conference (June 2007)

14. Speiser, S., Harth, A.: Integrating linked data and services with linked data services. In:
Proceedings of 8th Extended Semantic Web Conference, ESWC 2011. pp. 170–184 (2011)

15. Studer, R., Grimm, S., Abecker, A. (eds.): Semantic Web Services: Concepts, Technologies,
and Applications. Springer (June 2007)

16. Verborgh, R., Steiner, T., Deursen, D.V., de Walle, R.V., Valls, J.G.: Efficient runtime service
discovery and consumption with hyperlinked restdesc. In: The 7th International Conference
on Next Generation Web Services Practices (NWeSP 2011 (2011)

17. Vitvar, T., Kopecky, J., Viskova, J., Fensel, D.: WSMO-Lite Annotations for Web Services.
In: 5th European Semantic Web Conferences. pp. 674–689 (June 2008)

SALAD 2013 Workshop – Services and Applications over Linked APIs and Data 35




