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ABSTRACT
Biomedical ontologies are becoming increasingly large and

complex. A single user cannot easily develop or maintain them.
Researchers have developed various automated techniques to assist
with ontology development and engineering at scale. However, these
solutions are not always complete. Microtask crowdsourcing, wherein
workers are paid small amounts to complete simple, short tasks, may
be one technique to alleviate some of the development difficulties.
Previously, we developed a method to verify an ontology hierarchy
using microtask crowdsourcing. In this work, we investigated
the finer details of the design and configuration of a hierarchy-
verification task. For example, when we provided definitions and
required qualifications, workers performed with 82% accuracy on the
hierarchy-verification task, compared to 50% without. We showed that
to achieve reasonable performance on such a task, workers require
context via definitions, tasks require qualifications that select a worker
with proper domain knowledge, and a question must be phrased with
the least cognitive load (i.e., in the simplest way).

1 INTRODUCTION
Ontology engineering is a labor-intensive and knowledge-intensive
task. As the size, number, and complexity of ontologies
grow, ontology engineering and maintenance becomes increasingly
difficult. Large biomedical ontologies containing tens of thousands
of classes, such as the Gene Ontology (GO) (GOConsortium, 2001),
are possible only through collaborative development. BioPortal—a
repository of ontologies in biomedical domain—has more than 320
entries at the time of this writing (Whetzel et al., 2011).

Researchers have worked to develop methods that automatically
perform various ontology-engineering tasks, including evaluating
ontology quality, performing alignment, and generating new
ontologies. For instance, the best automatic ontology alignment
tools now have precision as high as 78–90%, depending on the task
(Euzenat et al., 2011). Researchers in ontology learning from text
have succeeded in extracting ontology terms with 97% precision
(Kozareva and Hovy, 2010). However, in many cases, a fully
automatic solution is not feasible. For example, the subsumption
hierarchy that the ontology-learning tools induce is limited and
the recall is low, with the best tools achieving 40% recall at 95%
precision. Similarly, verifying that an ontology corresponds to an
experts model of the scientific domain is a time-consuming task that
requires checking every relationship in the ontology (Evermann and
Fang, 2010).

One avenue to overcome the difficulties of developing large,
complex ontologies is crowdsourcing, or human computation. In
this model, humans perform small tasks to help solve challenging
problems. Incentives can range from small payments to public
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recognition and social reputation to the desire to help scientific
progress (Raddick et al., 2009). There are various platforms, such
as Amazon’s Mechanical Turk, that enable a specific form of human
computation—microtask crowdsourcing. When scientists deploy
microtask crowdsourcing, they break their problem into small tasks,
each of which takes from a few seconds to a few minutes to
complete. They post these tasks in a virtual market, and workers
on this platform perform the tasks and collect small payments.
These tasks can involve, for example, identifying components in
an image, answering questions about a web page and finding
errors in a text. Researchers have shown that, if the tasks are
designed correctly, the workers can be very efficient in evaluating
user interfaces, finding grammatical errors in text, and re-writing
text (Bernstein et al., 2010). Recently, researchers have developed
special-purpose platforms such as Zooniverse (Raddick et al., 2009)
to involve citizen scientists in solving complex scientific problems
and fold.it (Cooper et al., 2010) to allow anybody to help predict
structures of proteins by playing games.

In previous work, we developed methods to crowdsource
ontology alignment and evaluation. First, we devised a workflow
for using microtasking as part of ontology alignment (Sarasua
et al., 2012). We generated candidate mappings with AROMA, an
automated ontology mapping tool that performed well in the 2011
Ontology Alignment Evaluation Initiative (OAEI) (David et al.,
2007). These candidate mappings initially had 35% precision and
46% recall. We then asked crowdsourced workers to verify these
candidates through microtasking. After the workers completed the
microtasks, precision increased to 75%, with none of the correct
mappings eliminated (i.e., no loss in recall). We also performed
preliminary studies to evaluate the feasibility of crowdsourcing in
verifying the subsumption structure of ontologies (the hierarchy-
verification task) (Noy et al., 2013). Workers achieved 89%
accuracy when verifying the hierarchy in WordNet and 81% when
verifying CARO, an anatomy ontology, thus performing similarly
to experts. These initial experiments show that workers in the crowd
can help us develop and maintain ontologies, even in specialized
domains.

