

 1

Maintaining the Drug Ontology: an Open-source, Structured

Product Label API for the JVM

Roger A. Hall*, Josh Hanna, and William R. Hogan
Division of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA

ABSTRACT

Our use case for maintenance of the Drug Ontology includes

a semi-automated, daily process capable of importing new,

relevant information from a variety of linkable resources,

using fast and flexible algorithms with full access to all data.

Structured Product Labels contain linkable information re-

garding FDA approved drug products and the drug packages

in which they are sold, as well as ingredients and metadata

about the drugs. We created an Application Programming

Interface for SPLs using Scala, which will run on any imple-

mentation of the Java Virtual Machine (JVM) and is freely

available through an open-source license for any non-

commercial use.

1 INTRODUCTION

We are using Structured Product Labels (SPL) from the

Food and Drug Administration (FDA) to capture new drug

and related entities for representation in the Drug Ontology

(DrOn). The reason is that manufacturers must submit an

SPL for all new drugs approved in the United States, and

thus this information is “directly from the source”. It is also

much richer than what is available in drug terminologies

such as RxNorm. This paper describes our processes and the

software we are developing to support them for extracting

information from SPLs to update DrOn as new drug prod-

ucts come into existence.

SPLs are machine-readable files, submitted-to and re-

leased-by the FDA, containing prescription drug labeling

and product metadata, such as National Drug Codes (NDCs)

and drug product ingredients. They are available as full

“current revision” releases, and monthly, weekly, or daily

updates from the DailyMed website at

http://dailymed.nlm.nih.gov. Each archive release contains

individual archives. Each individual archive contains one

XML file and may contain zero or more “.jpg” image files,

which are referenced by the XML file.

SPLs have been found useful linking active ingredients

and chemical entities (Hassanzadeh et al., 2013), extracting

indication information (Fung et al., 2013), and improving

detection of drug-intolerance issues (Schadow, 2009) and

can be enhanced with current literature for greater safety,

efficacy, and effectiveness (Boyce et al., 2013).

* To whom correspondence should be addressed: rahall2@uams.edu

While a non-proprietary SPL parsing web service called

“LinkedSPLs” is available (Hassanzadeh et al., 2013), we

discuss below the lack of fitness for our use case.

Recent work (Hogan et al., 2013) has shown the benefit of

ontological realism for avoiding scientific inaccuracy with

the creation of the Drug Ontology (DrOn). In addition to

modeling drug products, ingredients, and their respective

dispositions, DrOn includes an extensive historical collec-

tion of identifiers such as NDCs. To keep DrOn updated as

new drug products come into existence, we have designed a

system for automated staging of data from three initial

sources: RxNorm, ChEBI, and SPLs (Fig 1).

In addition to the need to drive DrOn maintenance, we are

aware that SPL files are created by a large and diverse user

base in industry and submitted to the FDA, so we have also

included the capability to write SPL documents. Although

one free tool for creating and editing SPL files exists (“SPL

XForms”), we discuss here our motivations for creating a

new tool.

Our implementation is an Application Programming Inter-

face (API) for SPLs (SPL-API) which we use to update

DrOn each day using the “daily updates” from Dailymed.

Figure 1: SPL-API is a part of the DrOn ETL process for automatical-

ly regenerating DrOn modules holding externally sourced information

on drugs, ingredients, and dispositions.

Doe et al.

2

SPL-API also includes features for downloading and pars-

ing full releases and monthly and weekly updates.

Thus, the goal of this work is to create a generally useful

open-source parser and writer for SPL XML files, and to use

it within a larger system to update DrOn with applicable

classes and their relationships, enabling additional data to be

linked by other processes. As a result DrOn will be continu-

ously updated with new drug products as they are approved.

2 METHODS

The DrOn support system must Extract, Transform, and

Load (ETL) data from a variety of sources in order to auto-

matically rebuild the “lower ontology” containing specific

drug products from the latest sources. A DrOn Builder has

been previously implemented (Hanna et al., 2013) which

produces OWL 2.0 ontology modules from the initial DrOn

database. Here, we describe the methods completed and

planned to add SPL support to DrOn Builder.

2.1 Analysis of Existing SPL Tools

Our use case requires full access to all data in available re-

sources and flexible server-side processing, preferring a

local library over a connected service for both processing

speed and algorithmic flexibility.

LinkedSPL provides SPL content for prescription and

over-the-counter drugs, and is updated weekly. It can be

accessed through a SPARQL endpoint to acquire the free-

text contained in any “section” of the SPL file, which is

defined by the “<section>” tag-set. Although the LinkedSPL

software artifacts are freely available, and may be used lo-

cally, they are unable to report included label image files or

a link to them. LinkedSPL also only parses prescription and

OTC files, leaving out the “Remainder” labels (which in-

clude data on vaccines and some medical devices) and the

“Animal” labels. Additionally, DrOn is not currently using

RDF technologies (other than serialization of OWL into

RDF), so we seek to avoid the complexity of adding an in-

termediate representation to the system.

