
Event dashboard: Capturing user-defined semantics

events for event detection over real-time sensor data

 Jonathan Yu1 and Kerry Taylor2

 1 CSIRO Land and Water, Graham Road, Highett, Melbourne VIC 3190 Australia

2
 CSIRO ICT Centre GPO Box 664 Canberra ACT 2601 Australia

{Jonathan.Yu,Kerry.Taylor}@csiro.au

Abstract. Sensor networks provide the ability to observe physical phenomena

in real-time and provide useful information to help conservation and manage-

ment of environmental resources. However, sensor data meaning, format and

interface heterogeneity are barriers to effective discovery and analysis of events

of interest. We propose a web-based user application, the Event Dashboard,

which facilitates user capture semantics for events of interest over a sensor net-

work. The Event Dashboard user interface is driven by a set of ontologies,

which provide metadata about relevant domain concepts and the sensor net-

work. We utilise the SSN sensor ontology to capture constraints on the sensor

metadata. We propose ontology extensions for capturing domain and event se-

mantics using a case study in the water quality domain. Our approach allows

the event description to be abstracted from specific interfaces of a sensor net-

work and to be used for querying of sensor data. Event descriptions can subse-

quently be deployed through a semantic mediator to complex event processing

and stream processing implementations over a sensor network.

Keywords: ontologies, sensor networks, semantic sensor web, semantic sensor

network, user interface design

1 Introduction

Technological advancement has allowed real-time sensor data to be published and

shared through increased connectivity with physical devices through web services.

This is useful for informing policy and decision making in the management of the

environment, infrastructure assets, and early warning systems. However, protocols

and interfaces for discovery and access to sensors vary as they are not widely stan-

dardised. Service platforms and middleware technologies that provide standard (or de-

facto standard) protocols and Application Programming Interfaces (APIs) to allow

consistent access to sensors are essential in handling the heterogeneous nature of sen-

sor networks. Platforms, such as GSN [1], have provided the above features for ena-

bling sensor data to be available via web services.

Despite the availability of such service platforms, finding useful information

within the sensor data streams is still a challenge. Sensor data often provides parame-

ter level information about events about a physical phenomenon, and as such it can be

too fine-grained. Abstractions over the sensor data help to provide insight into signifi-

cant events, e.g. a flood event occurring when heavy precipitation takes place over a

short period of time.

However, users with domain knowledge and insight into these events are impeded

by having to learn the syntax, languages, data formats, and APIs associated with sen-

sor networks, their access protocols as well as middleware platforms such as GSN.

Users may also need to consider data quality issues that arise from handling raw data

streams. Without any appropriate user interfaces, the ability to directly interact and

perform high level queries on sensor data is impeded.

Kwon et al. [10] present a system called SCONSTREAM for aggregating spatial

data streams into spatial context streams based on spatial information maintained in a

sensor catalogue. This system provides a user interface (UI) to allow the definition of

spatial based queries, rather than on individual sensors. While this is a step towards

lowering the barrier for users, this approach does not allow for event detection based

on the semantics of the underlying sensor network expressed in a standard way, which

restricts its interoperability and extensibility.

The semantic annotation of sensor data through a Semantic Sensor Web (SSW) is a

proposed solution to the heterogeneity of sensor networks using ontologies and se-

mantic web technologies [16]. This approach assumes three things: users are compe-

tent with both the semantic rule language and the task of formulating appropriate

semantic rules; appropriate semantic rule engines are available; and standardised on-

tologies are available. At the time of the above work, sensor ontologies were not stan-

dardised, which meant that the semantics used lacked a common agreed representa-

tion of the semantics of a sensor network.

An alternative solution is to provide query languages to sensor data streams that

have been formalized using RDF. Calbimonte et al. [4] propose a method of accessing

sensor streams which have been mapped to an ontology via a data translation process.

