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Abstract. In recent work, we provided a formulation of ASP programs in terms
of linear logic theories. Answer sets were characterized in terms of maximal ten-
sor conjunctions provable from such theories. In this paper, we propose a full
comparison between Answer Set Semantics and its variation obtained by inter-
preting literals (including negative literals) as resources, which leads to a different
interpretation of negation. We argue that this novel view can be of both theoreti-
cal and practical interest, and we propose a modified Answer Set Semantics that
we call Resource-based Answer Set Semantics. One advantage is that of avoiding
inconsistencies, so every program has a (possibly empty) resource-based answer
set. This implies however the introduction of a different way of representing con-
straints.
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1 Introduction

In [1], we proposed a comparison between RASP and linear logic [2], where RASP
[3, 4, 5] is a recent extension of the Answer Set Programming (ASP) framework ob-
tained by explicitly introducing the notion of resource. As it is well-known, ASP is
nowadays a well-established programming paradigm, with applications in many areas
(see among many [6, 7, 8] and the references therein). RASP is a significant extension,
supporting both formalization and quantitative reasoning on consumption and produc-
tion of amounts of resources.

We proved in particular that RASP (and thus, ASP as a particular case) corresponds
to a fragment of linear logic. This was done by providing a two-ways translation of
RASP programs into a linear logic theory. The result implies that a RASP inference en-
gine (such as Raspberry [5]) can be used for reasoning in this fragment. In defining the
correspondence, we introduced a RASP and linear-logic modeling of default negation
as understood under the answer set semantics. We meant in some sense to propose “yet
another definition of answer set”, in addition to those reported in [9].

In the present paper, we show that understanding default negation as a resource
goes beyond, and leads to the definition of a generalization of the answers set semantics
(for short AS, on which ASP is based), with some potential advantages. We provide a
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model-theoretic definition of the new semantics, that we call Resource-based Answer
Set Semantics. In the new setting, there are no inconsistent programs, and basic odd
cycles (similarly to basic even cycles in AS) are interpreted as exclusive disjunctions.
Constraints must then be represented explicitly (while in ASP they are “simulated” via
unary odd cycles). Therefore, what was before programs with constraints becomes a
plain ASP program (under the extended semantics) augmented with a set of explicitly
represented constraints. We argue that representing constraints separately can lead to
more generality and to an improved elaboration-tolerance (in the sense of [10]). In the
proposed approach, the “practical expressivity” in terms of knowledge representation is
improved (as we demonstrate by means of significant examples), though unfortunately
also the computational complexity increases.

The paper is organized as follows. In Sections 2 and 3, we provide the necessary
background on linear logic and ASP. In Section 4, we specialize the method defined in
[1] for RASP, so as to show that ASP can be defined as a fragment of linear logic. It is
relevant to recall this formalization, because it makes it clear which is the motivation
of the new notion of negation and of the generalized answer set semantics that we
then propose. In Sections 5 and 6 the semantic extension is described, formalized and
discussed. Finally, in Section 7 we conclude.

2 Background on Linear Logic

Linear logic [2] can be considered as a resource sensitive refinement of classical logic,
since it intrinsically supports a natural accounting of resources. Intuitively speaking, in
linear logic, two assumptions of a formula P are distinguished from a single assump-
tion of it. Below we briefly review the basic traits of (a fragment of) linear logic, by
recalling only the notions that will be used in the remaining part of the paper. For a
comprehensive treatment we refer the reader to [11] and to the references therein.

In linear logic, contraction and weakening rules are not allowed: hence, while a
statement of the form P→ P∧P is valid in classical logic, this is not the case in lin-
ear logic. The point here can be explained by observing that in classical logic state-
ments are assumed to express “static” properties, unchanging facts about the world.
On the contrary, linear propositions are concerned with dynamic properties of finite
amounts of resources (and the processes that use them). An example well-known in
the literature [11, 12] may further clarify this point. Consider the following proposi-
tions/resources:

P : “One dollar”
Q : “One pack of Camel”
R : “One pack of Marlboro”

and the following axiomatization of a vending machine:

P→ Q
P→ R

In classical logic, one can derive that P→ Q∧R, but this makes little sense if we are
assuming the mentioned interpretation of propositions as resources (and of implications
as transformation processes, very much like in RASP).
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One of the crucial features of linear logic is that it makes a neat distinction between
two forms of conjunction that are not distinguished by classical logic. Namely, one
of them intuitively means “I have both”. This is said multiplicative conjunction and is
written as⊗. The other, the additive conjunction means “I have a choice” (and is written
as &). Dually, there are two disjunctions. The multiplicative one, written P O Q can be
read as “if not P, then Q”, and the additive disjunction P⊕Q, that intuitively stands for
the possibility of either P or Q, but we do not know which of the two. That is, it involves
“someone else’s choice”.

