
Reasoning Support for OWL-E
(Extended Abstract)

Jeff Z. Pan

Department of Computer Science,
University of Manchester, UK M13 9PL

pan@cs.man.ac.uk

1 Introduction

The vision of the Semantic Web [2] is to make Web resources (not just HTML
pages, but a wide range of Web accessible data and services) more readily ac-
cessible to machines (or ‘intelligent agents’). Ontologies play a key role in the
Semantic Web by providing formal semantics to machine understandable anno-
tations.

OWL is a newly emerged W3C recommendation of expressing ontologies in
the Semantic Web, which provides three increasingly expressive sub-languages:
OWL Lite, OWL DL and OWL Full. Like DAML+OIL [6], OWL Lite and OWL
DL are basically very expressive DLs with an RDF [4] syntax. OWL Lite and
OWL DL are very close to the SHIF(D+) and SHOIN (D+) DLs; they can
thus exploit existing DL research, e.g., define the semantics of the language and
to understand its formal properties, in particular the decidability and complexity
of key reasoning services. OWL Full presents a more complete integration with
RDF(S), but its formal properties are less well understood, and it is clearly
undecidable. Therefore, when we talk about OWL reasoning, we mean OWL
Lite and OWL DL.

Although OWL is very expressive, the OWL datatype formalism (or simply
OWL datatyping) is far not expressive enough. E.g., OWL datatyping does not
provide a general framework for user-defined datatypes, such as XML Schema
derived datatypes [3], nor does it support n-ary datatype predicates (such as the
binary predicate > for integers), not to mention user-defined datatype predicates
(such as the binary predicate > for non-negative integers).

In this extended abstract, we show how to extend OWL datatyping to a
datatype expression formalism based on datatype groups, which provides a gen-
eral way to represent user-defined datatypes and datatype predicates, based on
datatype groups. The result is OWL-E, a language extending OWL DL with the
datatype group-based class constructors to allow the use of datatype expressions
in class restrictions. The novelty of OWL-E is that it enhances OWL DL with
much more datatype expressiveness and it is still decidable.

2 OWL and OWL Datatyping

In OWL, A datatype d is characterised by a lexical space, L(d), which is a set
of Unicode strings; a value space, V (d); and a total mapping L2V (d) from the
lexical space to the value space. E.g., boolean is a datatype with value space
{true, false}, lexical space {T,F,1,0} and lexical-to-value mapping {T 7→ true,
F7→ false, 17→ true, 07→ false}. Data values can be represented by typed literals
or plain literals, where typed literals are combinations of string and datatype
URIs, while plain literals are simply strings, with optional language tag. E.g.,
“1”ˆˆxsd:boolean is a typed literal, while “1” is a plain literal.

Datatype interpretations are relativised to a datatype map, which
is a partial mapping from datatype URIs to datatypes. E.g., Md1 =
{〈xsd:string, string〉, 〈xsd:integer, integer〉} is a datatype map. A datatype URI
u is called supported if Mp(u) is defined; otherwise, u is called unsupported.
E.g., xsd:string is a supported datatype URI w.r.t. Md1, while xsd:boolean is an
unsupported datatype URI w.r.t. Md1.

In OWL, ∆D (the datatype domain) w.r.t. to a datatype map is the union of
all the value spaces of all the supported datatypes together with the value space
of all the plain literals. Supported datatypes are interpreted as their value space,
unsupported datatypes are interpreted as any subsets of ∆D. Type literals are
interpreted as a member of the interpretation of the associated datatypes, while
plain literals are interpreted as themselves.

OWL provides a form of datatype expressions, called enumerated datatypes,
of the form oneOf(l1, . . . , ln), where l1, . . . , ln are literals, which is interpreted as
the union of all the interpretation of li (1 ≤ i ≤ n).

3 Motivating Examples

We provide some examples which cannot be represented by OWL datatyping.