This process produces RDF data streams from the raw sensor data streams. They pro-

pose SPARQLstream, for capturing queries to streaming RDF data that have been

translated from the raw sensor data. There are also other proposed solutions for query-

ing semantic sensor data, such as C-SPARQL [18, 3], CQELS [11] and EP-SPARQL

[2]. The limitations with such query-based approaches are that the set of query lan-

guage extensions has not been standardised and a representation of the sensor data in

RDF is assumed, which is certainly uncommon in practice. From a user’s perspective,

defining a query using such query-based approaches at the level of a user such as a

domain scientist is a significant barrier. Thus a more appropriate mechanism is re-

quired for such users.

The approach proposed by Yu et al. [19] seeks to address the above challenges us-

ing an ontology-based approach for complex event processing over a sensor network

(shown in Fig. 1). Yu et al. extends the prior work proposed in [17] using the SSN

ontology developed by the W3C SSN-XG working group for describing sensors that

is compatible with other standards [5], e.g. OGC Observations and Measurements.

They also propose the use of GSN as a platform for interfacing with sensors and pro-

viding stream processing capabilities. This enables users to define complex events

associated with the semantically annotated sensors. The current challenge in the

above work is the appropriate methodology for facilitating user definition of event

constraints. An event constraint relates to properties of the event of interest – that is,

physical, spatial, and temporal properties of a set of observations over the sensor net-

work, e.g. observed properties over a sensor network (physical) monitoring water

quality parameters for a storage dam (spatial) over hourly data (temporal). An event

constraint therefore captures the semantics of specific kinds of observation values

from sensor data streams, e.g. when air temperature exceeds 25C. This presents two

specific challenges: a) capture of event constraint semantics; and b) facilitating user-

based definition of event constraints via ontology-driven interfaces.

Fig. 1. Ontology-driven complex event processing over a sensor network

In this paper, we propose the Event Dashboard, which is an ontology-driven UI to

address the challenge of facilitating user definition of machine-readable semantic

descriptions of event constraints from the semantic descriptions of available sensors

in the sensor network. Our approach aims to resolve the data heterogeneity of sensor

networks by using a domain ontology, which extends the SSN ontology for represent-

ing semantics of a sensor network and relevant domain concepts. The Event Dash-

board directly uses the aforementioned ontologies to populate relevant UI elements

such as selection and input forms. We hypothesize that this approach helps to enable

users to express event constraints over a sensor network. The captured constraints of

event of interest can be then be used for deploying complex event queries that is com-

patible with the approach proposed in [19].

We present this work in the context of a case study for detecting water quality events

in water reservoirs in early warning systems, specifically algal bloom events. Nutrient

availability, such as nitrogen and phosphorus, has been studied and determined as a

factor in algal growth [15]. Detection can help authorities respond with appropriate

preventative management to mitigate potential algal bloom events. In this paper, we

will present a discussion of a domain ontology for representing event constraints to

support this case study, limiting our discussion to observations around water quality

chemical properties, such as Total Nitrogen, for which measurements are available.

The structure of the paper is as follows. Sections 2 and 3 discuss the SSN ontology

briefly, present our domain extensions in the context of annotating sensor observa-

tions of a Water feature, and propose a simple model for capturing event constraints.

In Section 4, we present the ontology-driven UI design and implementation details for

the Event Dashboard that enables the capture of events of interest. We then discuss

this specific ontology-driven UI with other related work in Section 5 and present con-

clusions in Section 6.

2 Extending the SSN Ontology with Domain concepts

Ontologies are key components in our approach. They are used to drive the UI and

allow users to select the appropriate set of event constraints. We propose domain

extensions to the SSN ontology represent sensor observations for a water feature over

a sensor providing a data stream and, more specifically, water quality chemical prop-

erties for Chaffey Dam sensor observations. We also reuse the Quantities, Units, Di-

mensions and Types (QUDT) ontologies [8] to represent the constraints around the

observation values from a sensor. In this paper, we present the OWL ontologies as

visualisations using the Cmap Ontology editor tool [6].

