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Abstract. In this position paper we start with a motivation of our study
of modal/description logics with values in concept lattices. Then we give
a brief survey of approaches to lattice-valued modal and/or description
logics. After that we study some methods of context symmetrization,
because the description logic on concept lattices is defined for symmetric
co ntexts only. We conclude with a list of problems related to comparison
of different lattice-valued modal/description logics, different variants of
context symmetrization and resulting description logics, decidability and
axiomatization of these logics.

1 Introduction

Let us start with an example that can explain our interest to study of polymodal
and/or description logics with values in concept lattices. For it let us first fix
some moment of time and let (1) URL be the set of all Uniform Resource Locator
that are valid (exist) at this moment, (2) Key be the set of all Key-words in any
existing language that are conceivable in this time, (3) F , S and T be binary
relations on URL × Key that are implemented in some (non-real we assume)
search engines First, Second and Third at the same moment of time that we
fixed above.

Then let Sh&Ga be the set of all web-sites (their URL’s hereinafter) that
a search engine First finds by two key-words Shilov and Garanina; In terms
of Formal Concept Analysis (FCA) [4] Sh&Ga = {Shilov,Garanina}′ in the
following formal context F = (URL, KW, F ). Similarly, let Gr — be the set
of all web-sites that Second finds by searching for a single key-word Grebeneva;
in FCA terms one can write Gr = {Grebeneva}′ in the next one formal context
S = (URL, Key, S).

Assume that we need to know all sites Sh&Ga \ Gr that are found by
First by key-words Shilov and Garanina but that (according to Third) does
not contain any word that is common for all sites that are found by Sec-
ond for the key-word Grebeneva. In terms of set theory expanded by FCA-
derivatives the desired set can be written as URLSh&Ga \ URL′′Gr, where ‘ ′’
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represents derivative in the formal context T = (URL, Key, F ). Recall that
URLSh&Ga = {Shilov,Garanina}′ in KG, URLGr = {Grebeneva}′ in KY . So
we can not write the following equality

URLSh&Ga\Gr = {Shilov,Garanina}′ \ {Grebeneva}′′′,

but have to write another one

URLSh&Ga\Gr = {Shilov,Garanina}↓F \ {Grebeneva}↓S↑T ↓T ,

where ‘↓F ’ represents the lower derivative in the context F, ‘↓S ’ — the lower
derivative in the context S, and ‘↓T ’ and ‘ ↑T ’ — the lower and upper derivatives
in the context T. We believe that it would be nice to process queries like this one
but (unfortunately) modern search engines can not do it; a part of the reason for
this inability is due to lack of theory for processing such multi-context queries.

At the same time polymodal and/or descriptive logics (DL) [1] provide lan-
guage for presentation of queries as above. In particular, if T d denotes the inverse
of the binary relation T , then Sh&Ga \ Gr may be represented in syntax of a
polymodal logic by the following formula

[F ](Shilov&Garanina) & ¬[T ][T d][S]Grebeneva

or in syntax of a description logic as the following concept term

∀F.(Shilov uGaranina) u ¬∀T.∀T d.∀S.Grebeneva.

An interpretation of FCA constructs in DL has been studied in [7]. In these
studies DL has been extended by FCA-derivatives and provided with Kripke
semantics; as a result all concept terms are interpreted by sets of objects, not by
concepts (or their extents), a lattice-theoretic structure of formal concepts (that
is so important advantage of FCA) is lost.

A variant of description logic (namely ALC, Attribute Language with Com-
plements) with values in concept lattices was defined in [8] but without a concept
negation; the concept negation was defined only in concept lattices for symmetric
contexts (i.e. in contexts where sets of objects and attributes are equal and the
binary relation is symmetric). It implies that if we would like to define concept
lattice semantics for the DL concept term above, we have to symmetrize contexts
F, S and T in some manner. In this position paper we present some preliminary
results of our studies of ways of context symmetrization, formulate and discuss
some topics that need more research.

2 Lattice-valued Modal and Description Logics

Modal and Description Logic are closely related but different research paradigms:
they have different syntax and pragmatic, but very closely related semantics (in
spite of different terminology). Lattice-valued modal logics were introduced in
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[3, 2] by M.C. Fitting. They were studied in the cited papers from a proof-
theoretic point of view. Later several authors attempted study of these logics
from algebraic perspective [5, 6, 9]. Basic definitions related to modal logics on
lattices and completeness theorems can be found in [5].

Description Logic (DL) is a logic for reasoning about concepts. But there
is also an algebraic formalism developed around concepts in terms of concept
lattices, namely Formal Concept Analysis (FCA). In this section we recall in brief
definition of description logic ALC on concept lattices of (symmetric) contexts
and some properties that follow from this definition, please refer [8] for full
details. We use notation and definitions for Description Logics from [1]1. For the
basics and notation of Formal Concept Analysis, please, refer to [4].

Semantics of description logics on concept lattices comes from lattice-theoret-
ic characterization of ‘positive’ (i.e. without negation) concept constructs (for
close world semantics) that is given in the following proposition [8].

