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ABSTRACT
Tag recommendation is a major aspect of collaborative tag-
ging systems. It aims to recommend tags to a user for a given
item. In this paper we propose an adaptation of the search
algorithms proposed in [14, 1] to the tag recommendation
problem. Our algorithm, called STRec, provides network-
aware recommendations based on proximity measures com-
puted on-the-fly in the network. STRec uses a bounded
search to find good neighbors.

On top of STRec, we apply a re-ranking scheme that im-
proves the quality of the recommendations. We update the
ranking according to the degree of association between the
higher ranked tags and the lower ranked ones. This tech-
nique leads to better recommendations as we show in this
paper and could be applicable on top of many recommender
systems. The experiments we did on several datasets demon-
strated the efficiency of our approach.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Filtering

General Terms
Algorithms, Experimentation

Keywords
Graph-Based Tag Recommendations, Social Network, Col-
laborative Filtering, Association Rules Mining

1. INTRODUCTION
Social (i.e. collaborative ) tagging is the practice of allow-
ing users to annotate content. The users can organize, and
search content with annotations called tags. The growth of
popularity of social media sites has made the area of rec-
ommender systems for social tagging systems an active and
growing topic of research [12, 17, 9].

Tag recommendation aims to infer the most suited tags to a
user for tagging a given item. It is a salient part of the Web
2.0 where applications are user-centered. We present, in
this paper, an efficient tag recommender algorithm named
STRec. Our algorithm adapts the search algorithms pro-
posed in [14, 1, 24] to the tag recommendation problem,
and extends them by a re-ordering step that improves the
quality of the recommendations. The basic idea of STRec is
to merge two recommendation components: a social network
based component, together with a network-independent one.
The first component relies on social networks to provide rec-
ommendations to a user. It analyses the tags existing in the
user’s neighborhood; we say that it computes the social fre-
quencies of tags. Then, it retrieves the most frequent tags
within the user’s neighborhood. The contribution of each
neighbors’s tag to the final recommendation, is weighted by
the proximity of that neighbor (i.e. tagging similarity in our
case) with the user. The second component takes into ac-
count the global (i.e. network-independent) frequencies of
tags. The global frequency represents the popularity of a
tag for tagging a given item, whatever the user is. Then, we
aggregate these two frequencies in our STRec model, and
compute a sorted list of tags to recommend. Finally, rela-
tively to the first tag of the list, the rest of the recommended
tags is reordered using association rules, in order to bring
more accuracy to the final recommendation. Our experi-
mental results, in Section 4, show that the first tag of the
list has indeed a significant benefit on the quality of the rec-
ommendation. They also confirm the efficiency of STRec.

The remainder of this paper is organized as follows. In Sec-
tion 2 we present some preliminaries. Section 3 details the
STRec algorithm. In Section 4, we present experimentations
of our proposal. Section 5 summarizes the related work, and
Section 6 concludes the paper.

2. PRELIMINARIES
A folksonomy is a system of classification that allows users to
annotate and categorize content by the way of creating and
managing tags. It is related to the event of social tagging
systems1 and can be defined as a collection of: a set of users
U , a set of tags T , a set of items I, and a ternary relation
between them S ⊆ U × I × T .

A tagging triple (u, i, t) ∈ S means that user u has tagged
an item i with the tag t. A user can tag an item with one

1http://en.wikipedia.org/wiki/Social bookmarking



or more distinct tags from T . We denote by T (u, i) the set
of all distinct tags used by a user u to tag an item i

T (u, i) = {t ∈ T |∃(u, i, t) ∈ S}

On top of this folksonomy, we consider an undirected weighted
graph of users G = (U,E, σ) called the social network. In G,
the nodes represent the users and σ is a function that asso-
ciates to each edge e = (u, v) ∈ E a value, σ(u, v) ∈ [0, 1],
called the proximity (or social) score between u and v.

We assume that a user can tag an item with a given tag at
most once. The interest of a tag t for a given user u and
an item i can be estimated by a score function score(t|u, i).
The score function depends on the recommender’s model.
Then the ”Top-K” highest scoring tags are recommended by

Top(u, i,K) =
K

argmax
t∈T

score(t|u, i) (1)

3. STREC: A GRAPH-BASED TAG RECOM-
MENDER

We first present the score function and the extended prox-
imity we use in our algorithm, as they were defined in [14],
then we present the STRec algorithm.