2.1 An observation-centric view of the SSN ontology

Fig. 2. Extract of the SSN ontology

The SSN ontology [5] models an observation with regards to a feature of interest, its

observed property and the result (shown in Fig. 2). The Observation class relates

to the Sensor class via two paths: via the sensingMethodUsed and the obser-

vationResult to the output of the sensor (i.e. the SensorOutput class). Focus-

ing on the SensorOutput class, it is modelled with a relationship to an Observa-

tionValue class, which is used to represent the value of the output from the sensor,

e.g. a value of 21 degrees Celsius for the property, Air Temperature, produced by a

temperature sensor. The rest of this section describes the specific extensions we have

made to the SSN ontology relating to the above extract of the SSN ontology for ena-

bling the representation of event constraints.

2.2 Representation of streaming sensor data observations for a water feature

with the SSN Ontology

We propose an an extension module to the SSN ontology by subclassing the follow-

ing SSN classes - Observation, Sensor, SensorOutput, and Obser-

vationValue, with classes defined in the ext: namespace to maintain the decla-

rations in our extension module separate from original SSN definitions (shown in

yellow in Fig. 3). We extend the ObservationValue class specifically with the

QuantityObservationValue class for representing quantity values with refer-

ence to a Unit of measure ontology. In this case, we utilise the Unit class from the

QUDT ontology [8], which is shown shaded in purple in the figure below. The inten-

tion is to allow the referencing of a subset of the defined units of measure instances

from the QUDT ontology. We a set of SSN classes to represent domain concepts

(shown in blue in Fig. 3). The domain extensions allow references to concepts relating

to observations of a Water Feature to be made, i.e. we extended the FeatureOf-

Interest class to define a WaterFeature class. This allows us to represent par-

ticular instances of water features, such as lakes, rivers, and storage dams.

Fig. 3. Domain extensions to the SSN ontology to allow representation of the sensor data

2.3 Representation of domain-specific observations for a water feature

We further extend the proposed SSN extension module to describe domain-specific

observation types. In the case of the Chaffey dam case study, we model observations

around water quality chemical properties in the Chaffey dam by introducing new

classes. We introduce the WaterQualityChemicalObservation class as a

new observation type and add a restriction for the observedBy property associating

it with the new sensor class, WaterQualitySensor (see Fig. 4). We add a prop-

erty restriction between a WaterFeature class and a new class, WaterQuali-

tyChemicalProperty to associate the kinds of water quality properties that is

possible for a water feature.

Fig. 4. Domain extensions to SSN ontology to represent Water Quality Chemical Observations

We define the following instances to support the definition of constraints around the

water chemical observations: TotalNitrogen, TotalPhosphorus, and Ph as

instances of the WaterQualityChemicalProperty class. Lastly, we include

the milligramPerLitre instance of the QUDT Units ontology for specifying the

units for the observation values and relate them to the respective property instances.

The above domain ontology allows us to model Chaffey Dam as an instance of a

water feature and associate it with specific water quality property instances in our

model, such as Total Nitrogen. The water quality instances in our domain model in-

clude relationships to the respective QUDT unit of measure instances. The instance

level information will be used for constraining available property and unit selection in

the UI. This is shown in green in the above figure.

We can also extend the model with other relevant observation properties, such as

meteorological properties relating to the spatial location of the water feature (e.g.

temperature, wind speed, atmospheric pressure, humidity, precipitation), and also

water quantity observation properties (e.g. flow and water level). To represent obser-

vations around these properties, the respective extensions would include appropriate

sensor classes relating to the added observation properties.

3 Representing event constraints

A model is required for capturing machine-readable descriptions of event constraints.

An event constraint in this context captures physical and spatial properties of a set of

observation values over the sensor network. In terms of defining these properties us-

ing the SSN ontology, we needed to capture constraints around the respective classes:

ssn:FeatureOfInterest, ssn:Property, and ssn:ObservationValue

(see Fig. 5).

Fig. 5. A model for capturing event constraints

We have introduced two main classes for handling the event constraint -

ed:EventRule and ed:ValueConstraint. Subsequently, we have defined

two classes which specialise these classes – ed:ValueConstraintEventRule

and ed:QuantityValueConstraint – to handle the definition of a class of

event constraints based on quantity value constraints.