A browser-based editor (“SPL XForms”) for SPL format

XML files is also available (Pragmatic, 2010). Developed in

collaboration with the FDA, it can be used to view, create,

edit, and validate the XML data once a Java-helper is al-

lowed to load. Although useful to our study of individual

XML files, it is not freely available as a local library, and

thus could not be part of future system integrations.

2.2 Analysis of SPL Labels

Software was written to survey all XML elements and their

attributes and relationships. Survey data will be available

online (see section 3). An analysis was conducted on 45,182

SPL submissions in the Human Prescription, Human Over

The Counter, Medical Device, and Animal label sets availa-

ble as of April 22, 2013. The survey revealed elements that

were primarily classes, those that were primarily attributes,

and those that were unnecessarily verbose “wrapper” ele-

ments. Additionally, elements which are found in collec-

tions were identified using a “max and mean” algorithm.

SPL Documents have a fairly simple structure (Fig 2),

combining a metadata-filled header and a body (contained

in element <structuredBody>). The body contains a list of

“section” elements. Section elements contain other section

elements. While 90% of all files had 24 levels of nesting or

less, some runaways include 40 levels. We note that every

element deeper than 18 levels is related to a nested <con-

tainerPackagedProduct> element, which creates significant

ambiguity for parsing drug products.

Each section is “typed” by the loinc_code attribute ac-

cording to LOINC codes (e.g. “34067-9”) that identify the

common sections of SPLs (e.g. “Indications and Usage”).

There are 87 codes allowed per ucm162057.htm (FDA,

2013), but only 84 were observed. Most documents include

an SPL PRODUCT DATA ELEMENTS SECTION, an

INDICATIONS & USAGE SECTION, and a WARNINGS

SECTION. There was a mean of 1.48 PACKAGE

LABEL.PRINCIPAL DISPLAY PANEL sections per doc-

ument. All other codes were observed in less than half of the

documents (and most were observed in less than 20% of the

documents), while a full 33% of all SPL sections were cod-

ed as SPL UNCLASSIFIED SECTION, suggesting signifi-

cant limitations in the standard.

2.3 Technical Specifications

Our implementation is in Scala (version 2.10.1), which runs

on any Java Virtual Machine (JVM) implementation and

can be used within custom Java or Scala programs.

2.4 The DrOn Relational Schema

DrOn is influenced by RxNorm, and contains OWL 2.0

classes that model ingredients, semantic clinical drug forms,

Figure 2: The SPL Document structure includes "wrapper classes"

like <Component /> and "infinitely nest-able" <Sections />.

Maintaining the Drug Ontology: an Open-source, Structured Product Label API for the JVM

3

semantic clinical drugs, and semantic branded drugs (Hogan

et al., 2013). The staged data from all external resources

used to build the “lower ontology” in DrOn are stored in a

relational database whose schema follows the RxNorm file

format closely. We added additional tables to the core

schema for annotations regarding provenance, including a

system-standard field for an “external link” to a resource-

specific table. The external link can be used as an ID to load

a resource-specific helper module as described below. At a

minimum, the ID enables provenance for the external re-

source file. A “module” of resource-specific tables may be

added to capture desired data. Although persistence of the

all SPL information is unnecessary for our current integra-

tion with DrOn, our implementation represents all XML

classes and attributes (except for the lowest level classes

that represent HTML formatting of product labels). An ap-

plicable prefix for the table-set (e.g. “spl_”) helps separate

the tables visually when added to the same database.

The database currently holds on ~10
6
 entries; the authors

are experienced with databases containing ~10
9
 entries. In

the short term, expansion of ingredients and dispositions

will increase the database more quickly than new products.

2.5 XML to JVM Classes with Code Generation

Code generation (cogen) has been shown useful for creating

packages with numerous classes from OWL ontologies

(Kalyanpur et al., 2004). It has also been useful in generat-

ing SOAP clients from WSDL files (Simpkins, 2008).

We developed a custom code generation utility to gener-

ate Scala classes for the SPL XML Format using the refer-

enced XML Schema Definition (XSD), which validates the

SPL format, and the survey results (see section 2.2). Classes

were identified as elements (and their wrappers) which con-

tain a number of attributes and zero or more collections.

Attributes and elements of collections may both be typed as

other classes. Collections were implemented to hold lists of

child node types when necessary. Node types that never

contain other node types, such as <id />, <name>, and

<code />, are created as typed attributes of the classes that

represent the containing node types. Accessors were gener-

ated for attributes; iterators were generated for collections.