3.1 Definition of the score function
They model for a user, an item, and a tag triple (u, i, t), the
score score(t|u, i) of tag t for the given user u and item i by

score(t|u, i) = h(fr(t|u, i)) (2)

where fr(t|u, i) is the overall tag’s frequency of tag t for
user u and item i, and h is a positive monotone function.
The overall tag’s frequency function fr(t|u, i) is defined as
a combination of a network-dependent component and an
item-dependent one, as follows:

fr(t|u, i) = α× tf(t, i) + (1− α)× sf(t|u, i) (3)

The first component, tf(t, i), is the tag’s frequency of t for i,
i.e., the number of times i was tagged with t. The sf com-
ponent stands for social frequency, an important measure
that depends on the neighborhood of user u. In Equation 3,
the parameter α allows to tune the relative importance of
the social component with respect to tag’s frequency. When
α is valued 1, the score becomes network-independent. Re-
versely, when α is valued 0 the score depends exclusively
on the social network. Let us notice that we use, as a so-
cial network, a similarity network (weighted graph) inferred
from the tagging behaviour of the users. The weight asso-
ciated to each edge is a value between 0 and 1 representing
the degree of similarity between two users.

Considering that each user brings her own weight (proxim-
ity) to the score of a tag, the measure of tag’s social fre-
quency is defined as follows:

sf(t|u, i) =
∑

v∈{U|(v,i,t)∈S}

σ(u, v) (4)

In this formula, v stands for a neighbor of user u who tagged
item i with tag t, and σ(u, v) is the proximity (edge weight)
between u and v.

Extended proximity. The above scoring model takes into
account only the neighborhood of a given user (the users di-
rectly connected to her). But, this can be extended to deal
also with users that are indirectly connected to this user,
following a natural interpretation that user links (e.g., simi-
larity) are, at least to some extent, transitive. An extended
proximity σ+ can be deduced from σ for any pair of users
connected by a path in the network. Then, σ+ can replace σ
in the definition of social frequency considered before (Equa-
tion 4), yielding an overall tag scoring scheme that depends
on the entire network instead of only the directly connected
neighbors. In the rest of the paper, we consider this ex-
tended proximity and denote by user’s proximity vector, the
list of all her neighbors v (of course we consider σ(u, v) > 0)
ordered in descending order of their proximity values.

The STRec algorithm, as the TOPKS algorithm proposed in
[14], computes on-the-fly the proximity values with respect
to a given user u. The issue is to facilitate the retrieval of
the most relevant unseen user v in the network (i.e. v is
not a direct neighbor of u), along with her proximity value
σ+(u, v). The user v will have the potential to contribute
the most to the partial scores of tags that are still candidates
for the most relevant result.

Inspired by studies in the area of trust propagation for belief
statements, the weights on a given path p = (u1, ..., un)
between u1 and un is aggregated by multiplying them [14].

σ+(p) =
∏
i

σ(ui, ui+1) (5)

The multiplication function is monotonically decreasing over
any path it is applied to, when σ draws values from the
interval [0, 1]. Thus given a social network G and a path p =
(u1, ..., un) ∈ G, we have σ+(u1, ..., un−1) ≥ σ+(u1, ..., un).

We can define σ+ for any pair of connected users (u, v) in
the network by taking the maximal weight over all their
connecting paths. More formally, σ+(u, v) is defined as

σ+(u, v) = max
p∈G

{
σ+(p)|u p→ v

}
(6)

A greedy approach is applicable to allow browsing the net-
work of users on the fly, at recommendation time, visiting
them in the order of their proximity with respect to a given
user (for whom we want to make recommendations). More
precisely, by generalizing Dijkstra’s algorithm [5], a max-
priority queue (denotedH) is maintained, whose top element
top(H) will be at any moment the most relevant unvisited
user. A user is visited when her tags are taken into account
for the top-k result, which can occur at most once.

At each step advancing in the network, the top of the queue
is extracted (visited) and its unvisited neighbours (adjacent
nodes) are added to the queue (if not already present) and
are relaxed. Relaxation updates the best proximity score of
these nodes, as described in Algorithm 1. It can be shown
by straightforward induction that this greedy approach al-
lows to visit the nodes of the network in decreasing order
of their proximity with respect to a given user. For more
details on the scoring model described above, we refer the
reader to [14, 1]. The following sections describe how this



Algorithm 1: Relaxation

1 if (σ+(u, x)× σ(x, v)) > σ+(u, v) then
2 σ+(u, v)← (σ+(u, x)× σ(x, v))
3 end

greedy procedure for iterating over the network is used in
our recommendation algorithm.