We can present such tasks to workers in many forms. In
fact, Kittur and colleagues describe a significant change in
the performance of Mechanical Turk workers with only minor
modifications in experimental configuration (Kittur et al., 2008).
In psychology studies, for example, researchers consistently
demonstrated that participant selection, priming, question tone,
and context all affect performance and reliability (Schwarz, 1999;
Tanur, 1992). Thus, in this work, we focus on understanding how
best to configure the microtasks in order to improve the workers
performance in verifying biomedical ontologies. Specifically, we
examine the effect of different ways of asking questions, providing
context about ontology classes, and ways to select the workers
who are qualified to answer questions about biomedical ontologies.
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These studies will help us operationalize the use of microtask
crowdsourcing as a viable component in the workflow of developing
biomedical ontologies.

2 BACKGROUND
In this section, we provide background on microtask crowdsourcing
and its recent use for managing structured data. We then define the
specific task—the hierarchy-verification task—on which we focus
in this paper.

2.1 Microtask Crowdsourcing
In a microtasking platform, the requesters, who need to have
a certain task performed, divide the task into microtasks, with
each microtask usually requiring a few seconds to a few minutes
to complete. The requesters publish the microtasks in an online
marketplace, such as Mechanical Turk. The workers on the platform
find the tasks that they want to perform, and get paid to do the
work. When publishing a microtask, a requester specifies a number
of configuration parameters, such as the number of answers that
she needs for each microtask, the time to complete the microtask,
and any restrictions on the profile of the workers (e.g., geographical
location, knowledge of a specific natural language). In addition, the
requester can ask the workers to take a qualification test in order
to gain access to her tasks. Only workers who pass the test by
answering the percentage of questions that the requester specifies,
can access the tasks.

Upon completion of the tasks by the workers, the requester
collects and assesses the responses, and rewards the accepted
responses according to a pre-defined remuneration scheme. For
most platforms, the requester can automate the interaction with
the system via an API, while the workers undertake their tasks
using a Web-based interface generated by the requester. The overall
effectiveness of crowdsourcing can be influenced dramatically by
the way in which a requester packages a given problem as a series
of microtasks (Kittur et al., 2008; Franklin et al., 2011). Because
multiple workers can perform the same microtask, the requester
can implement different methods for pooling the results (Ipeirotis
et al., 2010). For example, the requester can use majority voting
(take the solution on which the majority of workers agree) or
more sophisticated techniques that take into account such factors
as the (estimated) expertise of specific workers, or the probabilistic
distribution of accuracy of the answers of a given worker.

2.2 Managing Structured Data
Researchers have successfully used human computation in
managing structured data (Quinn and Bederson, 2011). For
example, they have used so-called “games with a purpose”
for tasks ranging from image tagging (von Ahn and Dabbish,
2004) to ontology alignment (Thaler et al., 2011) and identity
resolution (Markotschi and Völker, 2010). In management of
structured and linked data, ZenCrowd, for example, combines the
results of automatically generated answers with the answers by
workers in order to link entities recognized in a text with entities in
the Linked Open Data cloud (Demartini et al., 2012). Simperl and
colleagues discuss the use of crowdsourcing for querying semantic
data (Simperl et al., 2011). Sarasua and colleagues studied the use of
microtask crowdsourcing to improve ontology alignment (Sarasua
et al., 2012). In CrowdDB (Franklin et al., 2011), workers fill out

missing information in a database table that is needed to answer a
query.

2.3 Hierarchy Verification Task
In most biomedical ontologies, the class hierarchy not only
constitutes the backbone of the structure, but also is the only
semantic relationship between classes that ontology developers
have defined. For example, we analyzed 296 public ontologies in
the BioPortal repository, which had at least one relation between
classes defined. In 54% of these ontologies, the subclass–superclass
relationship was the only relationship between classes. In 68% of
ontologies, the subclass–superclass relationships constituted more
than 80% of all relationships.

Thus, verifying how well the class hierarchy corresponds to
the domain will account for verification of a large fraction of the
relationship in biomedical ontologies. We have previously explored
applying crowdsourcing to the hierarchy-verification task. Based on
a study developed by Evermann and Fang (2010), we created a
crowdsourcing method of ontology verification, wherein workers
answer computer-generated questions based on ontology axioms.
For example, the following question is a hierarchy-verification
microtask for an ontology that contains classes Heart and Organ:

Is every Heart an Organ?
A worker then answers the question with a binary response

of“Yes” or “No.”
However, we can ask the same question in many different

ways, decide whether or not to provide context (such as the class
definition), or show only the class label. Furthermore, because
verifying statements from biomedical ontologies requires at least
some domain knowledge, we can also control who gets access to
our tasks. In this work, we study the effect of these parameters on
the accuracy of the workers’ performance.