Finally, we have linear implication P —◦Q. It encodes a form of production pro-
cess: it can be read as “Q can be derived using P exactly once”. (Notice that, in such a
process P is “consumed”, so it cannot be used again.)

Linear negation ⊥ is the only negative operation in the logic. It is involutive (namely,
(P⊥)⊥ and P can be safely identified) and, at the same time, it retains a construc-
tive character. Notice that it acts as a sort of transposition: P —◦Q coincides with
Q⊥ —◦P⊥. Moreover, the linear implication P —◦Q can be rewritten as P⊥ O Q.

In order to re-gain the full power of classical logic exponential operators, namely !
and its dual ?, are introduced. Intuitively, !P means that we have how many P we want.
These connectives reintroduce, in a more controllable way, contraction and weakening
in the logical framework.

To better illustrate all these connectives, let us recall another example (taken
from [12]). Suppose that for a fixed price of 5 Dollars a restaurant will provide a ham-
burger, a Coke, as many french fries as you like, onion soup or salad (your choice), and
pie or ice cream (depending on availability, hence by someone else’s choice). This is
the menu:

For a fixed-Price Menu: 5 Dollars (D) you can have:
Hamburger (H)

Coke (C)
All the french fries (F) you can eat

One between Onion-Soup (O) or Salad (S)
Pie (P) or Ice-Cream (I) depending on availability

and its encoding in a linear logic formula:

(D⊗D⊗D⊗D⊗D) —◦
(
H⊗C⊗ !F⊗(O&S)⊗(P ⊕ I)

)

Some further notions will be used in what follows. Let Xs and Y s denote tensor
products of positive literals, e.g. formulas of the form (P1⊗·· ·⊗Pn) (for n > 0). Then,
generalized Horn implications are defined as follows:

– an Horn implication has the form: X —◦Y .
– An ⊕-Horn implication has the form:

(
X1 —◦(Y1⊕Y2)

)
.

– An &-Horn implication has the form:
(
(X1 —◦Y1)&(X2 —◦Y2)

)
.

Notice that a formula of the last form, say (P1 —◦Q1)&(P2 —◦Q2), encodes a nonde-
terministical process where a choice is made between the two disjuncts (say P2 —◦Q2)
and then the (sub-)process encoded by the selected option is executed (in our case Q2
is produced using P2).
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A formal proof system for linear logic can be formulated in terms of a Gentzen-style
sequent calculus. A sequent is composed of two sequences of formulas separated by a
turnstile (`) symbol. The sequent ∆ ` Γ asserts that the multiplicative conjunction of
the formulas in ∆ together imply the multiplicative disjunction of the formulas in Γ .
In general, a sequent calculus proof rule consists of a set of hypothesis sequents and a
single conclusion sequent. A full set of Gentzen-style sequent rules for linear logic can
be found, for instance, in [13].

3 Background on Answer Set Semantics

In the answer set semantics (originally named “stable model semantics”), a (logic) pro-
gram Π (cf., [14, 15]) is a collection of rules of the form H ← L1, . . . ,Ln. where H is
an atom, n > 0 and each literal Li is either an atom Ai or its default negation not Ai. The
left-hand side and the right-hand side of rules are called head and body, respectively.
A rule can be rephrased as H ← A1, . . . ,Am,not Am+1, . . . ,not An. where A1, . . . ,Am
can be called positive body and not Am+1, . . . ,not An can be called negative body. A
rule with empty body (n = 0 is called a fact. A rule with empty head is a constraint,
where a constraint is of the form← L1, . . . ,Ln. and states that literals L1, . . . ,Ln cannot
be simultaneously true.

Various extensions to the basic paradigm exist, that we do not consider here as they
are not essential in the present context. We do not even consider “classical negation”
(cf., [15]).