Proposition 1. Let (∆,Υ ) be a terminological interpretation and P (∆) = (2∆,
∅, ⊆, ∆, ∪, ∩) be the complete lattice of subsets of ∆. Then semantics of ALC
positive concept constructs >, ⊥, t, u, ∀, and ∃ enjoys the following properties
in P (∆): (1) Υ (>) = supP (∆), and Υ (⊥) = inf P (∆); (2) Υ (X t Y ) =
sup(Υ (X), Υ (Y )), and Υ (XuY ) = inf(Υ (X), Υ (Y )); (3) Υ (∀R. X) = sup{S ∈
P (∆) : ∀s ∈ S∀t ∈ ∆((s, t) ∈ Υ (R) ⇒ t ∈ Υ (X))}, (4) Υ (∃R. X) = sup{S ∈
P (∆) : ∀s ∈ S∃t ∈ ∆((s, t) ∈ Υ (R) & t ∈ Υ (X))}.

Conceptual interpretation is a formal context provided by an interpretation
function.

Definition 1.
Conceptual interpretation is a four-tuple (G,M, I, Υ ) where (G, M, I) is a for-
mal context, and an interpretation function Υ = ICS ∪ IRS , where CS and RS
are standard concept and role symbols, and (1) ICS : CS → B(G,M, I) maps
concept symbols to formal concepts, (2) IRS : RS → 2(G×G)∪(M×M) maps role
symbols to binary relations. A formal context (G,M, I) or conceptual interpre-
tation (G,M, I, Υ ) is said to be homogeneous (symmetric) if G = M (and binary
relation I is symmetric in addition).

Semantics of ALC positive concept constructs >, ⊥, t, u, ∀, and ∃ as well
as semantics of negative construct ¬ are defined in [8] as follows.

Definition 2.
Let (G,M, I, Υ ) be a conceptual interpretation, K be a formal context (G,M, I),
and B = (K) be the concept lattice of K. The interpretation function Υ can be
extended to all role terms in a terminological interpretation ((G ∪ M), Υ ) in
the standard manner so that Υ (R) is a binary relation on (G ∪M) for every
role term R. The interpretation function Υ can be extended to all positive ALC
concept terms as follows. (1) Υ (>) = supB and Υ (⊥) = inf B; (2) Υ (X t
Y ) = sup(Υ (X), Υ (Y )), and Υ (X u Y ) = inf(Υ (X), Υ (Y )); (3) Let Υ (X) =

1 But we use Υ instead of ‘·’ for terminological interpretation function for readability.
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(Ex′, In′) ∈ B. Then (a) Υ (∀R. X) = supK{(Ex, In) ∈ B : ∀o ∈ Ex ∀a ∈
In ∀o′ ∈ G ∃a′ ∈ M ((o, o′) ∈ Υ (R)⇒ o′ ∈ Ex′, (a, a′) ∈ Υ (R), and a′ ∈ In′)},
(b) I(∃R. X) = supK{(Ex, In) ∈ B : ∀o ∈ Ex ∀a ∈ In ∃o′ ∈ G ∀a′ ∈
M ((a, a′) ∈ Υ (R) ⇒ (o, o′) ∈ Υ (R), o′ ∈ Ex′, and a′ ∈ In′)}. In addition, if K
is a symmetric context and Υ (X) = (Ex, In) ∈ B, then Υ (¬X) = (In,Ex).

The following proposition [8] states that for any conceptual interpretation every
positive ALC concept term is an element of concept lattice; in addition, if an
interpretation is symmetric then this fact holds for all ALC concept terms.

Proposition 2. For any conceptual interpretation (G,M, I, Υ ), for every pos-
itive ALC concept term X, semantics Υ (X) is an element of B(G,M, I). For
any symmetric conceptual interpretation (D,D, I, Υ ), for every ALC concept
term X, semantics Υ (X) is an element of B(D,D, I).

3 Ways to Build a Symmetric Context

The above proposition 2 leads to the following idea: to define semantics of ALC
with values in an arbitrary concept lattice by isomorphic embedding of the back-
ground context into a symmetric one in such a way that for the positive fragment
of ALC the original semantics and the induced semantics equal each other. Be-
low we examine some opportunities how to “symmetrize” a given context, i.e.
to build a symmetric context from an arbitrary given background context. Be-
low we are going to study how to build a symmetric context from a given one
by set-theoretic and algebraic manipulations with a binary relation of the con-
text. Without loss of generality we may assume that the background context is
reduced [4] and has disjoint sets of objects and attributes.

Let K := (G,M, I) be a reduced context where G ∩ M = ∅ and Kd =
(M,G, I−) be its dual context. Let also use the following notation for binary
relations (on M and/or G): (1) ∅ be the empty binary relation, (2)× be a total
binary relation, (3) E be the identity binary relation, (4) Ec be the complement
for E. We would like to combine the cross-tables of K and the dual context

Kd into the symmetric one in the following way:
G M

G ? I
M I−1 ?