3.2 The STRec algorithm
As already introduced in previous sections, the network-
dependent component is an important part of the STRec
algorithm.We mostly focus on the computation of the social
frequency, sf(t|u, i), as it is a key parameter in the scoring
function of tags.

First, a list D of top-k candidate tags is kept and sorted in
descending order of their minimal possible scores (we define
shortly). A tag becomes candidate when it is met for the
first time in a tagged triple.

The algorithm 2 presents the computation of the STRec
network-dependent component for a given user u for whom
we want to recommend tags for an item i. For each of her
(direct or indirect) neighbors v on the social network we
retrieve the list of tags this neighbor employed for the item i.
Then for each of these tags t , we update its social frequencie
sf(t|u, i) and we add it in D, as candidate tags if it is not
already in the top-k candidates list (lines 1 to 8).

We assume that, for item i, we have an inverted list IL(i)
of the tags t used to tag i, along with the corresponding tag
frequencies tf(t, i) in a descending order of these frequen-
cies. Starting from the top most frequent tag, this list will
be consumed one tag at a time, whenever the current tag
becomes candidate for the top-k result (lines 9 to 17).
By CIL(i) we denote the tags already consumed in IL(i) (as
known candidates), by top tag(i) we denote the tag present
at the current (unconsumed) position of IL(i), and we use
top tf(i) as a short notation for the tag’s frequency associ-
ated with this tag.

By unseen users(t, i) we denote the maximum number of
yet unvisited users who may have tagged item i with t . This
is initially set to the maximum possible tag’s frequency of i
over all tags (a value that is available at the current position
of the inverted list of IL(i), as top tf(i)).
Each time we visit a user v who tagged item i with t, we (i)
update sf(t|u, i) (initially set to 0) by adding to it σ+(u, v),
and (ii) decrement unseen users(t, i). We obtain the fi-
nal social frequency value sf(t|u, i) when unseen users(t, i)
reaches 0.

Lines 18 to 19 are an important part of the algorithm. We
avoid expensive and hardly updatable pre-computations of
the proximity values by the relaxation (see Section 3.1).
Thus the proximity computation in the social network is
computed on-the-fly.

In the rest of this section, we detail the STRec algorithm

Algorithm 2: Social Process

Data: (u, i) ∈ U × I, the user u whom we want
recommend tags for the item i; v ∈ U , current
(direct or indirect) neighbor while scanning the
social network

1 forall the tags t ∈ T (v, i) do
2 sf(t|u, i)← sf(t|u, i) + σ+(u, v)
3 if t /∈ D then
4 add t to D
5 unseen users(t, i)← top tf(i) /*initialization*/

6 end
7 unseen users(t, i)← unseen users(t, i)− 1

8 end
9 while IL(i) ̸= ∅ AND (t← top tag(i)) ∈ D do

10 tf(t, i)← toptf(i) /*t’s frequency in i is now known*/
11 advance IL(i) one position
12 ∆← tf(t, i)− top tf(i)
13 forall the tags t′ ∈ D/CIL(i) do
14 unseen users(t′, i)← unseen users(t′, i)−∆
15 end
16 add t to CIL(i)

17 end
18 forall the users v′ s.t. (v, v′) ∈ E do
19 RELAX(u, v′)
20 end

(Algorithm 3). First, let us remind that we maintain a max-
priority queue H whose top element top(H) will be at any
moment the most relevant unvisited user on the network. At
each step in the network, the top of the queue is extracted
(visited) and its unvisited neighbors (adjacent nodes) are
added to the queue (if not already present) and then relaxed
(Algorithm 1). However, at any time of the running of the
algorithm, an optimistic overall score MaxScore(t|u, i) of
any tag t that has already been seen in D is estimated as:

(1− α)× (top(H)× unseen users(t, i) + sf(t|u, i)) + α×
max(tf(t, i), top tf(i))

Symmetrically, we estimate MinScore(t|u, i), a pessimistic
overall score, as:

(1− α)× sf(t|u, i) + α×max(tf(t, i), partial tf(t))

where partial tf represents the count of visited users who
tagged i with t, which is used as a lower-bound for tf(t, i)
when it is not yet known. The list of candidate tags D is
sorted in descending order by this lowest possible score.
An upper-bound score, MaxScoreUnseen, for the unseen
tags is also estimated using the following value as overall
frequency for each tag t:

α× top tf(i) + (1− α)× top(H)× top tf(i)

The running of the algorithm terminates when this upper-
bound score and the maximal optimistic score of tags, that



are already in D but not in its top-k, are less than the pes-
simistic score of the last element in the current top-k of D
(i.e., D[k]). This is because we have the guarantee that the
top-k can will no longer change as it is explained in [6].