3 METHODS
In order to determine the effect of various task configurations, we
generated a hierarchy-verification task, like the above example, in
various configurations. We then compared worker performance for
each configuration.

In summary, we performed three experiments varying the
following configuration elements to quantify their effect on worker
performance:

1. Question Formulation — What is the best way to ask a
hierarchy verification question? (Section 3.2)

2. Context — How can additional information improve worker
performance? (Section 3.3)

3. Qualification Tests — How can we select the appropriate users
for the ontology domain? (Section 3.4)

3.1 Base Protocol
In each experiment that follows, we used this base protocol.

3.1.1 Ontology As a representative biomedical ontology, we
used the most recent version of CARO (ver. 12/14/2011) that we
obtained from BioPortal.

3.1.2 Verifying the Hierarchy To create the verification questions
like the example above, we extracted pairs of classes that
had a subclassOf (parent–child) relationship defined between
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them. CARO has 49 classes and 48 directly asserted subclassOf
relationship. We chose pairs of classes for the microtasks randomly
from these 48 pairs. To generate pairs of classes that were not
actually in a subclass–superclass relationship, we randomly chose
pairs of classes from CARO and verified that they were not in those
48. While these negative relationships are not explicitly stated in the
ontology, they are non-sensical and very unlikely to be true.

Table 1 shows the complete set of pairs. Because CARO is heavily
curated, we used the ontology itself as the gold standard, assuming
that all the pairs of classes that it asserts to be related were indeed
related.

3.1.3 Creating a Verification Task We generated 28 questions
from the CARO concept pairs we extracted in the previous step.
Figure 1 shows an example task.

3.1.4 Cost After creating the questions, we submitted the task
to Amazon Mechanical Turk. We paid $0.10 to a worker when
they completed each task composed of 28 hierarchy-verification
questions. If a worker performed extremely well (with at least 75%
accuracy), we gave them a $0.10 bonus. We advertised this bonus
with the task, as researchers have shown that a potential bonus
increases the quality of the responses (Wang et al., 2012).

3.1.5 Number of Responses Our goal was to collect 32 qualified
responses in order to achieve statistical validity for the test. We
continued requesting responses until we had 32 non-spam responses
(see Section 3.1.6)

3.1.6 Spam Crowdsourced workers have an incentive to do the
least amount of work possible so they can get paid for the largest
number of tasks. Thus, many users are likely to give spam responses.
First, we require that users answer all questions. By doing so, the
effort to select any answer is almost the same as truly answering
a question. Second, we disqualified all the workers who had more
than 23 identical answers out of 28 (i.e., selecting TRUE or FALSE
more than 23 times), removing their responses from the analysis.
This filtering step allowed us to remove the workers who appeared to
have performed the task by purposefully selecting the same response
for every verification question.

3.1.7 Analysis After workers completed a task, we downloaded
and analyzed their responses. For each task configuration, we
measured the accuracy of each worker using the reference CARO
pairs. We compared worker accuracy between different task
configurations using the student’s t-test, which compares the
performance distribution of two groups, or ANOVA, which allows
for comparison between more than two groups. Because there
are many configurations, we used Bonferroni correction with the
statistical tests.

3.2 Verification Question Formulation
To determine the effect of question formulation, we varied the
question grammatical polarity as either positive or negative and the
mood as either interrogative (YES or NO) or indicative (TRUE or
FALSE). Table 2 presents the question forms. In this experiment, we

Ontology: CARO

Child Parent

TRUE statements

extraembryonic structure anatomical structure
simple cuboidal epithelium unilaminar epithelium
portion of tissue anatomical structure
anatomical structure material anatomical entity
multi-cell-component structure anatomical structure
unilaminar epithelium epithelium
hermaphroditic organism multi-cellular organism
protandrous hermaphroditic organism sequential hermaphroditic organism
sequential hermaphroditic organism hermaphroditic organism
anatomical point immaterial anatomical entity
anatomical line immaterial anatomical entity
acellular anatomical structure anatomical structure
compound organ component multi-tissue structure
male organism gonochoristic organism

FALSE statements

organism subdivision female organism
asexual organism multi-cell-component structure
portion of tissue anatomical space
acellular anatomical structure simple organ
single cell organism epithelial cell
compound organ cell component
male organism acellular anatomical structure
female organism cavitated compound organ
portion of cell substance simple columnar epithelium
basal lamina anatomical surface
anatomical cluster sequential hermaphroditic organism
anatomical point material anatomical entity
neuron projection bundle segment solid compound organ
extraembryonic structure hermaphroditic organism

Table 1. The pairs of term for the sentence verification tasks for CARO
with definitions. The table shows the data both for TRUE and FALSE

statements.