In the rest of the paper, whenever it is clear from the context, by “a (logic) program
Π” we mean an answer set program (ASP program) Π , and we will implicitly refer
to the “ground” version of Π . The ground version of Π is obtained by replacing in all
possible ways the variables occurring in Π with the constants occurring in Π itself, and
is thus composed of ground atoms, i.e., atoms which contain no variables. By “minimal
model of Π” we mean a minimal model of Π intended as a classical logic theory, where
← is intended as implication and not as negation in classical logic terms.

The answer sets semantics [14, 15] is a view of a logic program as a set of inference
rules (more precisely, default inference rules), or, equivalently, a set of constraints on
the solution of a problem: each answer set represents a solution compatible with the
constraints expressed by the program. Consider simple program {q ← not p. p ←
not q.}. For instance, the first rule is read as “assuming that p is false, we can conclude
that q is true.” This program has two answer sets. In the first one, q is true while p is
false; in the second one, p is true while q is false.

Unlike other semantics, a program may have several answer sets, or may have no
answer set. Whenever a program has no answer sets, we will say that the program is in-
consistent. Correspondingly, checking for consistency means checking for the existence
of answer sets. The following program has no answer set: {a← not b. b← not c. c←
not a.}. The reason is that in every minimal model of this program there is a true atom
that depends (in the program) on the negation of another true atom, which is strictly for-
bidden in this semantics, where every answer set can be considered as a self-consistent
and self-supporting set of consequences of given program. The program {p← not p.}
has no answer sets either as it is contradictory. Constraints of the form defined above can
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be simulated by plain rules of the form p← not p,L1, . . . ,Ln. where p is a fresh atom.
Thus, consistency is related (as discussed at length in [16, 17]) to the occurrence of
“odd cycles” (of which p← not p is the basic case, though odd cycles may involve any
odd number of atoms) and how they are connected to other parts of the program. The
reason is that, in principle, the negation not A of atom A is an assumption, that must be
dropped whenever A can be proved, as answer sets are by definition non-contradictory.

Below is the specification of the Answer Set Semantics, reported from [14].

Definition 1 (The Gelfond-Lifschitz Operator). Let I be a set of atoms and Π a pro-
gram. A GL-transformation of Π modulo I is a new program Π/I obtained from Π by
performing the following two reductions:

1. removing from Π all rules which contain a negative premise not A such that A ∈ I;
2. removing from the remaining rules those negative premises not A such that A 6∈ I.

Π/I is a positive logic program, with Least Herbrand Model1 J. Let ΓΠ (I) = J.

Answer sets are defined as follows.

Definition 2. Let I be a set of atoms and Π a program. I is an answer set of Π iff
ΓΠ (I) = I.

It will be useful in what follows to report from [16] a simple property of ΓΠ .

Proposition 1. Let M be a minimal model2 of Π . Then, ΓΠ (M)⊆M.

Answer sets are in fact minimal supported models, and non-empty answer sets form
an anti-chain with respect to set inclusion.

In the ASP (Answer Set Programming) paradigm, each answer set is seen as a so-
lution of given problem, encoded as an ASP program. To find these solutions, an ASP-
solver is used. Several solvers have became available, see [19], each of them being
characterized by its own prominent valuable features. The expressive power of ASP, as
well as, its computational complexity have been deeply investigated (cf. e.g., [20]).

4 ASP and Linear Logic

In this section, we specialize the method defined in [1] for RASP, so as to show that
ASP can be defined as a fragment of linear logic. In particular, we define a translation
of ASP programs into a linear logic theory employing as connectives tensor product
⊗ (to express concomitant use/production of different resources), linear implication
—◦ (to model production processes), and additive conjunction & (to represent alter-

native/exclusive resource allocation). In well-known terminology, we adopt formulas
belonging to the so-called Horn-fragment of linear logic. In [1] we treat the more gen-
eral case of RASP, which manages resource production and consumption.