Instead of attempting to create classes at run-time through

the Java-beans paradigm (Kalyanpur et al., 2004), we chose

to keep code generation in a separate utility, and import the

resulting “top 34” classes into the dron.spl package.

2.6 The SPL-API

The parser and writer implementation is contained in the

package dron.spl. Three sets of classes are included; classes

that model the SPL XML format, classes that model the

products and packages represented in the SPL XML files,

and utilities necessary to manage Dailymed releases and

updates (Fig 3 does not show utilities).

The root Scala class is “SPLDocument”. At least one

SPLDocument instance is created for each SPL submission

file parsed (see section 2.8).

2.6.1 SPL XML Format

SPLDocument exposes classes and methods that represent

an abstract SPL document, which in turn utilize the cogen

classes that model the XML more exactly (Fig 3). A recur-

sive printing algorithm built into the cogen classes enables

the SPL-API to write SPL files.

When an XML element is always wrapped by another el-

ement, and the parent element never contains another ele-

ment, then only one cogen class is represented. There are

fourteen wrapped classes in SPL-API.

As an example of the layered class design, consider the

“ComponentStructuredBody” cogen class that represents the

XML elements for the SPL document body. (This class is

the “structuredBody” element wrapped with a “component”

element.) With this class, you can create a collection of

“ComponentSection” cogen classes. However, the better

approach would normally be to use the “section methods” of

SPLDocument (e.g. SPLDocument.addSection()) to manage

the sections of a document.

2.6.2 SPL Drug Classes

Classes for Drug Products, Ingredients, and Drug Label Da-

ta were created, along with a base class for Drug Packages.

Ingredients are maintained as a collection in the Products

class since each product may contain multiple ingredients,

and each ingredient has “active” or “inactive” status attrib-

ute. Additional attributes are planned, such as the “strength”

of the Ingredient within the Drug Product.

The primary subject of an SPL file—a drug package—is

implemented as two classes that are sub-classed from the

base class Package; SimplePackage and ComplexPackage.

Every instance of Package must be related to at least one

instance of Product. SimplePackage relates to exactly one

NDC, while a ComplexPackages contains a collection of

SimplePackage(s) along with its own metadata.

Parsing one SPL file produces a list of Package instances,

which will have one or more elements of Content of Label-

ing Data. Lists of Label Data are maintained as a collection

in the appropriate Package instance.
Figure 3: The SPL-API uses a set of 34 cogen classes that model

the XML precisely within a set of classes that model an SPL

document abstractly. The figure shows data flow for parsing.

Doe et al.

4

2.6.3 SPL-API File Utilities

We provide utilities for downloading full release and peri-

odic updates, unzipping downloaded archives, unzipping all

archives in a given directory, and unzipping individual sub-

mission archives. Additional data lookup utilities will be

added, for example to translate loinc_code(s) to text labels,

which is hoped to also assist users in minimizing the future

share of SPL UNCLASSIFIED sections.

2.7 Matching NDCs

For our use case, a key step in correctly identifying all of the

real drug products represented by the XML submission file

is to identify all NDCs, but NDCs are not encoded in the

XML scheme, and are only found in the free text of Product

Data Elements sections. They generally contain the text

string “NDC”, and they always conform to the NDC 10-

digit format (5-4-1, 4-4-2, or 5-3-2). We use pattern match-

ing to identify multiple NDCs per text section. The NDCs

that are found are checked against the National Drug Code

Directory (FDA, 2013). The ability to correctly match all

NDC’s affects the quality of the results of the Drug Package

listing (see section 2.6.2).

2.8 Core Document References

Of the 45,182 SPL submissions surveyed, 220 used the

XML tag-set “<relatedDocument>”. This tag includes the

“SetID” of a “Core Document Reference” (FDA, 2012)

(CDR), from which all sections are inherited by the contain-

ing document. When parsing a submission XML, the SPL-

API will load a related document if it is available within the

same directory, and create a separate instance of SPLDocu-

ment to hold the related document data. Documents that are

“parents” can still have a <relatedDocument> tag, so the

loading scheme is recursive, and is currently dependent on a

small level of nesting.

When using the Scala classes that represent the XML

model (see section 2.6.1), each SPL section is contained

within its proper document, and each related document is

accessible by the SPLDocument.getRelatedDocument()

property accessor.

When using the Scala classes that represent Drug Packag-

es (see section 2.6.2), all related documents are “flattened”,

and each section is included from all documents. Inheritance

rules are unclear, so all sections are currently collected by

section type. All identified Drug Products and Drug Packag-

es will be included in the list.