The Value Constraint classes allow the definition of a value constraint such as, a

concentration value constraint with the milligrams per litre unit greater than the value

of 10.0, with the following OWL 2 RDF representation of concentrationCon-

straint (shown in Fig. 6 using Turtle syntax).

:concentrationConstraint a ed:QuantityValueConstraint ;

 ed:hasValue [

 a ext:QuantityObservationValue ;

 ext:hasQuantityValue "10.0"^^xsd:double ;

 ext:hasQuantityUnitOfMeasure qu:milligramsPerLitre;

] ;

 ed:hasLogicalOperator ">"^^xsd:string .

Fig. 6. OWL description of quantity value constraint

The ed:ValueConstraintEventRule class allows us to capture event con-

straints that associate the value constraints with the feature of interest (e.g. Chaffey

Dam), sensor (e.g. water quality sensor - chafchemvm) and observed property (e.g.

total phosphorus). This allows us to capture an event constraint such as highPhos-

phorusEvent as shown in Fig. 7.

:highPhosphorusEvent a ed:ValueConstraintEventRule ;

 ed:hasProperty water:TotalPhosphorusObservedProperty ;

 ed:hasFeature chaffey:ChaffeyDam ;

 ed:hasSensor :chafchemvm ;

 ed:hasValueConstraint :concentrationConstraint .

Fig. 7. OWL description of an event constraint

Using the above OWL model, therefore, enables the capture of machine-readable

descriptions of event constraints in a declarative manner, whilst reusing appropriate

SSN classes where possible. We have shown that we can use this model to capture

simple physical and spatial properties, and constraints over the observation values

relevant for a sensor network. We will use this model as the basis for proposing an

ontology-driven UI that allows users to express these constraints.

4 The Event Dashboard

We present the design and implementation details for an ontology-driven UI to facili-

tate the capture of constraints over observations. The UI uses the domain extensions

to the SSN ontology and event constraint model described in the previous two sec-

tions, which we refer to as the domain ontology. The domain ontology provides the

metadata about relevant domain concepts and the sensor network. This allows for a

simple method of capturing machine-readable descriptions of event constraints with-

out the user having to learn the syntax and language of the ontology specification

language. We seek to capture constraints over events of interest using ontological

descriptions via our proposed UI.

4.1 Leveraging the ontology in the UI

Classes in the SSN ontology are used to bind the various UI panels with appropriate

details. Observation constraints are key components in specifying events of interest.

Thus, we propose a UI design with three panels (see Fig. 8).

Fig. 8. UI for specifying constraints for the observed property

The first panel, the Observation selection panel (shown in the top of Fig. 8), captures

the various constraints that require a selection of the observation class. The second

panel, the Properties panel (shown on the left side of Fig. 8), presents the user with

the property restrictions for the selected observation. The third and last panel, the

Constraints panel (shown on the right side of Fig. 8), presents to the user an appropri-

ate form for users to input the appropriate constraints in context of the selected obser-

vation and property restriction (Constraints panel). The three panels allow the user to

add a constraint definition. Users can append constraints one after another by interact-

ing with this form such that users can define conjunctive constraints on the set of

properties listed in the Properties panel.

 OWL API [9] is used to interface with the ontologies and is used, with reasoning

capabilities provided by the Pellet reasoner [12], to populate components such as the

list of observation subclasses for the observation selection drop-down box, the list of

property restrictions for the selected observation class for the properties panel and the

appropriate forms and input widgets for the constraints panel (e.g. list of instances for

the appropriate class of the property restriction selection).

The UI is implemented with a binding to the URIs of classes in the SSN ontology.

For example, the Observation selection panel is bound to the URI of the Observa-

tion class in the SSN ontology. This allows for the UI to be unchanged for other

domain extensions of the SSN ontology. It also allows for the UI to incorporate any

additional extensions to the domain ontology.

The UI is implemented using the following APIs: Google Web Toolkit API, OWL

API, and the Pellet reasoner. The Google Web Toolkit (GWT) allows us to develop

UIs with the look and feel of standard HTML forms and allows our application to be

deployed on servers such as Apache Tomcat for access via standard web browsers.