1 Cf. [18] for the definition of Least Herbrand Model of a Horn logic program, due to Van Emden
and Kowalski.

2 The property holds for models in general, but minimal ones are those of interest here.
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A positive ASP program Π (i.e., a program without default negation) can be trans-
formed into a corresponding Linear Logic RASP Theory as follows (notice that the
reverse translation is also possible, i.e., to transform a Linear Logic RASP Theory into
a (R)ASP program). In particular, in the definition below each atom q in the body of the
j-th rule of given program is renamed as q j, where the q j’s are called the standardized-
apart versions of q. Moreover, since the formalization passes through RASP, which
considers atoms as resources, each standardized-apart atom q j will stand for q j:1 (In
RASP terminology, a writing of the form q:a denotes an amount a of the resource q.).
The meaning is that, when using the body of a rule to derive the head, one uses one unit
of each atom (seen as a resource) in the body3. Notice that, in Π , the truth of an atom
might be used to prove several consequences (through different rules). As we men-
tioned before, linear logic provides the exponential connective !A, intuitively meaning
that we can use as many occurrences of A as we want. However, exploiting this con-
nective would bring us outside the finite propositional fragment of linear logic at hand.
The devised method remains within the propositional fragment.

Definition 3. Given a positive ASP program Π , the corresponding Linear Logic RASP
Theory ΣΠ is obtained by applying, in sequence, the following rewritings.

– Standardize apart the atoms in the bodies of rules of Π . Namely, each occurrence
of an atom A in the body of the j-th rule is replaced by A j:1.

– For every atom A occurring as head of h> 0 rules in (the standardize apart version
of) Π , let A← Bi,1, . . . ,Bi,`i , for i = 1, . . . ,h, be such rules (with `i possibly null,
if the corresponding rule is a fact). Replace these rules by the following linear
implications (where the Ais are fresh atoms):

Bi,1⊗ . . .⊗Bi,`i —◦Ai for i = 1, . . . ,h
A1 & . . .&Ah —◦A

– For each atom A, let A1:1, . . ., Am:1 be its standardized apart versions, introduced
as described earlier. Add to ΣΠ the linear implication A —◦A1:1⊗ . . .⊗Am:1.

– Replace in ΣΠ any linear implication B1⊗ . . .⊗Bn —◦H with the implication
B1⊗ . . .⊗Bn —◦H⊗B1R⊗ . . .⊗BnR.

Let us remark some aspects of the previous definition. Notice that through the second
step of the translation, the body of each rule in Π , which is a conjunction of atoms,
is turned into a tensor conjunction of atoms. The purpose of the linear implication
A1 & . . .&Ah —◦A is that of enabling the derivation of A by either of the (translations
of the) rules defining it. Clearly, the introduction of such an implication can be avoided
in case A occurs as head of a single rule (in this case h = 1 and we can simply replace A1
by A in the first linear implication). In what follows we will adhere to this convention
whenever possible.

The linear implication A —◦A1:1⊗ . . .⊗Am:1 can be seen as an &-Horn implica-
tions with a unique conjunct. It models the fact that A is a resource available to any rule
that may need to use it.

3 RASP allows for arbitrary quantities, not needed here.
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Notice, moreover, the introduction of a fresh atom BiRs corresponding to each atom
Bi, in the last step of the translation. These fresh atoms are called the r-copies of the
Bis. They are produced just in order to keep a record of those resources that have been
consumed. R-copies allow us to establish a correspondence between answer sets of Π
and maximal tensor conjunctions provable from ΣΠ , where:

Definition 4. Given linear logic theory Σ , a tensor conjunction of atoms A1⊗ . . .⊗An
(n ≥ 0), is called maximally provable if it is provable from Σ , and for any atom B, the
tensor conjunction A1⊗ . . .⊗An⊗B is not provable from Σ (we equivalently talk about
a maximal tensor conjunction provable from Σ ).

Lemma 1. Let Π be a positive ASP program Π , and ΣΠ be the corresponding Linear
Logic RASP Theory. Every maximal tensor conjunction A provable from ΣΠ includes
all the r-copies of facts of ΣΠ and of standardized-apart atoms occurring in the body of
linear implications of ΣΠ that have been used for proving atoms in A .

As mentioned, the role of r-copies is to keep records of facts (intended as resources
originally present in the program) and of intermediate conclusions used (as resources)
in further inference. In a linear-logic setting in fact, resources which are consumed
“disappear”, thus we would not be able to establish a relation between provable tensor
conjunctions and answer sets. Now in fact, we are able to state (neglecting, by abuse of
notation, the syntactic distinction between an atom A and its r-copy AR):

Theorem 1. Let Π be a positive ASP program Π , and ΣΠ be the corresponding Linear
Logic RASP Theory. A1⊗ . . .⊗An is a maximal tensor conjunction provable from ΣΠ
if and only if {A1, . . . , An} is an answer set for Π .