2.9 ETL and External Resource Helpers

In addition to the SPL-API, a “helper” will be developed to

load the parsed SPL data into the DrOn relational schema

(represented as gears in Fig 1). A plugin system added to the

DrOn builder will be able to identify the proper resource-

specific plugin and pass the initialization necessary to com-

plete loading for the next update.

3 CONCLUSION

We have developed an open-source API for processing

SPLs in a Java Virtual Machine. A developer’s release will

be made available at the start of VDOS 2013, and will be

available at: https://bitbucket.org/rogerhall68/spl-api.

Ongoing work includes loading processed data into the

Drug Ontology to keep it current as new drug products are

released.

ACKNOWLEDGEMENTS

This work was supported by award number UL1TR000039

from the National Center for Advancing Translational Sci-

ences, award R01GM101151 from the National Institute for

General Medical Science, and the Arkansas Biosciences

Institute, the major research component of the Arkansas

Tobacco Settlement Proceeds Act of 2000. This paper does

not represent the views of NCATS, NIGMS, or NIH.

REFERENCES

Dailymed, http://dailymed.nlm.nih.gov/dailymed/downloadLabels.cfm

Hassanzadeh, O., Zhu, Q., Freimuth, R., & Boyce, R. (2013) Extending the

“Web of Drug Identity” with Knowledge Extracted from United States

Product Labels. Proceedings of the 2013 AMIA Summit on Translation-

al Bioinformatics

Fung K.W., Jao C.S., & Demner-Fushman D. (2013) Extracting drug indi-

cation information from structured product labels using natural lan-

guages processing. J Am Med Inform Assoc. 2013 May 1;20(3):482-8

Schadow, G. (2009) Structured Product Labeling Improves Detection of

Drug-Intolerance Issues. J. Am Med Inform Assoc, 16, 211–219.

Boyce, R., Horn J.R., Hassanzadeh O., de Waard A., Schneider J., Luciano

J.S., Rastegar-Mojarad M., and Liakata M. (2013) Dynamic enhance-

ment of drug product labels to support drug safety, efficacy, and effec-

tiveness. J. Am Med Inform Assoc, 16, 211–219.

Hogan, W.R., Hanna, J., Joseph, E., and Brochausen, M. (2013). Towards a

Consistent and Scientifically Accurate Drug Ontology, This Volume.

Hanna J., Brochausen M., & Hogan W. R. (2013) Building a Realist Drug

Ontology using RxNorm and Other Sources. This Volume.

FDA (2013) ucm162057.htm

http://www.fda.gov/ForIndustry/DataStandards/StructuredProductLabel

ing/ucm162057.htm

Pragmatic Data (2010) SPL XForms, http://pragmaticdata.com/spl/form/

Kalyanpur, A., Pastor, D. J., Battle, S., & Padget, J. (2004, June). Automat-

ic mapping of OWL ontologies into Java. In SEKE (Vol. 4, pp. 98-103).

LinkedSPL, http://dbmi-icode-01.dbmi.pitt.edu/linkedSPLs/

SPL XForms, http://pragmaticdata.com/spl/form/

Simpkins N., Generating a client from WSDL,

http://www.eclipse.org/webtools/community/education/web/t320/Gene

rating_a_client_from_WSDL.pdf

FDA (2013) National Drug Code Directory

http://www.fda.gov/drugs/informationondrugs/ucm142438.htm

FDA (2012) Structured Product Labeling (SPL) Implementation Guide

with Validation Procedures

http://www.fda.gov/downloads/ForIndustry/DataStandards/StructuredProd

uctLabeling/UCM321876.pdf

https://bitbucket.org/rogerhall68/spl-api
http://dailymed.nlm.nih.gov/dailymed/downloadLabels.cfm
http://www.ncbi.nlm.nih.gov/pubmed/23475786
http://www.fda.gov/ForIndustry/DataStandards/StructuredProductLabeling/ucm162057.htm
http://www.fda.gov/ForIndustry/DataStandards/StructuredProductLabeling/ucm162057.htm
http://pragmaticdata.com/spl/form/
http://dbmi-icode-01.dbmi.pitt.edu/linkedSPLs/
http://pragmaticdata.com/spl/form/
http://www.eclipse.org/webtools/community/education/web/t320/Generating_a_client_from_WSDL.pdf
http://www.eclipse.org/webtools/community/education/web/t320/Generating_a_client_from_WSDL.pdf
http://www.fda.gov/drugs/informationondrugs/ucm142438.htm
http://www.fda.gov/downloads/ForIndustry/DataStandards/StructuredProductLabeling/UCM321876.pdf
http://www.fda.gov/downloads/ForIndustry/DataStandards/StructuredProductLabeling/UCM321876.pdf