Furthermore at each iteration, the algorithm can alternate
(by calling the CHOOSEBRANCH() method we describe
below) between two possible execution branches: the social
branch (Algorithm 2) and the textual branch, which is a
direct adaptation of the Non Random Access (NRA) algo-
rithm [14, 24].

Algorithm 3: STRec algorithm

Data: u ∈ U , i ∈ I: the user u whom we want recommend
tags for the item i

1 forall the (v, i, t) ∈ S do
2 σ+(u, v)← −∞
3 sf(t|u, i)← 0
4 set IL(i) position on first entry; CIL(i)← ∅
5 end

6 σ+(u, u)← 0; D ← ∅ /*candidate tags*/

7 H ← max-priority queue of nodes u (sorted by σ+(u, v)),
initialized with u

8 while H ̸= ∅ do
9 CHOOSEBRANCH()

10 if social branch then
11 v ← EXTRACT MAX(H)
12 SOCIAL PROCESS(u, i, v)

13 else
14 if IL(i) ̸= ∅ then
15 t← top tag(i)
16 if t /∈ D then
17 add t to D and CIL(i)
18 end
19 tf(t, i)← top tf(i)
20 advance IL(i) one position

21 else
22 break
23 end

24 end
25 if MinScore(D[k]|u, i) > maxl>k(MaxScore(D[l]|u, i))

AND MinScore(D[k]|u, i) > MaxScoreUnseen then
26 break
27 end

28 end
29 Return D[1], . . . , D[k]

The CHOOSEBRANCH() method considers the tag t′,
which has the highest potential score, and we choose the
branch that is the most likely to refine the score of t′.

t′ = D[argmaxl>k(MaxScore(D[l]|u, i)]

We set MaxTextual to α × top tf(i) if the tag’s frequency
tf(t′, i) is not yet known, and to 0 otherwise. For the
social part of the score, we set MaxSocial = (1 − α) ×
unseen users(t′, i) × top(H). Then, we follow the social
branch if MaxSocial is greater than MaxTextual.

The result re-ordering step

STRec returns a list D of candidate tags sorted in descend-
ing order of their scores. The k first tags of this list (D[1], . . . ,
D[k]) are intended to be recommended to the user. In or-
der to improve the quality of the recommendation, we add
a re-ordering step that recomputes the scores of the tags
in D according to degree their association degree with the
best ranked tag in D. The intuition is that the first tags in
the top-k result are the most relevant ones, so the scores of
the lower ranked tags have to be updated according to their
degree of association with the higher ranked ones. This re-
covery step improves the consistency and the accuracy of
the result.

Fixing the first tag t = D[1], we compute the confidence
scores (with regard to D[1]) conf(t → t′) of all the lower
ranked tags t′ in D. Then, we sort D again with obtained
new score values (1 + conf(t → t′)) × score(t′|u, i). Thus,
we model to some extent the interest to put in the result
a tag t′ in addition to the first one D[1]. The confidence
score is computed by analysing the association degree be-
tween t and t′, i.e. the number of shared items (i.e. items
tagged by t and t′) and the number of shared users (i.e.
users who used both tags t and t′). An in depth description
of the re-ordering technique and its interest is given in [7].
In the following experiments, we denote by STRec++ the
approach consisting in running the STRec algorithm with a
re-ordering phase. This can improve noticeably the quality
of recommendation as shown below.

4. EXPERIMENTATIONS
4.1 Datasets
We chose five datasets from four online systems: del.icio.us2,
Movielens3, Last.fm4, and BibSonomy5.