Let us now consider full ASP, where rule bodies involve negative literals. Assume
there are n occurrences of not A in the body of rules of given program Π . To represent
full RASP (and thus full ASP) we improve the transformation devised in Definition 3:

Definition 5. Given ASP program Π , the corresponding Linear Logic RASP Theory
ΣΠ is obtained by applying, in sequence, the following rewritings.

– For each atom A occurring negated in rules of Π , standardize apart each of its
negated occurrences by replacing not A with not A j:1, in the j-th rule.
Being not A j1 :1, . . ., not A jn :1 all the occurrences introduced in this manner, add
the (linear) fact not A:n to the translation of Π .

– For each rule A← B1, . . . ,B` of Π . Let such rule be the j-th one; rewrite it as
A← B1, . . . ,B`,not A j:n.
Let us denote by not Ak1 :n, . . .,not Aks :n all the atoms introduced in this manner.4

– Apply the rewriting indicated in Definition 3 to the result of the previous steps.
– Finally, for each linear fact not A:n added to ΣΠ (cf., the first two steps), also add

the &-Horn implications to the translation of Π :
(not A:n —◦not Ak1 :n)& . . .&(not A:n —◦not Aks :n)&
(not A:n —◦not A j1 :1⊗ . . .⊗not A jn :1)

4 In case identical atoms would be introduced in the body in consequence of different steps of
the translation, e.g., not Ak:1 and not Ak:1 might occur in the same rule if n equals 1 in the
first step and not A already appeared in the ASP rule body, then further standardize apart these
occurrences, e.g., as not Ak1:1 and not Ak2:1.
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The intuitive meaning behind this translation is that the assumption not A is made
available to every rule that intends to adopt it, unless A itself is provable. In which case
the assumption becomes totally unavailable (as proving A consumes the full available
quantity of the “resource” not A).

The transformation of Definitions 3 and 5 is clearly polynomial, as we add: (i) a
new conjunct in the body (not A if the rule head is A) and new elements (r-copies) in
the head of rules ; (ii) one &-Horn implication for each A occurring in the head of some
rule; (iii) one linear implication for each atom defined via several rules; (iv) one &-Horn
implication for each A occurring negatively in the body of some rule. Hence, we have:

Theorem 2. Let Π be an ASP program, and ΣΠ the corresponding Linear Logic RASP
Theory, obtained according to Definitions 3 and 5. Let M = {A1, . . . , An} be an answer
set for Π . Then, A1⊗ . . .⊗An is a maximal tensor conjunction provable from ΣΠ .

Note that the reverse result does not necessarily hold, because there are maximal
tensor conjunctions that are not answer sets but are provable from ΣΠ . This is due (as
discussed in [1]) to the lack of relevance of the answer set semantics (cf., [21]), but also
to the locality of a proof-based system such as linear logic.

5 Negation as a Resource: a novel view on Answer Set Semantics

It is interesting to notice that the linear logic formulation we summarized in the previous
section prevents contradictions. Consider for example the program Π1 = {p← not p.}.
It is transformed into:

not p11:1⊗not p12:1 —◦ p,
not p:1,
(not p:1 —◦not p11:1)&(not p:1 —◦not p12:1)

In the first rule, one occurrence of not p corresponds to the one originally present,
the other one has been added as for proving p it is necessary to “absorb” the whole
available quantity of not p (consider n = 1 in Definition 5). We can in fact verify that
the singleton tensor conjunction p is by no means provable: in fact, it would require
two units of not p, while just one is available. This does not lead to inconsistency, but
simply to the impossibility to prove p.