Due to technical challenges, we have developed additional software libraries that

bridge GWT and ontology tools, such as, OWL API, for building the ontology driven

UIs. The bridging software libraries are available via GitHub
1
.

4.2 Specifying observed property constraints

In Fig. 8, we show how constraints for an observed property of the

WaterQualityChemicalObservation class are specified via the UI. The

observedProperty property restriction is selected in the Properties panel. The UI

uses OWL API and the reasoner to evaluate an appropriate Property class for the

observedProperty of the selected observation class. In this case, the

observedProperty of a WaterQualityChemicalObservation is

WaterQualityChemicalProperty. For this particular case, to specify an

observedProperty property constraint, the Constraints panel displays the list of

available instances corresponding to the modeled class,

WaterQualityChemicalProperty. In the example shown in Fig. 8, the user

has selected TotalNitrogen is selected as the constraint for the

observedProperty. The constraint captured with this UI populates the respective

information in the event constraint definition as per the following:

:exampleEventConstraint a ed:ValueConstraintEventRule ;

 ed:hasProperty water:TotalNitrogenObservedProperty .

4.3 Specifying observedResult constraint

Another key requirement in specifying an observation constraint is defining a con-

straint on the observation result. The interface design for capturing the observed result

constraint is more complex than the previous UI presented in Section 4.1, due to the

way the SSN ontology models the result.

Fig. 9. Extract of the domain ontology around observation result

1 https://github.com/jyucsiro/gwt-ontology-lib

In the SSN ontology, an Observation has an associated observationRe-

sult property with a SensorOutput class. The SensorOutput class has an

association with a QuantityObservationValue class. The domain ontology

extensions we propose allow for quantity observation values to be represented (shown

in Fig. 9).

To adequately capture the constraint of a sensor output, the interface design re-

quires a specification of an instance of SensorOutput class to encapsulate the

modelling of the domain ontology as shown in the above figure. An example of the

UI selection to facilitate the input of a logical constraint for the QuantityObser-

vationValue is shown in Fig. 10.

For this particular case, as shown in the below figure, we needed to create a cus-

tomised form layout using the ontology-driven UI APIs to flatten the property chains

from an Observation class to a definition of a constraint on a

QuantityObservationValue class. We bind the cu stomised form input ele-

ments to corresponding elements in the SSN ontology and our extension module,

rather than the domain ontology to enable reusability in other domains. Based on the

context of the user selection, the OWL API and Pellet reasoner is used to evaluate the

appropriate domain specific Sensor and SensorOutput classes. The figure below

shows an example where the reasoner has evaluated the appropriate Sensor and

SensorOutput classes for an observationResult of a

WaterQualityChemicalObservation class SensorOutput and

WaterQualitySensor respectively.

Fig. 10. User interface for specifying an observation result

We define a datatype for expressing logical comparison operators (shown in Fig. 11).

 ed:LogicalOperator a rdfs:Datatype ;

 owl:oneOf (">"^^xsd:string

 "<="^^xsd:string

 ">="^^xsd:string

 "=="^^xsd:string

 "<"^^xsd:string) .

Fig. 11. OWL Datatype definition of Logical Operator

This is used to populate the list of available logical-operator constraints on the

QuantityObservationValue section of the customised form. In the example in

the above figure, the constraint on the QuantityObservationValue is “greater-

than a value of 10.0”. This updates the event constraint as shown in Fig. 12.

:exampleEventConstraint a ed:ValueConstraintEventRule ;

 ed:hasProperty water:TotalNitrogenObservedProperty ;

 ed:hasValueConstraint [

 a ed:QuantityValueConstraint ;

 ed:hasLogicalOperator ">"^^xsd:string .

 ed:hasValue [

 a ext:QuantityObservationValue ;

 ext:hasQuantityValue "10.0"^^xsd:double ;

 ext:hasQuantityUnitOfMeasure

 qu:milligramsPerLitre;

] ;

].