. Let us represent

the above cross-table in a shorter way as
? K
Kd ?

and denote the corresponding

symmetric context by K◦ := (G◦,M◦, I◦). Recall that B(G,M, I) is the concept
lattice of the context K, B(G◦,M◦, I◦) is the concept lattice of the context K◦.
Let us use the standard notation ‘′’ for derivatives in the background context K
but (for distinction) the notation ‘◦’ for derivatives in the symmetric one. We
are going to fill question quadrants by different combinations of ∅, ×, E and
Ec. Below we study 9 of these 16 combinations.

Case 1.
∅ K
Kd ∅ . It is the disjoint union of K and Kd. The concept lattice

B(K◦) = B(K
.∪ Kd) is a horizontal sum [4], i.e. the union of two sublattices

B(K) and B(Kd), such that B(K) ∩B(Kd) = {⊥,>}.
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Case 2.
× K
Kd ∅ . The concept lattice of this context is isomorphic to the

vertical sum [4] of the concept lattices B(Kd) and B(K) (where the concept
lattice B(Kd) is upper than B(K)).

Case 3. (∅,×). This case is the same like a previous, but we have to swap
components of the vertical sum.

Case 4.
× K
Kd × . We have here the direct sum K+Kd of contexts K and Kd

[4] and the concept lattice of the sum is isomorphic to the product of the concept
lattices B(K) ×B(Kd). A pair (A,B) is a concept of the direct sum (K + Kd)
iff (A ∩G,B ∩M) is a concept of K and (A ∩M,B ∩G) is a concept of Kd. It
implies that isomorphism is given by (A,B) 7→ ((A∩G,B∩M), (A∩M,B∩G)).

Case 5.
E K
Kd E . Let (X,Y ) ∈ B(K◦) be a concept and let X = A

.∪B where

A ⊆ G, B ⊆M . We have the following cases:
(1) B = ∅. Let X = A. If |A| = 1, then (X,Y ) = ({a}, {a} ∪A′), and (X,Y ) =
(A,A′) otherwise.
(2) A = ∅. Let X = B. If |B| = 1, then (X,Y ) = ({b}, {b} ∪B′), and (X,Y ) =
(B,B′) otherwise.
(3) |B| = 1 and A 6= ∅. Let X = A∪{b}. If {b} ∈ A′ and |A| = 1, then (X,Y ) =
({a} ∪ {b}, {a} ∪ {b}), and if {b} ∈ A′ |A| > 1, then (X,Y ) = (A ∪ {b}, {b}).
(4) |B| > 1 and A 6= ∅. Let |B| > 1, then X = A ∪B. If B ⊆ {a}′ and |A| = 1,
then (X,Y ) = ({a} ∪B, {a}).

Case 6.
∅ K
Kd E . This case is a very similar to the previous one.

(1) B = ∅. (X,Y ) = (A,A′).
(2) A = ∅. If |B| = 1 then (X,Y ) = ({b}, {b} ∪B′) else (X,Y ) = (B,B′).
(3) |B| = 1. If {b} ∈ A′, we have (X,Y ) = (A ∪ {b}, {b}).
(4) |B| > 1. All the concepts in this case will be either > or ⊥.

Case 7. (E,∅). This case is similar to the previous.

Case 8.
× K
Kd E . Let us use subcases as in the case 5.

(1) B = ∅. (X,Y ) = (A,G ∪A′).
(2) A = ∅. If |B| = 1, then (X,Y ) = ({b}, {b} ∪ B′), and (X,Y ) = (B,B′)
otherwise.
(3) |B| = 1. If {b} ∈ A′, then (X,Y ) = (A ∪ {b}, {b} ∪ {b}′), else (X,Y ) =
(A ∪ {b}, {b}′).
(4) |B| > 1. (X,Y ) = (A ∪B,B′).

Case 9. (E,×). This case is similar to the case 8.

4 Conclusion

Now we are ready to formulate several topics and problems that we consider
natural and important for further research.
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In [5] the definition for modal logics with values in a given finite distributive
lattice L is presented. This definition is easy to expand on polymodal logics.
In section 2 we represented the definition for description logic ALC (that can
be considered as a polymodal version of K) with values in concept lattices of
symmetric contexts. Assume that K is a finite symmetric context; then B(K)
is a finite lattice, but it may not be a distributive lattice. Question: Assuming
that B(K) is a finite distributive lattice, whether ALC with values in B(K) is a
polymodal B(K)-ML?

In section 2 we represented the definition for description logic ALC with
values in concept lattices of symmetric contexts and for positive fragment of
ALC with values in arbitrary concept lattices. Questions: (1) Is decidable or
axiomatizable the positive fragment of ALC with values in concept lattices? (2)
Is decidable or axiomatizable ALC with values in concept lattices of symmetric
contexts?

In the section 3 we examine 9 of 16 variants of context symmetrization.
Topics for further research are following: (1) to study the remaining 7 cases
of context symmetrization and isomorphic embedding with Ec in one or two
free quadrants; (2) to examine under which embedding from these in these 16
the induced semantics of the positive fragment of ALC is equal to the original
semantics.
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