Consider again program Π = {a← not b. b← not c. c← not a.} which is an “odd
cycle” involving three atoms. In our formulation, ΣΠ is the following:

not a1:1⊗not b1:1 —◦a
not c2:1⊗not b2:1 —◦b
not a3:1⊗not c3:1 —◦c
not a:1
not b:1
not c:1
(not a:1 —◦not a1:1)&(not a:1 —◦not a3:1)
(not b:1 —◦not b1:1)&(not b:1 —◦not b2:1)
(not c:1 —◦not c2:1)&(not c:1 —◦not c3:1)
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From this linear logic theory we can prove the three maximal tensor conjunctions,
namely, a, b and c. Assume, in fact, to try to prove a (the cases of b and c are of course
analogous). Proving a uses resources not a1:1 and not b1:1. Therefore, after proving a,
b cannot be proved because its own negation (i.e., not b2:1) is not available: in fact,
the &-Horn implication related to b generates (indifferently) only one of the two items,
and has already been requested to produce not b1:1 for proving a. In turn, c cannot
be proved because not a3:1 is not available, as the &-Horn implication related to a
generates (indifferently) only one of the two items, and has already been requested to
produce not a1:1 for proving a. Then, ΣΠ behaves analogously to the GL-reduct as far
as c is concerned, being not a unavailable once a has been proved. But it behaves in a
more uniform way on b, in the sense that once not b has been used to prove a, it is no
longer possible to prove b.

This means that the 3-atoms odd cycles is interpreted as an exclusive disjunction,
exactly like the 2-atoms even cycle (such as {q← not p. p← not q.}) in AS. There-
fore, in the generate-and-test perspective which is at the basis of the ASP programming
methodology, our new view provides a new mean of easily generating the search space.

We call {a}, {b}, and {c} resource-based answer sets, for which we provide below a
logic programming characterization. The resource-based answers set for program {p←
not p.} is the empty set.

The ternary cycle has many well-known interpretations in terms of knowledge rep-
resentation, among which the following is an example:

{beach← not mountain.
mountain← not travel.
travel← not beach.}

In our approach we would have exactly one of (indifferently) beach, mountain, or travel.
Similarly for the program {work← not tired. tired← not sleep. sleep← not work.}.
Note that, in answer set programming, for defining the exclusive disjunction of three
atoms one has to resort to the extremal program [22] {a ← not b,not c. b ←
not c,not a. c← not a,not b.}

There are other semantic approaches to managing odd cycles, such as for instance
[23, 24] and [25, 26], with their own sound theoretical foundations, that can however
be distinguished from the present one: in fact, the former proposals basically choose
(variants of) the classical models, and the latter ones treat differently the unary and
ternary cycles.

Below we provide a variation of the answer set semantics that defines resource-
based answer sets.

Definition 6. Let Π be a program and I a minimal model of Π . I is called a Π -based
minimal model iff ∀A ∈ I, there exists a rule in Π with head A and positive body
C1, . . . ,Cm, m≥ 0, where {C1, . . . ,Cm} ⊆ I.

Definition 7. Let Π be a program. M is a resource-based answer set of Π iff M =
ΓΠ (I), where I is a Π -based minimal model of Π .

By Definition 7, there is a resource-based answer set for each Π -based classical
minimal model. It is clear that answer sets are among resource-based answer sets. In
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fact, as stated in Section 3 (Proposition 1), for any minimal model I it holds ΓΠ (I)⊆ I:
thus any answer set S, being a minimal model which is equal to ΓΠ (S), fits as a particular
case in the above definition. Therefore, some of the resource-based answer sets of Π are
classical models (coinciding with its answer sets), while the others are subsets of the
remaining Π -based minimal models (if any). Non-empty resource-based answer sets
still form an anti-chain w.r.t. set inclusion.

We call the new semantics RAS semantics (Resource-Based Answer Set semantics),
w.r.t. AS (Answer Set) semantics. Differently from answer sets, a (possibly empty)
resource-based answer set always exists. Complexity of RAS semantics is however
higher than complexity of AS semantics: in fact, [27] proves that deciding whether a set
of formulas is a minimal model of a propositional theory is co-NP-complete. Clearly,
checking whether a minimal model I is Π -based and computing ΓΠ (I) has polynomial
complexity. Then:

Proposition 2. Given program Π , deciding whether a set of atom I is a resource-based
answer set of Π is co-NP-complete.

The previous result about the relation with linear logic (Theorem 2) extends to the
new semantics. The proof, reported in [1] in the context of full RASP programs, re-
mains essentially the same. The difference is that where in previous case one referred
to answer sets, which implies that given program Π was supposed to be consistent, we
are now able to refer to any ASP program. Then we have:

Theorem 3. Let Π be an ASP program, and ΣΠ the corresponding Linear Logic RASP
Theory, obtained according to Definitions 3 and 5. If M = {A1, . . . , An} is a resource-
based answer set for Π , then A1⊗ . . .⊗An is a maximal tensor conjunction provable
from ΣΠ .