Fig. 12. Example event constraint OWL description expressed using Turtle syntax

4.4 Specifying observedBy constraint

Constraining the sensor selection is a key requirement. The observedBy property

restriction for an Observation class associates directly with a Sensor class. The

UI design to capture the constraint allows users to be able to select from a list of ap-

propriate Sensor instances. Users can select Sensor instances for the selected

Observation class using the right hand side “Constraints” panel of the UI (shown

in Fig. 13).

Fig. 13. User interface for specifying the observed by constraint

 This yields the following expression:
 :exampleEventConstraint a ed:ValueConstraintEventRule ;

 ed:hasSensor chaffey:chafchemjsoncallvs1 .

A fuller example of the capability offered with the above UIs is shown below in Fig.

14 for defining a high total nitrogen event: which is defined to be for WaterQuali-

tyChemicalObservation on a Sensor, which observes the TotalNitro-

gen property with a value greater than 10.0.

:HighNitrogenEventConstraint a ed:ValueConstraintEventRule ;

 ed:hasProperty water:TotalNitrogenObservedProperty ;

 ed:hasFeature chaffey:ChaffeyDam ;

 ed:hasSensor :chafchemvm ;

 ed:hasValueConstraint [

 a ed:QuantityValueConstraint ;

 ed:hasLogicalOperator ">"^^xsd:string .

 ed:hasValue [

 a ext:QuantityObservationValue ;

 ext:hasQuantityValue "10.0"^^xsd:double ;

 ext:hasQuantityUnitOfMeasure

 qu:milligramsPerLitre;

] ;

];

].

Fig. 14. OWL description of complete example of an event constraint

5 Discussion

The proposed Event Dashboard facilitates the capture of user-defined constraints

around observation events as machine-readable descriptions based on the domain

ontology and the SSN ontology. This allows the event definition to be abstracted from

the UI implementation while retaining machine-readable domain and sensor seman-

tics. With the proposed UI, users are able to capture a range of domain specific event

constraints over a sensor network. The captured constraints of event of interest can be

then be used for deploying complex event queries that is compatible with the ap-

proach proposed in [19].

Table 1. Characteristics of our use of ontologies for user interfaces as defined by [13]

Characteristics Classifications

Domain Real world IT Systems Users and roles

Complexity Informal Low Medium High

Usage Design time Run time

Visualization None List Graphical Verbalized Source

code

Interaction None View View and edit

In Table 1, we codify our usage of ontologies in the interface according to the

classification system presented by [13]. The proposed ontology-driven UI has a high

level of interaction, as it allows users to view the ontology base and edit the ontology

base for adding and deleting OWL individuals for event constraints. The set of ontol-

ogies used to drive the UI has a relatively high degree of complexity, according to the

classification system, as we are utilizing OWL DL to capture the appropriate seman-

tics and constraints. There are also a number of features that possess a moderate to

high level of visualization as the ontology is used to populate lists, drop-boxes, tree

structures and textual descriptions.

It is highlighted that most approaches to ontology-enabled UI applications use static

ontologies due to lack of useful scenarios for editing ontologies, and the ability of

users to edit ontologies [13]. This work demonstrates a scenario for using an applica-

tion for using ontologies beyond the static scenarios. We have shown that a key aspect

of the proposed UI is the ability to create and edit semantic descriptions of domain

specific event constraints using ontologies, although this is currently limited to adding

and deleting individuals as opposed to other kinds of ontological descriptions, e.g.

class descriptions. The issue around users lacking the ability to edit ontology and

preventing the use of alterable ontologies may be due to the fact that describing se-

mantics using ontology languages, such as OWL, is difficult and beyond user groups

like domain scientists and managers. That is not to say that the scenarios and use cas-

es do not exist, as we discussed earlier. The reason could be linked to barriers in terms

of suitable tools to allow these users to specify semantics using familiar interfaces,

rather than the need for specifying the semantics. Our approach seeks to overcome

these barriers and facilitate user-definition of semantics of event constraints by build-

ing an ontology UI library on which our ontology-driven UI is based on. A user study

to comparing our approach with existing ontology editing tools is required to test this

hypothesis.