Fig. 1. A CARO hierarchy-verification task with definitions that workers
are paid to complete.

use parent–child relationships from WordNet,1 following a similar
procedure to generate the concept pairs as we did for CARO. Finally,

1 Due to time constraints, we have used WordNet concepts instead of CARO
concepts. We believe that the results from using WordNet concepts are useful
and are generally comparable to CARO concepts.
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we used ANOVA to determine if the difference in worker accuracy
and worker completion time is significant.

3.3 Adding Context with Concept Definitions
To determine the effect of adding context to a task, we retrieved
concept definitions and added them with the question text. We
then compared worker accuracy on tasks with and without
definitions. Specifically, we extracted these definitions from the
“def” annotation in CARO. For each concept in a question, we
provide the definition above the verification question. Figure 1
shows a task with definitions added. We then follow the base
protocol with the added definitions to the task.

3.4 Qualifications to Select Knowledgeable Workers
To select workers who would be more qualified to answer questions
based on biomedical ontologies and to improve the quality of
the answers, we use qualification tests asking workers to respond
to a number of domain-specific questions before they can work
on our tasks. For this configuration, we developed a 12-question
qualification test based on high-school biology questions. Figure 2
shows the beginning of this test.

Fig. 2. A biology qualification test that users must complete to gain access
to a hierarchy-verification task.

4 RESULTS
In total, we had 320 qualified responses. We paid the workers $32.00
dollars for the tasks and $20.30 in bonuses.

4.1 Question Formulation
First, we compared worker performance in terms of time and
accuracy when they were given different question formulations.Table 2
presents questions and worker performance . These results show
that questions formulated with a positive polarity in the indicative
mood elicit the best results in terms of accuracy (91%, p<0.005).
However, the positive, interrogative form leads to lowest response
times (114.8s, p<0.005). The results show that negative questions
do not elicit high quality or quick responses.

Example question Polarity Mood Time* Accuracy*
(sec)

Is Computer a kind of Machine? + Q 114.8 0.87
Is every Computer a Machine? + Q 123.7 0.87
Computer is a kind of Machine + S 121.1 0.91
Every Computer is a Machine + S 129.1 0.91
Is is possible that a Computer is not a
Machine?

- Q 164.3 0.82

Not every Computer is a Machine - S 138.8 0.77

*Significance p<0.005 via ANOVA
Q=Interrogative mood, S=indicative mood

Table 2. Average accuracy of workers on the same WordNet pairings with
verification task posed in different question forms.

Avg. Accuracy of Turkers vs Experts

No Qualifications Qualifications
No concept definitions 0.494 0.670

With concept definitions 0.640 0.818
Table 3. Average accuracy of turkers when validating hierarchical relations

in CARO, an anatomy ontology. All pairs significant at p<0.008 via
student’s t-test, except the task with qualification and no definitions

compared with the task with no qualification and definitions

4.2 Concept Definitions & Task Qualifications
Table 3 presents results for two other experiments. The table
compares the average performance of workers with and without
qualification test and with and without the context (i.e., definition
of the class). Clearly, the workers who achieved the highest
performance (82% accuracy) were the workers who had to pass the
qualification test and who were subsequently given the definitions of
the classes and not only their labels. Without qualification questions
and even with the context, the workers performance is only slightly
better than guessing.

5 DISCUSSION
This experiment highlights the effect of question formulation,
concept definitions, and qualification tests on the performance of
Mechanical Turk workers when performing hierarchy verification.
We showed that the best performing workers had tasks with
questions formulated in the most basic form, a domain-specific
qualification, and concept definitions for context.