– Ontologies and applications in the Semantic Web need to represent datatype
constraints over multiple datatype properties; e.g., the sum of the height,
length and width of an item should less than 15cm, or the itemPrice times
quantity of items should equal to totalPrice etc. We will extend OWL
datatyping with predicates by introducing datatype groups in the next sec-
tion.

– Ontologies and applications in the Semantic Web need to define user-defined
datatypes and user-defined datatype predicates for their own purposes. OWL
doesn’t support user-defined datatypes, such as derived XML Schema, be-
cause there is no standard access mechanism for derived XML Schema
datatypes, i.e., there is no standard way to access a derived XML Schema
datatype via a URI reference. Although the enumerated datatypes supports
some sorts of user-defined datatypes, they are far less than necessary: it is
difficult to use them to define derived datatypes like the integer range be-
tween 1 to 1,000,000; furthermore, they cannot be used to define infinite

datatypes (e.g., integers less than 12 or larger than 17), not to mention user-
defined predicates (such > for non-negative integers). In next section, we
will further introduce a more general datatype expression formalism.

4 Datatype Groups

In this section, we first extend OWL datatyping to support datatype pred-
icates. A datatype predicate (or simply predicate) p is characterised by an
arity a(p), and a predicate extension E(p). E.g., the integer equality ‘=int’
is a predicate with arity a(=int) = 2 and predicate extension E(=int) =
{〈i1, i2〉 ∈ E(integer)2 | i1 = i2}. It is obvious that datatypes can be seen as
predicates with arity 1, and their predicate extensions are equal to their value
spaces. Similar to their datatype counterparts, we have predicate maps, sup-
ported and unsupported predicates.

A datatype group G is a tuple (Mp,DG ,dom), where Mp is the predicate map
of G, DG is the set of base datatypes URI references of G, and dom is the declared
domain function of G. For convenience, we call ΦG the set of supported predicate
URI references in G, i.e., for each u ∈ ΦG , Mp(u) is defined; we require DG ⊆ ΦG .
We call UG the set of unsupported datatype URI references of G, i.e., for any
u ∈ UG , u 6∈ ΦG . We assume that there exists a unary predicate URI reference
owlx:DatatypeBottom in UG . The declared domain function dom is a mapping
s.t. ∀u ∈ DG : dom(u) = u, and ∀u ∈ ΦG , dom(u) ∈ (DG)n, where n = a(Mp(u)).
A datatype interpretation ID of a datatype group G = (Mp,DG , dom) is a pair
(∆D, ·D), where ∆D (the datatype domain) is a non-empty set and ·D is a
datatype interpretation function.1 The supported predicate URIs are interpreted
as their predicate extensions, while unsupported predicates are interpreted as
any subsets of (∆D)n, given an arity n.2

Intuitively speaking, a datatype group is a group of supported predicates (‘in-
cluded’ in a predicate map Mp), which can potentially be divided into different
sub-groups, so that predicates in each sub-group are about the base datatype
of the sub-group, where the declared domain function is used to relate sup-
ported predicate URIs to base datatype URIs. Therefore, we can make use of
known decidability results about the satisfiability problem of predicate (about
some datatype) conjunctions, such as the admissible/computable concrete do-
mains [1, 5] presented in Section 2.4 of [5]. Similar to admissible concrete do-
mains, we can define conforming datatype groups, with extra conditions in order
to guarantee the possibility of constructing a corresponding concrete domain for
each sub-group.

Now we introduce a datatype expression formalism based on datatype groups.
Let G = (Mp,DG , dom) be a datatype group, the set of G-datatype expressions,
abbreviated Dexp(G), is inductively defined as follows:
1 Because of limited of space, we cannot fully describe the interpretation of a datatype

group in this extended abstract, which will surely be available for the full paper.
2 n is the number of variables used with an unsupported predicate URI u; note that

we do not even know the arity of the predicate u represents.