An alternative approach to our ontology-driven UI is presented in [7]. They present

a generalized approach for generating ontology-driven UIs for capturing descriptions

of instances and related property instances. Our work differs as we specifically bind

our UI to the SSN ontology and our extension module. The drawback is that as our UI

is tightly coupled to the SSN ontology, and is sensitive to any significant changes to

the design of the SSN ontology and our extension module. The advantage of our ap-

proach is that our UI is tailored specifically for the creating semantic descriptions of

event constraints over a sensor network and thus provides a more customized look

and feel to the user experience in this context.

In Sections 2 and 3, we presented an extension module to the SSN ontology, other

domain extensions and a model for describing the semantics of an event constraint.

The extensions and model for event constraints allow the description of domain of

interest and events to be used for the respective domain users, with specific modeling

around the sensors, observations, and observed properties. The methodology used to

extend the SSN ontology can be used for modeling other domains so that the seman-

tics captured are modeled have the same level of granularity, for example, modeling

other domains such as soil observations. Because the UI is not bound to a specific

domain, it allows the UI to be reused based on a given domain ontology.

In this work, we have explored how event constraints are defined for a simple set

of observation use cases. We presented an OWL model for capturing machine-

readable descriptions of event constraints. Although, capturing event constraints using

OWL presents an overhead over defining queries in a complex event processing en-

gine, it allows a level of flexibility as the semantics are abstracted. Event constraints

can potentially be deployed over a wider range of complex event processing imple-

mentations, provided that the appropriate semantic mediators exist or are developed.

We chose to capture the event constraints using OWL over rule-based languages,

such as RIF, SWRL and SPIN, and query languages, such as SPARQL, as they re-

strict further reasoning and processing that our approach allows. Using OWL to de-

fine event constraints allows us to use URIs for tying subsequent event notifications

to the event rule, i.e. for provenance. It also allows for semantic optimization of trans-

lation processes between an event constraint and a complex event processing imple-

mentation, e.g. subsumed relationships between event constraints can be collated and

processed together. The current UI design is not exhaustive and does not allow for

additional constraints parameters to be captured, such as user-defined spatial geome-

tries and temporal aspects. The current UI can be extended to provide the ability for

users to specify windowing over a sensor output, for example, specifying a window of

observations over a 24-hour period, by modeling the windowing semantics in the

domain ontology. The UI can also be extended to describe more sophisticated event

semantics, for example, for allowing a user to express events arising from causality or

correlation by incorporating additional event semantics such as that proposed by [14].

We plan to address the above UI extensions in future work.

6 Conclusion

We have presented an ontology-driven UI to facilitate the capture of event constraints

on observations in a sensor network. The proposed UI does not require users to learn

query languages, sensor network APIs, or ontology languages. Rather, the UI directly

uses the domain ontology to populate selection and input forms to allow users such as,

domain scientists, to express event constraints over a sensor network.

We extended the SSN ontology with an extension module for specifying quantities

and domain concepts as well as a simple event model for enabling the capture event

constraints, such as, water quality event constraints for the Chaffey Dam. The meth-

odology of extending the SSN ontology with domain concepts can be applied to rep-

resent other kinds of observations, such as water quantity observations. Because the

UI is coupled to the SSN ontology and our extension module, it allows the UI to be

unchanged for other domain extensions of the SSN ontology. We have also proposed

an OWL 2 model for capturing event constraints.

Although the set of UIs presented in this paper is not exhaustive, it offers a capabil-

ity for users to specify a range of events constraints over sensor observations and their

properties. For future work, we propose expanding the UIs for sensor mapping and

model-driven generation of sensor stream processing code through semantic media-

tion for deployment to sensor network middleware technologies, such as GSN.

We also propose UI and ontology extensions to allow users to represent data

stream windowing and other event semantics in future work. The GSN semantic me-

diator requires further development for generating a broader range of virtual sensor

descriptions. Lastly, we suggest the application our approach for wider range of event

detection scenarios in the water and hydrology domain, such flash flood detection.

Acknowledgements. We thank our colleagues at CSIRO: Bradford Sherman for his

expertise in the water quality, and Laurent Lefort for his helpful review of this work.