5.1 Question Formulation
We observed a significant difference in accuracy and speed of
responses based on the formulation of the questions. While
we focused only on hierarchy-verification questions, our results
indicate that, when we apply similar methods to other types
of ontology-management tasks, we will need to account for the
possible performance differences due to question formulation. We
introduced the negative questions in an attempt to direct the workers
to think of exceptions to a hierarchical relation. However, it
appears that the additional cognitive load of a complex question
reduced performance. In fact, this result corroborates similar
conclusions from psychology research (Clark and Chase, 1972; Just
and Carpenter, 1971). In addition, we found that when verifying
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true relationships, workers performed better with positively formed
questions and with false relationships they performed better with
negatively formed questions. This finding makes intuitive sense,
but is not useful in practice because a system creating tasks would
not know ground truth. Our results indicate that it is worthwhile
to perform pilot experiments for new types of tasks to determine
the most optimal configuration. Furthermore, careful consideration
of study design like that of psychological test questionnaires is
necessary when designing microtasks. In our future research,
we plan to explore whether our finding that positive-polarity
and indicative-mood questions produce the best result can be
generalized to other smiler tasks.

5.2 Concept Definitions
As one might expect, adding concept definitions improved worker
performance. Workers who pass qualification tests likely have the
general knowledge but may not know a particular concept from
the ontology. These definitions provide the necessary context.
Generally, these results indicate that workers need context to
perform an ontology management task effectively. Therefore, when
designing a task, one must consider how much context to present a
worker without overwhelming her. In the future, we will consider
adding additional context clues, such as hierarchy, synonyms,
and references. To note, a definition may directly describe the
relationship between two concepts (e.g. ”A skin cell is a cell”).
We will also investigate strategies to correctly verify an ontology
via indirect hierarchy verification so that definitions do not directly
provide answers a hierarchy verification task.

5.3 Task Qualifications
We envisioned that qualification questions can serve three purposes.
First, they help filter out spammers, by requiring workers to answer
“free” questions before gaining access to the questions for which
they will be paid. Second, they determine whether a worker has the
necessary general knowledge to answer the hierarchy-verification
questions in a specific domain. Our results demonstrate that
qualification questions do indeed improve the quality of responses.
However, whether or not we had qualification questions had a
dramatic effect on the time that it took us to collect the responses. In
all cases, not having qualification questions produced the required
number of responses in a matter of minutes. With qualification
questions, regardless of whether they were simple or not, we had
to wait between 3-4 days to a week or two before we obtained the
required number of responses. However, ontology verification, and
ontology evaluation in general, is usually not a time-sensitive task.
Thus, in many cases, ontology developers might be able to request
that a module in their ontology gets verified by the crowd and come
back several days later to see the results.

5.4 Cost
A potential barrier to crowdsourcing ontology management is cost.
We have found that the cost is, in fact, reasonable. Based on
our current method, we pay workers between $0.003 and $0.004
per verification question (or subClassOf axiom). An ontology
such as SNOMED CT contains approximately 600,000 subClassOf
relations. Thus, verifying such a large ontology would cost $2,500
for each question to be verified once. To reach confidence about
responses, each axiom should be verified multiple times. Even so,

the task cost is much lower than that of a trained expert, and likely
can be completed more quickly.

5.5 Worker Spam
Crowdsourced workers have an incentive to do the least amount
of work possible so they can get paid for the most amount of
tasks. Thus, many users are likely to rapidly complete tasks and
give random responses which we consider to be spam. From our
experience, approximately 25% of responses are spam. This work
was not focused on spam removal, but as a naive approach to spam
removal, we first required that users answer all questions. By doing
so, the effort to select any answer is almost the same as truly
answering a question. Second, we disqualified all the workers who
had more than 23 identical answers out of 28 (i.e., selecting TRUE
or FALSE more than 23 times), removing their responses from
the analysis. This filtering step allowed us to remove the workers
who appeared to have performed the task by randomly selecting
responses.

5.6 Crowdsourcing as part of ontology development
As we continue to understand both the feasibility and the
best conditions to perform ontology-management tasks through
microtask crowdsourcing, we envision that crowdsourcing can
become a natural component of an ontology-development workflow.
For instance, an ontology worker may select a portion of an
ontology for which she needs additional quality assurance, generate
microtasks for the crowd, and get the results, which will highlight
potentially problematic areas of the ontology.

6 CONCLUSION
Ontology management via crowdsourcing provides a method to
alleviate ontology development difficulties, especially with large
ontologies. As we incorporate crowdsourcing components in
ontology-management platforms, we need to understand which
tasks are most amenable to crowdsourcing and how to configure the
tasks in order to achieve the best performance. In this paper, we
have demonstrated that when using microtask crowdsourcing for
ontology verification, qualification tests, definitions, and question
formulation significantly affect worker performance. We suggest
that such configuration parameters will be important in other
ontology management tasks.
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