It remains to be explained why the new definition models the intuition, and how
it applies to practical cases. In particular, given minimal model I of Π , it may be that
ΓΠ (I) ⊂ I, i.e., ΓΠ (I) is a proper subset of I and thus I is not an answer set, for only
one reason. For atom A to belong to a Π -based minimal model I, there exists some rule
in Π with head A. For A not to belong to ΓΠ (I), so that ΓΠ (I) ⊂ I, each of the rules
that could cause A to be in the model must have been canceled by step (1) of ΓΠ , as
they include literal not B in their body, B ∈ I. Atoms belonging to ΓΠ (I) are therefore
those atoms in I that can be derived without such contradictions. As widely discussed in
[16, 17], contradictions only arise in program fragments corresponding to unbounded
odd cycles, i.e., odd cycles where no atom is bounded to be true/false (thus resolving the
contradiction) by links with other parts of the program. Starting from Π -based minimal
models however, ΓΠ (I) provides for these cycles the “exclusive or” interpretation that
we have proposed above.

Regarding general odd cycles involving k atoms, of the form {a1 ← not a2. a2 ←
not a3. . . .ak ← not a1.}, it is easy to see that each such cycle has k classical minimal
Π -based models (it admits k classical minimal models, all of them Π -based as there
are no positive conditions). Correspondingly, we obtain k resource-based answer sets,
where we have Mi = {ai+d , with d even, 0 ≤ d < k− 1}. This fact can be verified by
producing a translation into the corresponding Linear Logic RASP Theory analogous to
the one performed above for unary and ternary cycles. Then, unfortunately, odd cycles
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no longer model disjunction if k > 3, similarly to even cycles, which do not model
disjunction if k > 2.

In resource-based answer set semantics, there are no inconsistent programs. Nev-
ertheless, the new semantics is useful in knowledge representation not just to fix in-
consistencies: rather, it depicts a more general scenario in many reasonable examples.
Consider for instance the variation of the above program (inspired to examples proposed
in [23, 24]):

beach← not mountain.
mountain← not travel.
travel← not beach,passport ok.
passport ok← not forgot renew.
forgot renew← not passport ok.

This program has answer set M1 = {forgot renew,mountain}, as passport ok be-
ing false forces travel to be false, which in turn makes mountain true. The answer
set semantics cannot cope with the case of the passport being ok, which is in fact
excluded as this option determines no answer set. Instead, in resource-based answer
set semantics we have, in addition to M1, three other answer sets stating that, if the
passport is ok, any choice is possible, namely we have M2 = {passport ok,mountain},
M3 = {passport ok,beach}, and M4 = {passport ok, travel}. We may notice that the
semantics is still a bit strong on this example on the side of the answer set, as one
would say that not having passport ok prevents traveling, but any other choice should
be possible, while instead the mountain choice is forced.

A better formalization of the above example would be by means of the plain odd
cycle, plus the even cycle concerning passport, plus the constraint

← not passport ok, travel.
In the next section we will discuss how to introduce such a constraint, as a unary odd
cycle is no longer usable to this purpose.

6 Modeling Constraints

In resource-based answer set semantics, constraints cannot be modeled in terms of odd
cycles. Therefore, they have to be modeled explicitly. In particular, let assume a con-
straint C to be of the form← E1, . . . ,En. where the Eis are atoms5. This is with no loss
of generality, as a constraint such as, for instance,← A,not B. can be reformulated as
the program fragment← A,B′. B′← not B. Thus, an overall program ΠO can be seen
as composed of answer set program Π plus a set {C1, . . . ,Cv} of constraints, and, pos-
sibly, an auxiliary program ΠC , so that constraints can be defined on atoms belonging
to either Π or ΠC . We assume however that ΠC is stratified (i.e., it contains no cycles,
cf. e.g., [28] for a formal definition) and that atoms of Π may occur in ΠC only in the
body of rules (in the terminology of [16, 29], ΠC is a top program of Π ).