Abstract Syntax DL Syntax Semantics

domain(u1, . . . , un) (u1, . . . , un) uD
1 × . . .× uD

n

And(P, Q) PuQ PD ∩QD

Or(P, Q) PtQ PD ∪QD

Table 1. Semantics of G-Datatype Expressions

Abstract Syntax DL Syntax Semantics

restriction({T}
someTuplesSatisfy(P))

∃T1, . . . , Tn.P {x ∈ ∆I | ∃t1, . . . , tn.〈x, ti〉 ∈ T I (for all
1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ PD}

restriction({T}
allTuplesSatisfy(P))

∀T1, . . . , Tn.P {x ∈ ∆I | ∀t1, . . . , tn.〈x, ti〉 ∈ T I (for all
1 ≤ i ≤ m) → 〈t1, . . . , tn〉 ∈ PD}

restriction({T} maxCardinality(m)
someTuplesSatisfy(P))

>mT1, . . . , Tn.P {x ∈ ∆I |]{〈t1, . . . , tn〉 | 〈x, ti〉 ∈ T I (for all
1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ PD} ≥ m}

restriction({T} minCardinality(m)
someTuplesSatisfy(P))

6mT1, . . . , Tn.P {x ∈ ∆I |]{〈t1, . . . , tn〉 | 〈x, ti〉 ∈ T I (for all
1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ PD} ≤ m}

Table 2. Datatype Group-based Concepts

1. ∀u ∈ ΦG ∪UG : u,∈ Dexp(G) (with arity a(Mp(u)) if u ∈ ΦG);
2. ∀u1, . . . , un ∈ sub-group(w) where w ∈ DG and a(Mp(ui)) = 1 (for all

1 ≤ i ≤ n): (u1, . . . , un) ∈ Dexp(G) (with arity n);
3. ∀P,Q ∈ Dexp(G) with the same arity n: P uQ,P tQ ∈ Dexp(G).

For any u ∈ ΦG ∪ UG , the semantics of u has been described above. The
abstract syntax and semantics of the rest G-datatype expressions are given in
Table 1. Let P be a G-datatype expression with an arity n, the negation of P is
of the form ¬P , and is interpreted as (∆D)n \ PD. It can be proved that for a
conforming datatype group G, the satisfiability problem of G-datatype expression
conjunctions is decidable.

5 OWL-E

We can extend OWL DL to OWL-E by introducing four new datatype group-
based concept constructors listed in Table 2 (where T1, . . . , Tn are datatype
properties and P is a G-datatype expression). Even though OWL-E is much more
expressive than OWL DL, in the sense of datatype expressiveness, OWL-E is still
decidable. In fact, it can be proved that we can combine any decidable description
logics that provide (at least) the conjunction and bottom constructors with the
four datatype group-based concept constructors (listed in Table 2), the combined
logics are still decidable.

Bibliography

[1] F. Baader and P. Hanschke. A Schema for Integrating Concrete Domains
into Concept Languages. In Proc. of the 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI’91), pages 452–457, 1991.

[2] T. Berners-Lee. Realising the Full Potential of the Web. W3C Document,
URL http://www.w3.org/1998/02/Potential.html, Dec 1997.

[3] P. V. Biron and A. Malhotra. Extensible Markup Language (XML) Schema
Part 2: Datatypes – W3C Recommendation 02 May 2001. Technical report,
World Wide Web Consortium, 2001. Available at http://www.w3.org/TR/
xmlschema-2/.

[4] D. Brickley and R. Guha. Resource Description Framework (RDF) Schema
Specification 1.0. W3C Recommentdation, URL http://www.w3.org/TR/
rdf-schema, Mar. 2000.

[5] C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD the-
sis, Teaching and Research Area for Theoretical Computer Science, RWTH
Aachen, 2001.

[6] F. van Harmelen, P. F. Patel-Schneider, and I. Horrocks. Reference
Description of the DAML+OIL(March 2001) Ontology Markuk Lan-
guage. DAML+OIL Document. Available at http://www.daml.org/2000/
12/reference.html, Mar. 2001.