We take the ones of del.icio.us, movielens, and last.fm from
HetRec 2011 [4] and the two other ones from Bibsonomy: a
post-core at level 5 and a one at level 2 [3, 12]. We call them
respectively Bibson5 and dc09).

dc09 is the one of the task 2 of ECML PKDD Discovery
Challenge 20096. This task was especially intended for meth-
ods relying on a graph structure of the training data only.
The user, item, and tags of each post in the test data are all
contained in the training data’s, a post-core at level 2.Let
us remaind that a post-core at level p is a subset of a folk-
sonomy with the property, that each user, tag and item
has/occurs in at least p times.Table 1 presents the carac-
teristics of these datasets.

4.2 Evaluation Measures and Methodology
To evaluate STRec, we used a variant of the leave-one-out
hold-out estimation called LeavePostOut [12, 16]. In all
datasets except dc09, we picked randomly, for each user u,
one item i, which she had tagged before. Thus we create a
test set and a training one. The task of our recommender
was then to predict the tags the user will assign to i. We
denote them T̂ (u, i).

2http://www.delicious.com
3http://www.grouplens.org
4http://www.lastfm.com
5http://www.bibsonomy.org
6http://www.kde.cs.uni-kassel.de/ws/dc09/



Table 1: Caracteristics of the datasets
dataset |U | |I| |T | |T (u, i)|
Bibson5 116 361 412 2,526
dc09 1,185 22,389 13,276 64,406

del.icio.us 1,867 69,226 53,388 104,799
Last.fm 1,892 17,632 11,946 71,065

Movielens 2,113 10,197 13,222 27,713

Moreover we generate, for each training set, three social net-
works by computing respectively the Dice coefficient of com-
mon users’ tagged items (tagged by any two users), the one
of common users’ tags (similar vocabulary), and the one of
common users’ tuples of (tag, item). We notice that we
fixed the parameter α to 0.05 for all the experimentations,
which is of course not necessarily optimal for all of them. We
kept this value after a calibration we made on the dataset
dc09. It may be seem rather small but it is comprehensible
when we compare the two components of STRec. Indeed,
the weights of the edges (i.e. proximity measures) between
the users are in the interval [1, 0] and exceed rarely 0.5. For
the performance evaluation, we use the F1-measure which
is a reference in such scenarios [15, 16]. Thus for each post
(u, i) in the test set, we compute the precision and recall of
the top-5 recommendations as follows

precision(u, i) =

∣∣∣T (u, i) ∩ T̂ (u, i)
∣∣∣∣∣∣T̂ (u, i)∣∣∣ (7)

recall(u, i) =

∣∣∣T (u, i) ∩ T̂ (u, i)
∣∣∣

|T (u, i)| (8)

For each dataset, we average these values over all (u, i) in
the test set:

precision =
1

|(u, i)|
∑
(u,i)

precision(u, i) (9)

recall =
1

|(u, i)|
∑
(u,i)

recall(u, i) (10)

and compute the F1-measure value as follows

F1 =
2× precision× recall

precision+ recall
(11)

This process was repeated ten times for each dataset (except
dc09), each time with another item and the same user, to
further minimize the variance. In the sequel, the listed F1-
measure values are thus always the averages over all ten
runs.

4.3 Results
4.3.1 Comparison with the results of the Task 2 of

ECML PKDD Discovery Challenge 2009
The Task 2 of the ECML PKDD Discovery Challenge 2009
was especially intended for the methods relying on the graph
structure of the training data. The user, item, and tags of
each post in the test data are all contained in the training
data’s post-core at level 2. There were 21 participants to this

Table 2: Task 2 of ECML PKDD Discovery Chal-
lenge 2009

Rank F1-measure

1 0.35594
2 0.33185
3 0.32461

STRec++ 0.32259
4 0.32230
5 0.32039
6 0.31396
7 0.31368
8 0.30751
9 0.30651

10 0.30566
STRec 0.30510

task. Table 2 shows the scores of our approach in this task,
compared to the scores of the other participants. STRec
reaches the eleventh place with a score of 0.30566. When we
apply the re-ranking step (STRec++), with adaptive recom-
mendations length as the others in the challenge, we improve
noticeably our score up to be at the fourth place in the final
result. This corresponds of an improvement of 5.53%, which
confirms the efficiency of STRec++. The next experiment
shows the benefits we gained on the five datasets.

4.3.2 Benefit of sorting candidate tags relatively to
the first of them

As we mentioned in Section 3.2, STRec returns a list of tags
sorted by their lowest possible scores MinScore(t|u, i). The
top-k of this list is the recommendation result that is given
to the user. STRec++ adds a re-ranking step that ensures
some consistency of the vocabulary (i.e. tags’ co-occurence).
Table 3 shows the improvements brought by STRec++ on
all the datasets we used.