5 This limitation will be useful for the linear logic formulation (provided below).
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Consider for instance ΠO to be composed of the following Π :

{beach← not mountain.
mountain← not travel.
travel← not beach.
hyperthyroidism.}

plus the following ΠC :

{unhealthy← beach, hyperthyroidism.}

plus the constraint← unhealthy.
The resulting theory will have resource-based answer sets {mountain,

hyperthyroidism}, and {travel, hyperthyroidism}, while {beach, hyperthyroidism,
unhealthy} is excluded by the constraint. We now proceed to the formal definition.

Definition 8. An Answer Set Theory T is a couple 〈ΠO ,Constr〉, with ΠO = Π ∪ΠC ,
where ΠC is a top program for Π , and where Constr is a set {C1, . . . ,Cv}, v ≥ 0, of
constraints.

Definition 9. Given Answer Set Theory T = 〈ΠO ,Constr〉, a resource-based Answer
Set M for Π fulfills the constraints in Constr iff the answer set program Π ′ is consistent
(in the sense of traditional answer set semantics), where Π ′ is obtained from ΠC by
adding all atoms in M as facts, and all constraints in Constr as rules.

Definition 10. A Resource-based Answer Set M of Answer Set Theory T =
〈ΠO ,Constr〉 is a resource-based answer set for Π that fulfills all constraints in Constr.

It is easy to see that, in order to check that resource-based Answer Set M for Π ful-
fills the constraints, one can check consistency of Π ′ in a simple way, by: (i) computing
(in polynomial time, cf., e.g., [20]) the unique answer set M′′ of the stratified program
Π ′′ obtained from ΠC by adding all atoms in M as facts, and then (ii) checking con-
straints on M′′ by pattern-matching. Then, for constraints of the above simple form, we
can conclude that:

Proposition 3. Given Answer Set Theory T , deciding about the existence of a
resource-based answer set is a co-NP-complete problem.

The partition of ΠO into Π and ΠC is not strictly necessary in the present context.
In fact, one might simply check the constraints on Π ∪ΠC . However, we choose to
introduce the distinction because we believe that it may have a significance in terms
of knowledge representation and elaboration-tolerance, in the sense of [10]. In fact, the
same “generate” part (Π ) can be customized by adding on top, as an independent layer,
different “test” parts (ΠC ). Moreover, constraints might be generalized with respect to
the simple form proposed above, for instance drawing inspiration from the discussion
in [30, 31, 32], or also following the approach of Answer Set Optimization (cf. [33] and
the references therein), which proposes constraints expressing complex preferences for
choosing among answer sets.
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For the sake of completeness, it may be interesting to illustrate the linear logic
formalization of the full approach. To this aim, we have to resort to linear logic negation.
A constraint C =←E1, . . . ,En. can in fact be represented in linear logic as C L = E1

⊥ O
. . . O En

⊥ where O is the multiplicative disjunction, and ⊥ is linear logic negation, A⊥

meaning “there is no proof for A”.6

Thus, the overall linear logic theory would be ΣΠO
, and its resource-based answer

sets should be matched against the constraints. Formally:

Definition 11. Given resource-based answer set M = {A1, . . . , An} for ΠO , M is
a resource-answer set for answer set theory T = 〈ΠO ,Constr〉 where Constr
= {C1, . . . ,Cv} iff tensor conjunction A1⊗ . . .⊗An⊗C L

1 ⊗ . . .⊗C L
v is provable

from ΣΠO
.

Notice that each constraint is provable whenever at least one of its disjuncts is not
one of the Ai’s. Then, in terms of equivalence between the logic programming and linear
logic formulation, nothing really changes w.r.t. Theorem 3.

7 Concluding Remarks

In this paper, we have proposed an extension of the answer set semantics where ternary
odd cycles are understood as exclusive disjunctions, similarly to binary even cycles.
This extension stems from the interpretation of an answer set program as a linear logic
theory, where default negation is considered to be a resource. The practical advantage is
that there is more freedom in defining a search space, where constraints must however
be defined in a separate “module” to be added to given answer set program.

Concerning implementation, which is of course a main future issue for this research,
answer set solvers based on SAT appear to be good candidates for extension to the new
setting. In fact, apart from checking for minimality of models (which is the part respon-
sible for the additional complexity), they do not seem to need substantial modifications
in order to cope with the new semantics, that thus might in principle be easily and
quickly implemented.
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