7 References

[1] K. Aberer, M. Hauswirth, and A. Salehi. A middleware for fast and flexible sensor net-

work deployment. In Proc. Intl. Conf. Very Large Data bases, VLDB ’06, pp. 1199–1202,

2006.

[2] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: a unified language for

event processing and stream reasoning. In Proc. of the 20th Intl. Conf. on World Wide Web,

WWW’11, pages 635–644, NY, USA, 2011. ACM.

[3] D.F. Barbieri, D. Braga, S. Ceri, E.D. Valle, and M. Grossniklaus. Querying RDF streams

with C-SPARQL. SIGMOD Rec., 39(1):20–26, Sept 2010.

[4] J.P. Calbimonte, O. Corcho, and A.J. Gray. Enabling ontology-based access to streaming

data sources. In The Semantic Web (ISWC), LNCS 6496:96–111. Springer, 2010.

[5] M. Compton, P. Barnaghi, L. Bermudez, R. Garcia-Castro, et al. The SSN Ontology of the

W3C Semantic Sensor Network Incubator Group. Web Semantics: Science, Services and

Agents on the World Wide Web, 17:25–32, Dec 2012.

[6] T. Eskridge, P. Hayes, R. Hoffman, et al. Formalizing the informal: A confluence of con-

cept mapping and the semantic web. In Proc. 2nd Intl. Conf. Concept Mapping, Vol.1, 2006.

[7] A. Haller, T. Groza, and F. Rosenberg. Interacting with linked data via semantically anno-

tated widgets. In Proc. Joint Intl. Semantic Tech. Conf. (JIST), December 2011.

[8] R. Hodgson and P.J. Keller. QUDT - quantities, units, dimensions and data types in OWL

and XML, September 2011. http://www.qudt.org (Accessed Dec 2012).

[9] M. Horridge and S. Bechhofer. The OWL API: a Java API for working with OWL 2 on-

tologies. Proc. of OWL Experiences and Directions, 2009.

[10] O. Kwon, Y.S. Song, J.H. Kim, and K.J. Li. SCONSTREAM: A spatial context stream

processing system. In Proc. Intl. Conf. Comp.Sci. & Applications (ICCSA), pp. 165–170, 2010.

[11] D. Le-Phuoc, M. Dao-Tran, J. Xavier Parreira, and M. Hauswirth. A native and adaptive

approach for unified processing of linked streams and linked data. In The Semantic Web –

ISWC 2011, LNCS 7031:370–388. Springer Berlin Heidelberg, 2011.

[12] B. Parsia and E. Sirin. Pellet: An OWL DL reasoner. In The Semantic Web Conference-

Poster, p.18, 2004.

[13] H. Paulheim and F. Probst. Ontology-enhanced user interfaces: A survey. International

Journal on Semantic Web and Information Systems (IJSWIS), 6(2):36–59, 2010.

[14] A. Scherp, T. Franz, C. Saathoff, and S. Staab. F–a model of events based on the founda-

tional ontology dolce+ DnS ultralight. In Proc. Intl. Conf. Knowledge capture, pp. 137–144.

ACM, 2009.

[15] B. Sherman. The Chaffey Dam Project - nutrient supply and algal response. In Proc. Intl.

Conf. Reservoir Limnology and Water Quality. ICARIS Ltd., 2002.

[16] A. Sheth, C. Henson, and S.S. Sahoo. Semantic sensor web. Internet Computing, IEEE,

12(4):78–83, 2008.

[17] K. Taylor and L. Leidinger. Ontology-driven complex event processing in heterogeneous

sensor networks. In Proc. 8th Extended Semantic Web Conference, pages 285–299, Crete,

Greece, May 2011. Springer.

[18] E.D. Valle, S. Ceri, D.F. Barbieri, D. Braga, and A. Campi. A first step towards stream

reasoning. In FIS, pp. 72–81, 2008.

[19] J. Yu, K. Taylor, and B. Sherman. Ontology-driven complex event processing for real-

time algal bloom detection. In Proc. Aust. Ontology Workshop, CRPIT, 132:35–36. ACS, 2011.