Table 3: Benefit of the STRec++ approach

Dataset
F1-measure

Gain
STRec STRec++

del.icio.us 0.103 0.108 5.64%
dc09 0.305 0.322 5.53%

Movielens 0,146 0.148 1.57%
Bibson5 0.389 0.397 2.00%
Last.fm 0.274 0.277 1.15%

We see that the re-ordering phase improves up to 5.6% the
F1-measure of STRec for the datasets dc09 and del.icio.us.
The average benefit is 3.17%. But as one can notice, the im-
portance of the gain obtained by STRec++ varies from one
dataset to another. This is due to the fact that the confi-
dence scores we compute in the re-ordering phase depend on
the number of co-occurrences of the tags (co-occurrence with
the highest ranked tag). Therefore, when the users have in
average a small number of posts, they share a few number of
common tagged items which leads to low confidence scores.

Table 4 below confirms this analysis. It shows that for the



datasets where the user’s average number of posts is greater
than 50 (i.e. del.icio.us and dc09), the gain obtained by
STRec++ exceeds 5%. But, this gain remains slight when
the user’s average number of posts is small (e.g., less than
40).

Table 4: Connection between the number of posts
and the efficiency of STRec++

Dataset #posts/user Gain of STRec++

del.icio.us 56.13 5.64%
dc09 54.35 5.53%

lastfm 37.56 1.15%
bibsonomy 21.77 2.00%
movielens 13.11 1.57%

4.3.3 Contribution of the bounded search on the com-
putation time

In Section 3.2, we talked about the estimation of an opti-
mistic overall score MaxScore(t|u, i) of a tag t that has al-
ready been seen inD and its pessimistic scoreMinScore(t|u, i).
We also introduced an upper-bound score, MaxScoreUnseen,
on the yet unseen tags. This upper-bound score allows us
to determine if an unseen tag may be in the top-k. Our
algorithm terminates when this upper-bound score and the
maximal optimistic score of tags that are already in D, but
not in its top-k, are less than the pessimistic score of the last
element in the current top-k of D (i.e., D[k]). Thus, we are
guaranteed that the top-k can no longer change as exposed
in [14, 6].

We measured the contribution of this optimisation which
allows us to limit the search space. For this, we executed
STRec without it. In other words, we search and compute
the score of all the tags then we make the top-k. We call
this variant STRec unbounded. Table 5 lists the gains in
terms of execution time obtained by the bounded search on
different datasets. As one can see, the gain is significant.

Table 5: Contribution of the bounded search

Dataset
Execution time in seconds

Gain
STRec STRec unbounded

bibsonomy 1.4 2 30.0%
movielens 3213 4639 30.73%
delicious 2408 3379 28.72%
lastfm 4501 6619 31.99%
dc09 229 294 22.10%

For instance, it reaches 35 minutes on the dataset lastfm,
where the unbounded search takes 1 hour and 50 minutes.

4.3.4 A weakness of STRec: the non consideration
of user’s tag frequency

As Table 5 shows, the STRec algorithm, as the initial search
algorithms of [14, 1] we adapted to tag recommendation, is
very efficient in terms of computation time. However, it does

not consider the tagging behaviour of the user herself (to
whom the recommendations are intended). In other words,
it takes into account the tag frequency of her neighborhood
but not her own tag frequency.
To evaluate the importance of user’s tag frequency, we com-
pared STRec with three baseline tag recommenders. Our
first baseline recommender, userPT, computes all user’s tag
frequencies then recommends the most frequent tags. The
second one, itemPT, uses item’s tag frequencies instead of
user’s tag frequencies. Finally the last baseline recommender,
userItemPT, computes a linear no-weighted combination of
the two previous frequencies.

On Table 6, we can see that STRec outperforms the two
first baselines. The network-dependant component of STRec
clearly brings some advantages comparing to itemPT which
is limited to item’s tag frequency. But, we see that STRec
fails to obtain better results than the combined frequencies
userItemPT, except on the dc09 dataset. So, we can con-
clude that user’s tag frequency play a role in this difference.

Table 6: F1-measure comparison with baselines
Dataset STRec userPT itemPT userItemPT

bibsonomy 0.389 0.296 0.373 0.466
movielens 0.146 0.093 0.132 0.170
delicious 0.103 0.187 0.101 0.186
lastfm 0.274 0.217 0.265 0.311
dc09 0.305 0.098 0.286 0.304

4.3.5 Importance of the network similarity measure
In the previous experiments, the social network is based on
a similarity measure between the users. In the following, we
try to analyse the impact of the network type (kind of sim-
ilarity we consider) on the quality of the recommendations.
Thus, we used for each training set three different social net-
works (SNitem, SNtag, SN(item,tag)), based respectively on
(i) the Dice coefficient of common items (same item tagged
by two users), (ii) common tags (similar vocabulary between
two users), and (iii) common couple (tag, item) between the
users.

Table 7: F1-measures according to the considered
similarity

Dataset SNitem SN(item,tag) SNtag

Bibson5 0.39489 0.35614 0.35529
dc09 0.32259 0.22842 0.23390

Last.fm 0.27707 0.26443 0.12939
Movielens 0.14825 0.12883 0.10553
del.icio.us 0.10760 0.11646 0.11522

Except the case of del.icio.us dataset, the networks built on
users’ common tagged items give the best results. In con-
trast, the networks relying on common tags give the worst
results due to probably the fact that the users do not share
enough vocabularies (i.e. tags).



5. RELATED WORK
Many researchers have investigated graph-based tag recom-
menders which rely on links between user, items, and/or
tags, to make recommendations [20, 8, 18, 22, 25, 19].
We can cite the approach of Si et al. [22] which combines two
already existing methods, the ”most popular tags” method
and FolkRank. The ”most popular tags” is the simplest
collaborative-filtering based technique, it recommends the
most popular tags used by other users. FolkRank uses a
user-item-tag tripartite hypergraph, which was first pro-
posed as tag suggestion method in [11, 10]. Although our
”tag’s frequency”enables determining the most popular tags,
STRec uses a simple user-graph of similarities.
In [25], Zhang et al. also combine the FolkRank algorithm
with a collaborative filtering technique which considers, like
us, users’ similarities computed using a Pearson correlation-
oriented method. Mrosek et al. [19] combine three weighted
recommenders (”Tag by Source”, ”Tag by User”, and ”Tag by
User Similarity”). The first one, ”Tag by Source”, generates
tags based on the item information. It computes and uses
the frequency of association of each tag to the resource. The
second algorithm recommends and scores the tags used by
the user. The last algorithm focuses on tags which have been
used by similar users. The similarity between two users is
defined over the number of same item posted by them. Note
that, unlike all the cited approaches, STRec takes into ac-
count the similarity between users whether they are directly
or indirectly connected (extended proximity, section 3). This
allows a broader consideration of the user’s neighbourhood
in the social network.

Association rules mining can be used to extract from the
folksonomy useful knowledge on the way users assign tags to
items [21, 2], and recommendations can be done based on the
extracted knowledge. In [13], Lipczak focuses on content-
based tag recommenders. Hi extracts basic tags from the
content of the items (e.g. the item title). Then, he extends
the set of potential recommendations by related tags, pro-
posed by a lexicon based on the co-occurrences of tags within
item’s posts. He determines these co-occurrences using an
association rules mining technique. On their side, Wang et
al. first apply the TF-IDF algorithm on the description of
the item content, in order to extract from it a list of key-
words [23]. Based on these keywords they use association
rules to determine the most probable tags to recommend.
In addition, if the item has been tagged before by other
users, or if the user has tagged other items before, the his-
tory records is also exploited to detrmine the most appropri-
ate recommendations. These algorithms are content-based,
which is not the case of STRec++ where the mining step
(re-ordering of the tags) is only based on the primary list
of candidate tags. The association rules we use in this step
take into account the association degree between the best
ranked tag and its successors.

6. CONCLUSION
In this paper, we presented STRec an algorithm for tag rec-
ommendation, and an optimized variant of the algorithm
STRec++ that improves the quality of the recommenda-
tions. STRec transposes the search algorithm proposed in
[14, 1] to tag recommendation. One of the benefits of this
algorithm is its ability to browse on-the-fly the social net-
work of a user, which enables us to take into account the tag-

ging behavior of the neighbourhood (direct or indirect links)
of the user in the recommendation process. STRec++ im-
proves the recommendations by applying a mining step on
top of STRec that refines the final ranking of the recom-
mended tags. This step leads to significant improvement
of the quality of the recommendations as we show in the
experiments.
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